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In epidemiology, data often arise in the form of time series e.g. notifications of diseases, entries to a hospital, mortality
rates etc. are frequently collected at weekly or monthly intervals. Usual statistical methods assume that the observed
data are realizations of independent random variables. However, if data which arise in a time sequence have to be ana-
lysed, it is possible that consecutive observations are dependent. In environmental epidemiology, where series such
as daily concentrations of pollutants were collected and analysed, it became clear that stochastic dependence of con-
secutive measurements may be important. A high concentration of a pollutant today e.g. has a certain inertia i.e. a
tendency to be high tomorrow as well.

Since the early 1970s, time series methods, in particular ARIMA models (autoregressive integrated moving average
models) which have the ability to cope with stochastic dependence of consecutive data, have become well established
in such fields as industry and economics. Recently, time series methods are of increasing interest in epidemiology.

Since these methods are not generally familiar to epidemiologists this article presents their basic concepts in a con-
densed form. This may encourage readers to consider the methods described and enable them to avoid pitfalls inher-
ent in time series data. In particular, the following topics are discussed: Assessment of relations between time series
(transfer function models). Assessment of changes of time series (intervention analysis), forecasting and some related
time series methods.

In epidemiology data often arise in the form of 'time
series': Notifications of diseases, entries in a hospital,
mortality rates etc. are frequently collected at weekly
or monthly intervals. Usual statistical methods assume
that the observed data are realizations of independent
random variables. However, if data which arise in a
time sequence have to be analysed, it is possible that
consecutive observations are dependent. Even though
time series models have been studied for many years,
they have belonged to the domain of theoretical statis-
tics. This situation changed when Box and Jenkins pro-
vided a method for actually constructing time series
models in practice.1 Their method of identification,
estimation and checking is now often referred to as 'the
Box-Jenkins approach' and the (autoregressive inte-
grated moving average) ARIMA models are also
called Box-Jenkins models. Since the first edition of

Biostatistical Center, Institute of Social and Preventive Medicine,
University of Zurich, Sumatrastruse 30,8006 Zurich, Switzerland.

their book in 1970, many time series data arising in
such fields as industry and economics have been ana-
lysed by this method.

Armitage was probably the first to suggest the appli-
cation of Box-Jenkins models to epidemiological time
series data.2 Recently, there has been increasing
interest in time series methods in epidemiology. This
may be reflected in a recent issue of the journal Statis-
tics in Medicine (March 1989) which contained three
articles3"5 concerned with epidemiological time series
analysis.

In environmental epidemiology where series such as
daily concentrations of pollutants were analysed, it
became evident that stochastic dependence of con-
secutive measurements may not be disregarded. A
high concentration of a pollutant today e.g. has a cer-
tain inertia i.e. a tendency to be high tomorrow as well
(positive autocorrelation). Observations often show a
stronger correlation when the time interval between
them becomes shorter. This appears to be plausible
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when considering e.g. an air pollutant or a climatic
variable. If the second measurement is taken one
minute after the first it is likely that the concentration
of the pollutant does not change notably. Thus, this
second observation may not add much information to
what is already known from the first one. It is well
known that the variance of the mean y of n uncorre-
lated random variables y, (i = 0, 1, ..., n) with equal
variances Var (y,) = a2 is given by:

Var(y) = cr7n (1)

However, if the variables are correlated it may be
shown that the variance of the mean is given by:

Var(y) = crVn (1+2/n p.,) (2)

where p^ is the correlation between y, and yr The two
formula above show how the variance may be inflated
if data are positively correlated. In the (theoretical)
extreme case where all p̂  are equal to 1 the term in
brackets equals n and the variance of the mean is
Var(y) = o2, i.e. the same as the variance of a single
observation. Box, Hunter and Hunter6 present an
example (with n = 10) which illustrates the effect of
positive or negative correlation when observations fol-
low moving average processes of first order (compare
next section); in this case the term in brackets in equa-
tion (2) may vary by a factor 19. In case of auto-
regressive processes of first order, the effect of
dependency of the observations on the variance of the
mean may be even larger. Similar deliberations apply if
other standard methods (comparison of means, regres-
sions etc.) designed to analyse independent obser-
vations are applied to dependent time series data.

Since time series methods are not generally familiar
to epidemiologists this article presents their basic con-
cept in a condensed form. This presentation has
necessarily to be restricted to a reasonable length;
therefore it is not possible to provide an exhaustive dis-
cussion of details. However, it is thought that a sum-
mary may encourage readers to consider the methods
described and also enable them to avoid pitfalls inher-
ent in time series data. The amount of calculation
involved is no longer a drawback to these methods
since efficient computer programs are available (SAS,7

BMDP8).
Many situations which may be adequately repre-

sented by the so called 'transfer function model' arise
in epidemiology. One is often interested in the assess-
ment of relations between a target or output series such
as daily number of patients coming to a clinic, and
explanatory or input series such as daily concentrations
of a pollutant, daily mean temperature or other cli-
matic series.

Other frequently arising questions are concerned
with changes of time series. Changes may be man-
made or they may arise naturally: How efficient was a
preventive programme to decrease the monthly
number of accidents? How did the pattern of morbidity
in a population change after an environmental acci-
dent? These and many other related questions may be
investigated by the so-called intervention analysis pro-
posed by Box and Tiao.9

Forecasts of epidemiological time series are needed
for many reasons: For public health organizations, it is
of interest to know what frequencies of diseases have
to be expected in the future in order to plan for the dis-
tribution of resources. Forecasting can also be used as
a complementary method to intervention analysis.10'11

A forecast obtained from data before the intervention
may be compared with actual data obtained after the
intervention.

In the following section the so-called ARIMA model
is briefly presented. It serves as the framework for
what follows. Thereafter, the transfer function model,
intervention analysis and some additional related time
series methods are discussed. Finally suggestions for
further reading are given which appear to be of par-
ticular interest to epidemiologists and which may allow
a deeper insight into time series methods.

THE ARIMA MODEL
In order to give precise meaning to concepts and
examples presented in the sequel, let . . . z,.,, z,,z,+1,
. . . denote the observations (number of entries to a
hospital, concentration of a pollutant, etc.) at times
. . . t—1, t, t+1, . . . (e.g. yesterday, today, tomorrow
etc.). For simplicity assume that the mean value of z, is
zero (otherwise the z, may be considered as deviations
from their mean). Let a,_,, a,, a,+1,. . . be a white noise
series consisting of independent identically distributed
random variables with mean zero and variance o,2. It
may be helpful to think of them as random shocks.

To begin, assume that the present observation z, is
linearly dependent on the previous observation z,_,
and on (the random shock) a,:

z, = 4>zt_1+at, where <J> is a parameter. (3)

The expression resembles an ordinary regression equa-
tion. Since z, is regressed on z,_, it is called an auto-
regressive model of first order, abbreviated AR(1)
model.

Alternatively one may express z, as a linear combi-
nation of the present and the previous random shock:

z, = a,—8a,_,, where 8 is a parameter. (4)

This expression is called a moving average model of
first order, abbreviated MA(1) model.
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The above two basic models are special cases of two
more general models:

A = (t>izi_,+ • • • +<t>pZ,-p+a, (5)

called an autoregressive model of order p (AR(p)
model) and

called a moving average model of order q (MA(q)
model).

By combining (5) and (6) one obtains what is called
the autoregressive moving average model of order p
and q (ARMA(p,q) model):

z, = q>,zt_,+ . . . +<t>pzI_p+aI-6|at_i- • • • -e,a,_,.(7)

An important concept is that of stationarity, which
implies that the probability structure of the series does
not change with time. In particular, a stationary series
has a constant mean. It is well known that many epi-
demiological time series are not stationary; they often
exhibit trends. However, experience in economics and
more recently in epidemiology has shown that the
series of differences Vz, = z,—z,_, is often stationary.
In this case the original series z, is called an integrated
ARMA or an ARIMA model. Box and Jenkins have
extended the above concepts to cope with series con-
taining seasonal variations. In particular, a monthly
series with seasonal non-stationarity may be trans-
formed to stationarity by taking seasonal differences:

The dependence structure of a stationary time series
z, is described by the autocorrelation function (ACF).
This function determines the correlation between z,
(the present value of the series) and z,+k (the value k
time units later):

= correlation (z,, z,+k). (8)

k is called the time lag. The empirical ACF is the main
tool for the identification of the model. The ACF of an
AR(1) process e.g. follows an exponential curve,
whereas the ACF of a MA(1) process shows a single
peak at time lag k = 1.

In order to identify an ARIMA model Box and Jen-
kins' have suggested the following iterative procedure:
One starts with a provisional model which may be
chosen by looking at the autocorrelation function.
Then the parameters of the model are estimated and
the adequacy of the model is checked. If the model
does not fit the data adequately12 one goes back to the
start and chooses an improved model. Among differ-
ent models which represent the data equally well one
chooses the simplest one, i.e. the model which contains

the least amount of parameters (principle of
parsimony).

ARIMA-models are needed for several reasons:
They provide e.g. a means to identify transfer function
models (compare next section). In addition, the result-
ing residual variance o.2 provides a yardstick which
may be compared with residual variances of more elab-
orate models.13 As will be demonstrated, it is easy to
calculate forecasts from ARIMA models.

THE TRANSFER FUNCTION MODEL
One is often interested in the assessment of relations
between a target or output series (e.g. daily number of
patients with a specified disease coming to a clinic) and
one or several explanatory or input series (e.g. daily
concentrations of pollutants, daily mean temperature
etc). Figure 1 gives a schematic diagram of the transfer
function model which represents such a situation.

In Figure 1, yt, yt+1, . . . denote the observations
(number of entries, death rates etc) at times t , t + l , . . .
The output series y, is considered to be composed of
two parts:

y, = u,+n, (9)

u, is the part which may be explained in terms of the
input variable x, (concentration of a pollutant, etc), n,
is an error or noise process, which describes the unex-
plained part of yt.

It is assumed that the explained part ut is given by a
weighted sum of the present and of past values of x,:

u, = vox1+v1x,_1+ . . . , (10)

and n, is an ARIMA process as described in the pre-
vious section. v0, v,, . . . are called transfer function
weights.

The relation between two time series x, and yt is
determined by the cross-correlation function'(CCF):

Pxy(k) = correlation (x,, yt+k), k = 0, ±1, ±2, . . . (11)

This function determines the correlation between the
two series as a function of the time lag k. The main tool
to identify a transfer function model is the empirical
CCF r^k) . However, a basic difficulty arises in the
interpretation of the empirical CCF. As shown by
Bartlett14 and by Box and Newbold15 the empirical
CCF between two completely unrelated time series
which are themselves autocorrelated can be very large
due to chance alone. In addition, the cross-correlation
estimates at different lags may be correlated. This is
due to the autocorrelation within each individual
series.

Box and Jenkins1 proposed a way out of this diffi-
culty called 'prewhitening'. The ARIMA model for the
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FIGURE 1 Schematic representation of a transfer function model with two inputs.

input series converts the correlated series x, into an
approximately independent series a,. Applying the
identical operation to the output series y, produces a
new series p\. The CCF between a, and p\ (the pre-
whitened CCF) shows at which lags input and output
are related. Programs such as SAS7 and BMDP8 allow
to calculate the prewhitened CCF easily. An alter-
native way of prewhitening has been described by
Haugh16 and by Haugh and Box.17

Because prewhitening is considered to be of prin-
cipal importance in the assessment of relations
between time series, the following epidemiological
example is presented to demonstrate its effect: During
the winter period daily concentrations of sulphur
dioxide (SOj) (and of many other environmental time
series) were collected in Basle.18 Simultaneously, the
number of respiratory symptoms in a randomly
selected group of preschool children was recorded.
Figure 2(a) shows the CCF between the series SO2

(logarithmically transformed) and the series of symp-
toms before prewhitening. This CCF is not interpret-
able: Significant coefficients are smeared over a large
range of time lags and there are typical nonsense coeffi-
cients: Since, as may easily be shown, r^k) = r^—k),
the large positive coefficients at negative time lags sig-
nify that a high number of respiratory symptoms today
is expected to be followed by high pollution during the
next ten days!

Figure 2(b) shows the prewhitened CCF. After pre-
whitening, a marked peak is found at time lag 0 while
all other coefficients are not significantly different from
zero. This result suggested the following transfer func-
tion model for y, and x,:

y, = v^+n, (12)

where the differenced noise Vn, = n,—n,_, was found
to be adequately represented by a MA(1) model.
Thus, the transfer function model revealed that input is
related instantaneously with output; in particular,
there is no delayed effect of the pollutant (no transfer
function weight different from zero at non-zero time
lags). Since the noise n, is non-stationary, large vari-

ations in the number of symptoms are to be expected
even if no changes in the level of SO2 would arise. It is
interesting to note that in this study climatic variables
(e.g. temperature) did not contribute to the explana-
tion of the output series.18

INTERVENTION ANALYSIS
Other frequently arising problems concern 'changes'
of time series. Changes may be expected after a 'man-
made intervention' e.g. the introduction of a preven-
tive programme. Alternatively changes may occur e.g.
after an environmental accident. Characteristic
properties of changes of series may be investigated by
means of intervention analysis.' The following basic
model has been used to represent the possible effect of
a preventive measure on the number of injuries:

y, = (o0sl+nt, with

s, =
fl for t=sT

OforKT.

(13)

(14)

The step function s, represents e.g. a preventive
measure starting at time T. a»0 is a parameter (the
height of the step etc.) which measures the size or
strength of the effect, n, represents an ARIMA process
as described above. Since n, may be non-stationary,
large changes of the series could occur even when no
preventive measure takes place.

Alternatively the dummy input variable may be a
pulse function pt:

y, = w0 pt+nt, where

Pi =

for t = T

Oelse.

(15)

(16)

The pulse function p, may represent e.g. an unusual
event which acts only at time T.

Figure 3 shows basic intervention models. In the first
line the two dummy input variables s, and p, are
depicted. The lines (a), (b) and (c) below show
responses corresponding to the models. Line (a) of
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FIGURE 2 Cross-correlation function between the series sulphur dioxide (SO^j (logarithmically transformed) and the series of symptoms, (a) Before

prewhitening (CCF). (b) After prewhitening (PCCF).

Figure 3 depicts the response corresponding to the
above two models. In this case p, (respectively s,) is
simply multiplied by co0.

It is possible that model (a) does not fully represent
the characteristic properties of the series: with a step
input the model predicts that the final level is reached
immediately. However, it may be more realistic to con-
sider the model in line (b) of Figure 3.

y, = (17)

Here the final level is reached in two steps. This model
may give a better fit to the data (i.e. a smaller residual
variance) than model (a). Figure 3(c) shows another
possible type of response. The final level is reached
only gradually. This model is represented by:

(18)

Extensions of intervention models in many different
directions are straightforward (compare last section).
Of course it is desirable to include a comparison group
(or area) with no intervention in the study design. Such
studies have been performed e.g. in assessing the
impact of preventive programmes (enforcement and
media information campaign etc.) on the course of
alcohol-related accidents."-20

FURTHER RELATED TIME SERIES METHODS
The following example illustrates how forecasts may
be calculated in a simple manner when an ARIMA
model has been identified.
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FIGURE 3 Responses to a unit pulse and sup input, (a), (b), (c) Basic patterns of response.

To obtain forecasts z,+, for 1 time units (days,
months, etc.) ahead one has only to write the corre-
sponding model equation by replacing (a) future
values of the random shocks a by zero, (b) future
values of z by the corresponding forecasts and (c) past
values of z by their observed values. The following
example may illustrate the simplicity of obtaining fore-
casts e.g. for an AR(1) model:

<S>\ etc.

By continuing this procedure one may see that the
forecasts corresponding to the AR(1) model follow an
exponential curve.

Forecasts are not only of interest 'by itself. In addi-

tion, they provide a complementary way to investigate
a possible change of a series.10 One may compare fore-
casts arising from the pre-intervention series with
actual data of the post-intervention series.

Both methods, intervention analysis and compari-
son of forecasts with actual data assume that the time
of the change is well known. However, when a preven-
tive programme is started e.g. it is often not clear when
it starts to show an effect. A modification of the inter-
vention analysis allows the most likely time of change
to be found. For each possible time an intervention
analysis is performed (Box-Tiao stepping) and the
corresponding residual variance is calculated. The
most likely time is then the time instant which provides
the best model i.e. the model with the smallest residual
variance.21 A more advanced approach to identify such
a 'change-point' may be found in Broemeling.22 In
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studying the possible effect of preventive programmes
it has been observed that the expected effect may pre-
cede the actual time of intervention.21 It is possible as
well that the effect shows up only after a certain delay
time.

CONCLUDING REMARKS AND FURTHER
READING SUGGESTIONS
The elaboration of models described in the preceding
sections in many different directions is straightfor-
ward. Intervention analysis with input consisting of
multiple pulses for example may be used to analyse
questions such as: Are there more deaths due to infarc-
tion in years with influenza A than in years without?
The sequence of pulses then represents years with
influenza A.

Responses to an intervention need not to occur
instantaneously. A preventive programme may show
an effect eventually after a delay. Occasionally such
programmes may show an effect even before the
official programme is started. In such cases one may try
to estimate a possible pre-intervention effect.21 In
addition, effects of preventive programmes need not to
show a permanent effect. Decomposing the dummy
input in a short-term and a long-term component may
help to decide if an effect is only transient.

Transfer function models and intervention analysis
may be combined: Inversion of temperature for
example may be represented by a dummy variable con-
sisting of a sequence of 'ones' during the inversion pre-
ceded and followed by 'zeros'. This 0/1-input may be
used simultaneously with continuous inputs represent-
ing e.g. concentrations of pollutants.

ARIMA models (and transfer function models) may
be very useful for forecasting non-stationary series
containing ordinary or seasonal trends. In particular, it
may be possible to distinguish between models repre-
senting deterministic and stochastic polynomial
trends. In a deterministic trend model the coefficients
of the polynomial are constant over time. In a stochas-
tic trend model the coefficients are subject to random
variation and the trend changes stochastically accord-
ing to random shocks that enter the system.23

Thus, time series methods are suited to represent a
large amount of relevant epidemiological problems.
However, one should be aware of limitations which are
naturally inherent to these methods. Gruchow etal.2*
studied relations between alcohol consumption and
ischaemic heart disease by calculating CCFs. They
came to the conclusion that 'time series correlations of
aggregated data are not useful for the study of latency
periods . . .'. This conclusion was drawn after calculat-
ing CCFs between series containing trends, i.e. non-

stationary series. In order to get an interpretable CCF,
the series have to be transformed to stationarity, i.e.
the differencing operation has to be applied. Diffe-
rencing eliminates trends; it has the effect of a high
pass filter25 and the information contained in the low
frequency range is lost. However the presence of domi-
nating low frequencies may make it impossible to
detect short-term correlations. Differencing thus may
allow the detection of hidden relations in the high fre-
quency range.26 It is also possible that the relation
between two time series and the corresponding CCF
change with time. In a study concerned with the assess-
ment of relations between air pollutants and respir-
atory symptoms it was found that the CCF may change
with season. During the winter period an instan-
taneous relation between the concentration of SO2 and
the number of symptoms was identified but no such
relation was found for the other seasons. Thus, it may
be advisable to fit separate models to different sub-
series (time splitting13).

It is important to mention that an alternative way of
analysing time series data is based on the auto-spec-
trum and on the cross-spectrum instead of the ACF
and the CCF. The auto-spectrum and the ACF (and
the cross-spectrum and the CCF) are mathematically
equivalent since they constitute a Fourier transform
pair.1 However, they shed light on different comple-
mentary aspects of time series data. The auto-spec-
trum reveals which frequencies are present in an
individual series and the cross-spectrum shows at
which frequencies two series are related.27-28 Box and
Jenkins1 use the ACF and not the auto-spectrum for
the purpose of model identification because the par-
simonious models they found to be useful in practice
could be simply described in terms of the ACF.

Since the presentation in this article is necessarily
short, the following suggestions for further' reading
may be helpful.

An extensive introduction to ARIMA models and
their identification may be found in 'The Analysis of
Time Series: An Introduction'.25 A thorough presen-
tation of transfer function models may be found in
Chapter 8 of 'Statistical Methods of Forecasting',23

where forecasting is also discussed in depth.
For a deeper study of specific epidemiological time

series problems the following articles are thought to be
of particular interest. Analysis of relations between
seasonal series is discussed in.I9J0 Identification of
seasonal ARIMA models representing infectious dis-
eases is presented in some detail in.31 Advantages of
forecasting epidemiological series by means of
ARIMA models over traditional methods are
described in.32
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Several investigators have used intervention analysis
to assess changes of epidemiological series, in par-
ticular to analyse the efficiency of preventive
measures.33"33 A case study using intervention models
to assess possible health effects of an environmental
disaster may be found in.36 Comparison of forecasts
with actual data has been used to study changes in the
frequency of traditional neurological diagnostic
methods after the introduction of computer
tomography.37
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