
Biometrika (2002), 89, 4, pp. 745–754

© 2002 Biometrika Trust

Printed in Great Britain

Empirical supremum rejection sampling

B BRIAN S. CAFFO

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.

bcaffo@jhsph.edu

JAMES G. BOOTH

Department of Statistics, University of Florida, Gainesville, Florida 32611, U.S.A.

jbooth@stat.ufl.edu

 A. C. DAVISON

Institute of Mathematics, Swiss Federal Institute of T echnology, 1015 L ausanne, Switzerland

anthony.davison@epfl.ch

S

Rejection sampling thins out samples from a candidate density from which it is easy to
simulate, to obtain samples from a more awkward target density. A prerequisite is knowl-
edge of the finite supremum of the ratio of the target and candidate densities. This severely
restricts application of the method because it can be difficult to calculate the supremum.
We use theoretical argument and numerical work to show that a practically perfect sample
may be obtained by replacing the exact supremum with the maximum obtained from
simulated candidates. We also provide diagnostics for failure of the method caused by a
bad choice of candidate distribution. The implication is that essentially no theoretical
work is required to apply rejection sampling in many practical cases.

Some key words: Accept-reject; Candidate distribution; Monte Carlo; Sample maximum; Super-efficient
estimator.

1. I

Rejection sampling is a way of generating a random sample from a target density f from
which it is difficult to simulate, using a random sample from a more tractable candidate
density g. A key requirement is that C¬sup

x
f (x)/g(x) be finite. Let F and G denote the

distribution functions corresponding to f and g, and let CUB be an upper bound for C.
Then the usual rejection sampling algorithm is given in Algorithm 1.

A 1 (Standard rejection sampling)
Step 1. Generate X~G and U~Un(0, 1) independently.
Step 2. Accept X if U∏ f (X)/{CUBg(X)}.
Step 3. If X is accepted, return X; otherwise go to Step 1.

The value of CUB is the average number of candidate variates required to obtain one
target variate (Robert & Casella, 1999, Problem 2.36). Thus, the lower the upper bound,
the more efficient is the method.
The choice of candidate for rejection sampling is often motivated by the ease with which
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C can be calculated or tightly bounded, but this can give a value so large that rejection
sampling is inefficient. By contrast more efficient candidates can yield ratios f/g that are
complicated and even multimodal, making it harder to calculate C. In such cases we
propose to estimate C using a sequence of lower bounds given by CC , the maximum ratio
obtained from the simulated candidate variables. The new algorithm is given in
Algorithm 2.

A 2 (Empirical supremum rejection sampling)
Step 1. Initialise CC .
Step 2. Generate X~G and U~Un (0, 1) independently.
Step 3. Accept X if U∏ f (X)/{CC g(X)}.
Step 4. Update CC=max{CC , f (X)/g(X)}.
Step 5. If X is accepted, return X; otherwise go to Step 2.

The sample maximum CC can be a super-efficient estimator of C if C<2. We exploit
its fast rate of convergence to show that rejection sampling using CC accepts essentially the
same sequence of candidates as would Algorithm 1. In fact, when f and g have discrete
support the sequences of accepted values from the algorithms only differ for finitely many
repetitions of the algorithm with probability one. This strong result does not quite hold
in continuous cases, but we can relate the rate of convergence of the empirical supremum
to the rate of convergence of the difference between averages computed using the two
sequences. We show that the sequence from Algorithm 2 inherits the strong law of large
numbers and central limit theorem obeyed by that from Algorithm 1. Thus, if the goal is
to evaluate an expectation with respect to F, variates generated using Algorithm 2 may
be treated as a random sample from F.
By the introduction of dependence among the accepted values, this work differs from

two other variations on rejection sampling, namely adaptively improving the candidate
as the algorithm progresses (Gilks & Wild, 1992; Wild & Gilks, 1993) and recycling the
information contained in the uniform variates from Step 3 of Algorithm 1 (Casella &
Robert, 1996, 1998). A third more closely related variation adjusts for the use of a possibly
incorrect value of C with the independent Metropolis algorithm (Tierney, 1994).
In § 2 we formally develop the two rejection sampling algorithms, and in § 3 we state

and prove the main results. In § 4 we discuss implementation and the possibility of improv-
ing on estimates of C. In § 5 we explore a simple example, while § 6 contains a brief
discussion.

2. E   

We evaluate the limiting behaviour of the accepted candidates from Algorithm 2 by
comparing them with the accepted values from Algorithm 1 run with the same candidate
and uniform variates.
Let {X

ij
}
ijµN×N

be a doubly-indexed sequence of independent variates from G,mutually
independent of the doubly-indexed sequence {U

ij
}
ijµN×N

of independent Un(0, 1) variates.
The subscript identifies the jth candidate and uniform variates used in generating the ith
observation from the target distribution. Let

t
i
=min qjµN KUij∏ f (X

ij
)

Cg(X
ij
)r
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and define Y
i
=X
it
i

. Then the sequence {Y
i
} is generated according to Algorithm 1, with

acceptance number t
i
.

We use similar notation to formalise Algorithm 2, but distinguish the acceptance number
and accepted candidate with a tilde. Thus, the ith acceptance number is

tAi=min qjµN KUij∏ f (X
ij
)

CC
i
g(X
ij
)r ,

and the ith accepted candidate is YB
i
=X
itA
i

, where

CC
i+1
=max q f (Xi1 )g(X

i1
)
, CC
ir . (1)

In these formal descriptions of the algorithms we update (1) only once per accepted
candidate, using the first candidate from the previous round, X

i1
, in contrast to

Algorithm 2, in which updating occurs with every candidate. This simplifies proofs because
CC
i
is then the largest order statistic of exactly i−1 observations rather than of a random

number of them. Also, CC
i
defined in this way is independent of X

ij
for all j. In § 3 we show

that our main results continue to hold with any scheme that implements larger lower
bounds than those defined in (1). In particular, our results still hold if CC

i
is updated after

every simulated candidate as in Algorithm 2.
The recursive definition of CC

i
requires an initial CC 1 . As C�1, we set CC 1=1 to prove

the main theorem in § 3. In practice, where CC
i
is only evaluated up to a constant of

proportionality one might simply set CC 1= f (X11 )/g(X11 ), where X11 is the first candidate
value generated.
The three main assumptions needed for the new algorithm are as follows, X

F
and X

G
denoting the supports of F and G:

Assumption 1. We require that X
F
5X
G
.

Assumption 2. We require that C¬sup
xµX
F

f (x)/g(x)<2.

Assumption 3. We require that C= f (x
C
)/g(x
C
) for some x

C
µX
F
.

Assumptions 1 and 2 are required for Algorithm 1, but Assumption 3 is not. In most
situations all three assumptions can be satisfied by choosing a candidate density with
heavier tails than the target. In particular, they hold if f and g are bounded and g dominates
f outside a compact subset of X

F
.

3. C

The key quantity for comparing the sequences is pr(Y
i
NYB
i
), the probability that

Algorithm 2 erroneously accepts a candidate that Algorithm 1 rejects. In the discrete case,
W

i
pr (Y
i
NYB
i
)<2 with probability one, and hence the output from the two algorithms

differs for only finitely many i. The sequence {YB
i
} therefore has the same limiting properties

as {Y
i
}.

T 1. If f is a density with respect to the counting measure then

pr (Y
i
NYB
i
infinitely often in i)=0.

Proof. Assumption 3 gives C= f (x
C
)/g(x
C
) for some x

C
µX
F
. If c=min{iµN |X

i1
=x
C
},

then c is geometric with success probability g(x
C
), where g(x

C
)>0 by the assumption that
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X
F
5X
G
. As the algorithms are identical when CC

i
=C, it follows that the event {Y

i
NYB
i
}

implies the event {c� i}. Thus

pr (Y
i
NYB
i
)∏pr (c� i )={1−g(x

C
)}i−1

and hence W
i
pr (Y
i
NYB
i
)<2. %

One could argue that in practice Theorem 1 applies also to continuous cases, because
C is typically evaluated only up to a given accuracy. For a fair comparison of the algor-
ithms we should then use CC

i
to estimate C to within the same tolerance, and with prob-

ability one this must occur within finitely many iterations. More formally, however, in
many continuous settings W

i
pr (Y
i
NYB
i
) may not be finite because (Y

i
NYB
i
) is precisely

O(i−1 ). This rate of convergence, which is needed to prove our main result stated in
Theorem 2, only requires Assumptions 1, 2 and 3. In § 4, under the assumption that
log ( f/g) is smooth and unimodal, we motivate an even faster rate, namely pr(Y

i
NYB
i
)=

O(i−2 ).
Let h be a real-valued F-measurable function, let m

h
=E{h(Y

i
)} and suppose that

s2
h
=var{h(Y

i
)}<2. Let h:

n
=n−1 Wn

i=1
h(Y
i
) denote the sample average obtained from the

sequence {Y
i
}, and let hA

n
denote the sample average from the corresponding sequence {YB

i
}.

Almost sure convergence of nD(h:
n
−hA
n
) to zero is sufficient to prove that {hA

n
} inherits the

strong law of large numbers and central limit theorem obeyed by {h:
n
}.

T 2. If E{h(Y
i
)d}<2 for some d>2 and Assumptions 1, 2 and 3 hold, then hA

n
converges almost surely to m

h
and nD(hA

n
−m
h
) converges in distribution to N(0, s2

h
) as n�2.

See the Appendix for the proof.
We end this section with a discussion of better estimates of C. Let {YC

i
} be a sequence

of accepted values from a variant of Algorithm 2 implementing larger lower bounds for
C than CC

i
. Then YC

i
satisfies pr (Y

i
NYC
i
)∏pr (Y

i
NYB
i
). The crucial quantity in Theorems 1

and 2 is the rate of convergence of pr (Y
i
NYB
i
). As this rate dominates pr (Y

i
NYC
i
), the

sequence {YC
i
} inherits the same properties as YB

i
. This is true in particular if the maximum

is updated with every candidate rather than once for every accepted candidate.

4. A   CC
i

When log ( f/g) is smooth and unimodal at x
C
, a more precise description of the asymp-

totic behaviour of CC
i
is possible. We can also derive a confidence interval estimate of C,

resulting in an empirical supremum rejection sampling algorithm that produces exact
independent identically distributed samples with a high probability. In addition, it is
possible to diagnose a poor choice of candidate distribution leading to C=2.
Let V¬n(X)= log{ f (X)/g(X)}, where X is drawn from G. In many cases n will be
smooth and unimodal, having a maximum at x

C
, near which it is concave. If so, Taylor

series expansion of n about x
c
implies that for v close to logC

pr (V>v)j pr{logC−v>−1
2
(x
C
−X)2n◊(x

C
)}ja( log C−v)D, (2)

where a=2g(x
C
)[2/{−n◊(x

C
)}]D. Now let V

k
=n(X

k1
) for k=1, . . . , i, so that CC

i
is the

maximum of eV
1
, . . . , eV

i
. Then it follows from (2) that, as i�2, i2 log(C/CC

i
) converges

to a Weibull variable with shape 1
2
and unknown scale parameter. The Weibull approxi-
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mation suggests that

E{log(C/CC
i
)}jE(C/CC

i
−1)=O(i−2 )

and hence pr (Y
i
NYB
i
)=O(i−2 ) by Lemma A1.

We now extend these results to obtain an upper confidence limit for logC. Equation
(2) also implies that y(V

k
)¬−{log a+1

2
log( logC−V

k
)} approximately has a standard

exponential distribution for k=1, . . . , i. This approximation improves when considering
the larger order statistics of the {V

k
}. Let V

(k),i
be the kth order statistic of V1 , . . . , Vi . Note

that CC
i
=exp (V

(i),i
) and CC

i−1
=exp(V

(i−1),i−1
). Then y(V

(i−1),i
)−y(V

(i),i
) has an approxi-

mate standard exponential distribution. Let e
1−a
denote the 1−a quantile of the standard

exponential distribution. Then

aj pr{y(V
(i−1),i

)−y(V
(i),i

)�e
1−a

}=pr qlogC∏exp V
(i),i
+

V
(i),i
−V
(i−1),i

exp(2e
1−a

)−1r ,
giving an approximate level-a upper confidence bound for logC, and hence for C.
This bound remains valid if CC is updated with every candidate. A reviewer has pointed

out that the bound must be updated in this manner, because an upper bound that is too
large early in the simulations may otherwise produce an algorithm that will never accept
a candidate and hence never improve the upper bound.
The previous arguments also provide diagnostics for assessing whether or not a chosen

g provides a suitable candidate for f. If C=sup
x

f (x)/g(x)=2, then the upper tail behav-
iour of the random variable V

k
will be quite different from that for finite C. Regardless of

C, the large-sample joint distribution of the {V
k
} exceeding some threshold will be approxi-

mately that of independent generalised Pareto variables (Davison & Smith, 1990). This
approximation assumes that the number of exceedances is small relative to the overall
sample size and holds in wide generality (Pickands, 1975). The generalised Pareto distri-
bution is

H(w)=q1− (1+kw/s)−1/k
+

(kN0),

1−exp (−w/s) (k=0),
(3)

where s>0. The parameter k determines the shape of the upper tail, with k<0 giving a
finite upper bound and therefore finite C. This suggests diagnosing an infinite C by testing
the null hypothesis k=0 against the alternative k>0. The score statistic for k=0 under
model (3) is equivalent to Greenwood’s statistic, G

s
=WT
k=1

S2
k
, where S

k
=U
(k)
−U
(k−1)
,

in which U(1) , . . . , U(T−1) are the order statistics of a random sample from the Un(0, 1)
distribution and U(0)=0, U

(T)
=1. The distribution of G

s
has been extensively tabulated

(Burrows, 1979; Currie, 1981; Stephens, 1981); percentage points are also easily calculated
by simulation.
In our context we suggest that the threshold be taken to be V

(i−T),i
, for a moderate

value of T , such as T=21. The test is then applied to the spacings S
k
=S∞
k
/WT
k=1

S∞
k
of

S∞
k
=V
(k),i
−V
(k−1),i

, for k= i−T+1, . . . , i. Values of G
s
in the upper tail of its null distri-

bution suggest that k>0 and thus that the candidate density has been badly chosen.

5. E

Consider a candidate for a rejection sampler used to simulate from the conditional
distribution of a random effect given observed data for a random intercept logistic/normal
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Table 1. Average and median proportion error rates for various candidate
distributions and sample sizes, M, for z=10, n=30 and 1000 replications
of M simulations from the new algorithm without and with upper confidence
limit. A type A error occurs when a sampler incorrectly accepts a candidate
it should have rejected and a type B error occurs when a sampler rejects a

candidate it should have accepted

M=2 M=5 M=10 M=100

Error type Error type Error type Error type
A B A B A B A B

t3/Laplace candidate distribution
 Mean 0·10 0 0·05 0 0·03 0 0·00 0

Median 0 0 0 0 0 0 0 0

  Mean 0·07 0·18 0·03 0·24 0·01 0·23 0·00 0·07
Median 0 0 0 0·2 0 0·2 0 0·04

N(a, s2) candidate distribution
 Mean 0·77 0 0·49 0 0·33 0 0·07 0

Median 1 0 0·4 0 0·3 0 0·06 0

  Mean 0·49 0·01 0·20 0·01 0·10 0·01 0·01 0·01
Median 0·5 0 0·2 0 0·1 0 0·01 0·01

, empirical supremum algorithm, run without the upper confidence limit.
 , empirical supremum algorithm, run with the upper confidence limit.

model, which specifies that, given p, Z~Bi (n, p) with log{p/(1−p)}=Y, where
Y~N(a, s2 ). Such a model arises when obtaining shrinkage estimates for small area
estimation (Agresti et al., 2000). Simulation of values of Y conditional on Z, a and s
allows one to replace intractable integrals with Monte Carlo estimates when finding mar-
ginal maximum likelihood estimates via the  algorithm (Booth & Hobert, 1999). For
simplicity we consider simulating from Y |Z=z with a=1 and s=0·5.
The marginal N(a, s2 ) distribution of the random effect is a poor candidate. Though it
is feasible to derive a finite upper bound C, this choice of candidate distribution makes
the algorithm increasingly inefficient as the sample size, n, increases; see B. Caffo’s 2001
Ph.D. Thesis from the University of Florida. A better candidate distribution can be con-
structed by Laplace approximation (Tierney et al., 1989). Let m and h be the Laplace
approximation to the mean and variance of Y |Z=z, a=1, s=0·5; see Booth & Hobert
(1999) for details. Shifting and scaling a t3 distribution by m and hD provides a better
candidate that becomes increasingly efficient as n�2. Furthermore, as Assumptions 1,
2 and 3 are met when using the marginal distribution of Y as a candidate, they are also
met for the heavier tailed t3 candidate distribution.
For z=10 and n=30, using a shifted and rescaled t3 candidate distribution yields an
acceptance rate of over 85%, as opposed to only 2% for the N(a, s2 ) candidate. However,
a closed-form expression for C is unavailable for the t candidate distribution. We ran
Algorithm 2 with the supremum updated with each simulated value for both candidate
distributions. Knowledge of the exact value of C allowed us to determine whether a
candidate was mistakenly accepted or rejected relative to Algorithm 1 for each candidate
and uniform pair. Table 1 gives the average and median proportions of incorrect decisions
in repeated sampling of 1000 repetitions of M=2, 5, 10 and 100 candidate uniform pairs
for Algorithm 2 with and without the upper confidence limit. Incorrect decisions are
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stratified by whether a candidate was errantly accepted or errantly rejected, referred to as
type A and B errors respectively. Although Algorithm 2 cannot make a type B error, it
can when an upper confidence limit is used. For the accurate t3/Laplace candidate, empiri-
cal supremum rejection sampling made few errant decisions even for very small sample
sizes. For the less accurate N(a, s2 ) candidate, the algorithm with the upper confidence
limit was preferable. For either candidate distribution, however, the new algorithm became
essentially equivalent to the standard algorithm after just a few simulations.

6. D

The main benefit of empirical supremum rejection sampling is that the choice of the
candidate distribution need not be governed by the ability to calculate, bound or numeri-
cally solve for C, so useful candidate distributions that lead to complicated forms for f/g
can be used. Furthermore, once a candidate distribution is chosen, one can diagnose
whether or not C=2.
When rejection sampling is used to provide a large Monte Carlo sample, the new

algorithm can be used in place of the standard algorithm with virtually no modification.
This is not true, however, when rejection sampling is used to calculate only one sample
point from the target distribution, for example when simulating a single value from an
intractable full conditional distribution in a Gibbs sampler. It is sometimes possible to
avoid Gibbs sampling entirely by sequential simulation, in which case empirical supremum
rejection sampling can be used to simulate from the first distribution of the sequence,
which is often intractable.
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A

T echnical details

L A1. Under Assumptions 1 and 2, pr (Y
i
NYB
i
)∏E(C/CC

i
)−1.

Proof. That pr (Y
i
NYB
i
)∏pr (t

i
∏tAi ) is clear as Y

i
NYB
i
is equivalent to X

it
i

NX
itA
i

. To prove that
pr (t
i
∏tAi )∏E(C/CC

i
)−1, consider the events

A
ij
=qUij∏ f (X

ij
)

g(X
ij
)Cr , B

ij
=qUij∏ f (X

ij
)

g(X
ij
)CC
i
r .

As CC
i
<C it follows that A

ij
5B
ij
.The probabilities of A

ij
and B

ij
are

pr (A
ij
)=1/C,

pr (B
ij
)=E Cpr qUij∏ f (X

ij
)

g(X
ij
)CC
i
KXij ,CC irD=E Cmin q f (X

ij
)

g(X
ij
)CC
i
, 1rD .

As CC
i
is independent of X

ij
for all j, and the X

ij
are independent and identically distributed, pr(B

ij
)

is constant for all j.
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The probability that Algorithm 2 accepts X
ij∞
and Algorithm 1 accepts X

ij
is

pr(tAi= j∞, t
i
= j )= a

j∞−1

l=1
{1−pr (B

il
)}pr (B

ij∞
]Ac
ij∞

) a
j−1

l=j∞+1
{1−pr (A

il
)}pr (A

ij
)

∏ a
j∞−1

l=1
{1−pr (A

il
)}{pr (B

ij∞
)−pr (A

ij∞
)} a
j−1

l=j∞+1
{1−pr (A

il
)}pr (A

ij
)

={pr (B
i1

)−C−1}(1−C−1 )j−2C−1 ( j∞< j ).

Summing over j∞< j gives pr (tAi< j, t
i
= j )∏ ( j−1){pr (B

i1
)−C−1}(1−C−1)j−2C−1, so

pr (tAi<ti )∏ ∑
2

j=1
pr (tAi< j, t

i
= j )

={pr (B
i1

)−C−1} ∑
2

j=1
( j−1)(1−C−1)j−2C−1

={pr (B
i1

)−C−1}(1−C−1)−1(C−1)={pr (B
i1

)−C−1}C.

To complete the proof, we must show that pr (B
i1

)∏E(1/CC
i
). However,

pr (B
i1

)=E Cmin q f (X
i1

)

g(X
i1

)CC
i
, 1rD∏E q f (X

i1
)

g(X
i1

)CC
i
r=E q f (Xi1 )g(X

i1
)r E A 1CC

i
B=E A 1CC

i
B ;

recall that X
i1
is independent of CC

i
by (1). %

L A2. L et {Z
k
} be a sequence of independent random variables from a continuous density

w, with associated distribution function W. Suppose that, for some b, W (b)=1 and W (b−e)<1 for
all e>0, where w(b)>0. L et Z

(i)
=max{Z

k
|k=1, . . . , i}. T hen b−E(Z

(i)
)=O(i−1 ). Moreover, the

same rate holds for sample minima with finite lower bounds.

Proof. Suppose that b=1 and Z
k
>0 for all kµN. Then

1−E(Z
(i)

)=1− P 1
0

{1−W (t)i} dt= P 1
0

W (t)i dt

= P 1−e
0

W (t)i dt+ P 1
1−e

W (t)i dt∏W (1−e)i(1−e)+ P 1
1−e

W (t)i dt.

As W (1−e)i(1−e)<O(i−1 ), we need only investigate ∆1
1−e

W (t)i dt.
By assumption, w is continuous from the left and w(1)>0. Let k and e be such that w(x)>k

for 1−e∏x∏1, and choose 0<p<1 so that k>p(1−e)−1. Then

w(x)>k>p(1−e)−1�p(1−e)p−1�pxp−1,

for 1−e∏x∏1. Hence

P 1
t

w(x) dx� P 1
t

pxp−1 dx,

which implies that W (1)−W (t)�1−tp. Thus, for 1−e∏t∏1, we have W (t)i∏tip. The result
then follows from the fact that

P 1
1−e

tip dt=
1

ip+1
−

(1−e)ip+1
ip+1

=O(i−1).

When the Z
i
might be negative but have upper bound 1, let Z∞

(i)
=max (Z

(i)
, 0). Then Z∞

(i)
is the

maximum of nonnegative random variables and hence the previous paragraph suggests that the
rate of convergence of E(Z∞

(i)
) to 1 is O(i−1). Thus Z

(i)
is tail equivalent to Z∞

(i)
, yielding the result

for all independent identically distributed sequences bounded by 1.
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Now assume that b is not necessarily 1. Then

Z
k
=Z
k
−b+1+ (b−1)=Z*

k
+ (b−1).

Hence the Z*
k
have upper bound 1 and hence

O(i−1)=1−E(Z*
(i)

)=b−E(Z
(i)

).

Finally, noting that the sample minimum is simply the negative of a sample maximum, we have
the corresponding results for minima. %

L A3. Under Assumptions 1, 2 and 3, pr (Y
i
NYB
i
)=O(i−1).

Proof. By Lemma A1 we need only show that E(C/CC
i
)−1=O(i−1). Note that

C/CC
i
=min{Cg(X

k1
)/f (X

k1
) |k=1, . . . , i−1}.

Thus C/CC
i
is the minimum of i−1 independent random variables bounded from below at 1. In

the light of Lemma A2 we need only show that the density of the random variable Z
k
=

Cg(X
k1

)/f (X
k1
) is strictly positive at 1. However the density of Z

k
is strictly positive for every value

z=Cg(x)/f (x) for which g(x)>0. In particular, Assumption 3 implies that the density of Z
k
is

strictly positive at 1=Cg(x
C
)/f (x
C
). %

Proof of T heorem 2. We prove the strong law and central limit theorem simultaneously by
showing that nD(h:

n
−hA
n
) converges almost surely to zero. Lemma A3 implies that pr (Y

i
NYB
i
)=

O(i−1 ), so W2
i=1
pr (Y
i
NYB
i
)e/iD<2 for any e>D. If we let e= (d−1)/d, then e>D . Assume for now

that E[{h(Y
i
)−h(YB

i
)}d] is bounded in i. Then

∑
n

i=1
i−DE{|h(Y

i
)−h(YB

i
) |}= ∑

n

i=1
i−DE{|h(Y

i
)−h(YB

i
) |I
{Y
i
NYB
i
}
}

∏ ∑
n

i=1
i−D(E[{h(Y

i
)−h(YB

i
)}d])1−e pr (Y

i
NYB
i
)e,

where the inequality holds by the Hölder inequality. Thus

E q∑2
i=1

i−D |h(Y
i
)−h(YB

i
) |r<2,

and hence W2
i=1

i−D |h(Y
i
)−h(YB

i
) |<2 almost surely. The claim then follows by Kronecker’s lemma

(Chow & Teicher, 1997, p. 114).
As E{h(Y

i
)d} is constant, to show that E[{h(Y

i
)−h(YB

i
)}d] is bounded we need only show that

E{h(YB
i
)d} is bounded in i. Conditional on CC

i
, the density of YB

i
is proportional to min ( f, CC

i
g)

(Tierney, 1994). Therefore

E{h(YB
i
)d |CC
i
}= P h(x)d min{ f (x), CC

i
g(x)} dx N P min{ f (x), CC

i
g(x)} dx

∏ P h(x)df (x) dx N P min{ f (x), CC
i
g(x)} dx

=E{h(Y1 )d} N P min{ f (x), CC
i
g(x)} dx

∏E{h(Y1 )d} N P min{ f (x), g(x)} dx,

since CC
i
�1. Expectation over the distribution of CC

i
yields the result. %



754 B. S. C, J. G. B  A. C. D

R

A, A. A., B, J., H, J. & C, B. S. (2000). Random effects modeling of categorical resonse
data. Sociol. Methodol. 30, 27–80.
B, J. G. & H, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an auto-
mated Monte Carlo EM algorithm. J. R. Statist. Soc. B 61, 265–85.
B, P. M. (1979). Selected percentage points of Greenwood’s statistic. J. R. Statist. Soc. A 142, 256–8.
C, G. & R, C. P. (1996). Rao–Blackwellisation of sampling schemes. Biometrika 83, 81–94.
C, G. & R, C. P. (1998). Post-processing accept-reject samples: Recycling and rescaling. J. Comp.

Graph. Statist. 7, 139–57.
C, Y. S. & T, H. (1997). Probability T heory: Independence, Interchangeability, Martingales, 3rd ed.
New York: Springer-Verlag.
C, I. D. (1981). Further percentage points of Greenwood’s statistic. J. R. Statist. Soc. A 144, 360–3.
D, A. C. & S, R. L. (1990). Models for exceedances over high thresholds (with Discussion). J. R.

Statist. Soc. B 52, 393–442.
G, W. R. & W, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41, 337–48.
P, J. (1975). Statistical inference using extreme order statistics. Ann. Statist. 3, 119–31.
R, C. P. & C, G. (1999). Monte Carlo Statistical Methods. New York: Springer.
S, M. A. (1981). Further percentage points for Greenwood’s statistic. J. R. Statist. Soc. A 144, 364–6.
T, L. (1994). Markov chains for exploring posterior distributions (with Discussion). Ann. Statist. 22,
1701–28.
T, L., K, R. E. & K, J. B. (1989). Fully exponential Laplace approximations to expectations
and variances of nonpositive functions. J. Am. Statist. Assoc. 84, 710–6.

W, P. & G, W. R. (1993). Algorithm AS 287: Adaptive rejection sampling from log-concave density
functions. Appl. Statist. 42, 701–8.

[Received April 2001. Revised January 2002]


