A cohomological stability result for projective schemes over surfaces

By Markus Brodmann at Zürich

Abstract. Let $\pi: X \to X_0$ be a projective morphism of schemes such that X_0 is noetherian and essentially of finite type over a field K. Let $i \in \mathbb{N}_0$, let \mathscr{F} be a coherent sheaf of \mathscr{O}_X -modules and let \mathscr{L} be an ample invertible sheaf over X. We show that the set $\mathrm{Ass}_{X_0}\big(\mathscr{R}^i\pi_*(\mathscr{L}^n\otimes_{\mathscr{O}_X}\mathscr{F})\big)$ of associated points of the higher direct image sheaf $\mathscr{R}^i\pi_*(\mathscr{L}^n\otimes_{\mathscr{O}_X}\mathscr{F})$ ultimately becomes constant if n tends to $-\infty$, provided X_0 has dimension ≤ 2 . If $X_0 = \mathbb{A}^3_K$, this stability result need not hold any more.

To prove this, we show that the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ of associated primes of the *n*-th graded component of the *i*-th local cohomology module of a finitely generated graded module M over a homogeneous noetherian ring $R = \bigoplus_{n \geq 0} R_n$ which is essentially of finite type over a field becomes ultimately constant in codimension 2 if n tends to $-\infty$.

1. Introduction

Let \mathfrak{a} be an ideal of the noetherian ring A and let M be a finitely generated A-module. Moreover, let i be a non-negative integer and let $H^i_{\mathfrak{a}}(M)$ be the i-th local cohomology module of M with respect to \mathfrak{a} . In 1992, Huneke [11] asked, whether the set $\mathrm{Ass}_A(H^i_{\mathfrak{a}}(M))$ of associated primes of the A-module $H^i_{\mathfrak{a}}(M)$ is finite.

If M=A and A is a regular local ring which contains a field K, the previous finiteness question finds an affirmative answer. This was shown by Huneke-Sharp [12] for $\operatorname{char}(K)>0$ and by Lyubeznik [16] for $\operatorname{char}(K)=0$. For further and more detailed statements see also [17]. For certain local but non-regular rings, the finiteness of the sets $\operatorname{Ass}_A(H^i_{\mathfrak{a}}(A))$ is known, too (cf. [10] or [18], for example). Moreover, without any restriction on A and A, the set $\operatorname{Ass}_A(H^i_{\mathfrak{a}}(M))$ is finite, provided the A-modules $H^j_{\mathfrak{a}}(M)$ are finitely generated for all j < i (cf. [6], [13]). This latter result has found various nice extensions (cf. [15] for example).

On the other hand Singh [18] gave the following surprisingly simple example, for which the above finiteness question has a negative answer:

Let $A = \mathbb{Z}[x, y, z, u, v, w]/(xu + yv + zw)$ (with indeterminates x, y, z, u, v, w) and let $\mathfrak{a} := (u, v, w)A$. Then $\mathrm{Ass}_{\mathbb{Z}}(H^3_\mathfrak{a}(A))$ is infinite—and hence so is $\mathrm{Ass}_A(H^3_\mathfrak{a}(A))$. Katzman [14] gave a similar example of a ring containing a field and later Singh-Swanson [20] developed a method which allows to construct a great variety of such examples.

From the point of view of projective schemes, the above finiteness question finds a natural refinement. Namely, let $R=\bigoplus_{n\geq 0}R_n$ be a homogeneous noetherian ring, so that the base ring R_0 is noetherian and R is generated over R_0 by finitely many elements of R_1 . Moreover, let $R_+:=\bigoplus_{n>0}R_n$ denote the irrelevant ideal of R, let $i\geq 0$ and let M be a finitely generated graded R-module. For each $n\in\mathbb{Z}$ let $H^i_{R_+}(M)_n$ be the n-th graded component of the local cohomology module $H^i_{R_+}(M)$ of M with respect to R_+ . Then the R_0 -module $H^i_{R_+}(M)_n$ is finitely generated for all $n\in\mathbb{Z}$ and vanishes for all $n\gg 0$. Now, instead of our previous finiteness question, we ask:

1.0. Does the (finite) set
$$\operatorname{Ass}_{R_0}(H^i_{R_\perp}(M)_n)$$
 ultimately become constant, if $n \to -\infty$?

This question of the Asymptotic Stability of Associated Primes obviously plays a crucial rôle in the study of the Asymptotic Behaviour of Cohomology (cf. [1]), that is of the R_0 -modules $H^i_{R_+}(M)_n$ for $n \ll 0$. It is easy to see, that an affirmative answer to (1.0) yields the finiteness of the set $\mathrm{Ass}_R(H^i_{R_+}(M))$.

On the other hand we may furnish the ring A of Singh with the grading for which x, y, z have degree 0 and u, v, w have degree one. Then $A_0 = \mathbb{Z}[x, y, z]$, and if we choose a prime number p and localize at $(x, y, z, p)A_0$, we get a homogeneous noetherian domain $R = \bigoplus_{n \ge 0} R_n$ with $R_0 = \mathbb{Z}[x, y, z]_{(p, x, y, z)}$, and such that $\operatorname{Ass}_R(H_{R_+}^3(R))$ is finite, but $\operatorname{Ass}_{R_0}(H_{R_+}^3(R)_n)$ is not asymptotically stable for $n \to -\infty$ (cf. [3], [5]). This shows that (1.0) cannot be answered affirmatively in general, even if the set $\operatorname{Ass}_R(H_{R_+}^i(M))$ is finite. Also, whenever R_0 is a polynomial ring in at least three indeterminates over a field, there is a homogeneous noetherian domain $R = R_0 \oplus R_1 \oplus \cdots$ such that the set $\operatorname{Ass}_{R_0}(H_{R_+}^2(R)_n)$ is not asymptotically stable for $n \to -\infty$ (cf. [1], [2]).

Nevertheless, (1.0) is known to have an affirmative answer in the following cases:

- (a) $H_{R_{+}}^{j}(M)_{n} = 0$ for all j < i and all $n \ll 0$ (cf. [4]).
- (b) R_0 is essentially of finite type over a field and of dimension ≤ 1 (cf. [2]).

In the present paper we show that (1.0) also has an affirmative answer if the base ring R_0 is of dimension 2 and essentially of finite type over a field. Observe that in view of the examples of Singh and Swanson [20] this is the best possible result one may expect, if only a bound on the dimension of the base ring R_0 is imposed.

In fact, we shall prove our result in a more general, geometric setting.

Namely, let X_0 be a noetherian scheme and let $\pi: X \to X_0$ be a projective scheme over X_0 . Moreover, let $\mathscr L$ be an ample invertible sheaf over X and let $\mathscr F$ be a coherent sheaf of $\mathscr O_X$ -modules. Then, for each i>0 and each $n\in \mathbb Z$, the higher direct image sheaf $\mathscr R^i\pi_*(\mathscr L^n\otimes_{\mathscr O_X}\mathscr F)$ is coherent over $\mathscr O_{X_0}$ and vanishes for all n>0.

We shall prove the following result on the asymptotic behaviour of the sheaves $\mathcal{R}^i \pi_* (\mathcal{L}^n \otimes_{\mathcal{O}_V} \mathcal{F})$ in which $i \geq 0$ is fixed and n tends to $-\infty$ (cf. Corollary 5.4):

1.1. Assume that X_0 is essentially of finite type over a field and of dimension ≤ 2 . Then, for each $i \geq 0$ the set

$$\operatorname{Ass}_{X_0} \big(\mathscr{R}^i \pi_* (\mathscr{L}^n \otimes_{\mathscr{O}_X} \mathscr{F}) \big)$$

of points $x_0 \in X_0$ associated to the higher direct image sheaf $\mathcal{R}^i \pi_*(\mathcal{L}^n \otimes_{\mathcal{O}_X} \mathcal{F})$, ultimately becomes constant if $n \to -\infty$.

The restriction on the dimension of the base scheme X_0 may seem surprising, but in accordance with our introductory observations we can say (cf. Example 5.7):

1.2. If X_0 is an affine 3-space over a field, the conclusion of (1.1) need not hold any more.

The above statement (1.1) is a conclusion of more general stability result (cf. Theorem 5.5):

1.3. Assume that X_0 is essentially of finite type over a field and let $i \in \mathbb{N}_0$.

Then, the set

$$\operatorname{Ass}_{X_0}(\mathscr{R}^i\pi_*(\mathscr{L}^n\otimes\mathscr{F}))^{\leq 2}$$

of points $x_0 \in X_0$ which are associated to $\mathcal{R}^i \pi_*(\mathcal{L}^n \otimes \mathcal{F})$ and of codimension ≤ 2 in X_0 , ultimately becomes constant if $n \to -\infty$.

This latter result is a consequence of the following asymptotic stability result which holds for affine base schemes (cf. Theorem 5.3):

1.4. Assume that X_0 is affine and essentially of finite type over a field. Let $i \ge 0$. Then, the set

$$\operatorname{Ass}_{\mathcal{O}(X_0)}(H^i(X,\mathcal{L}^n\otimes_{\mathcal{O}_X}\mathscr{F}))^{\leq 2}$$

of primes of $\mathcal{O}(X_0)$ which are of height ≤ 2 and associated to the cohomology module $H^i(X, \mathcal{L}^n \otimes_{\mathcal{O}_X} \mathcal{F})$, ultimately becomes constant if $n \to -\infty$.

The proof of (1.4) is easy, if once the case of a very ample sheaf $\mathscr L$ is established (cf. Proposition 5.2). This latter case follows from an asymptotic stability result on graded components of local cohomology modules.

Namely, let $R = \bigoplus_{n \ge 0} R_n$ and $R_+ := \bigoplus_{n > 0} R_n$ be as above let $i \ge 0$ and let M be a finitely generated graded R-module. Then, using our previous notation we have the following stability result (cf. Theorem 4.1):

1.5. Assume that R_0 is essentially of finite type over a field.

Then, the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)^{\leq 2}$ of primes $\mathfrak{p}_0 \subset R_0$ which are of height ≤ 2 and associated to the R_0 -module $H^i_{R_+}(M)_n$, ultimately becomes constant if $n \to -\infty$.

We shall prove this result in two steps: Before we establish the general case, we show that the requested asymptotic stability of associated primes holds if R_0 is in addition a domain (cf. Proposition 3.5). This is an essential generalization of a similar but much weaker stability result given in [1].

Our paper is organized as follows: In Section 2 we give a few preliminaries. In Section 3 we prove our main result (1.5) under the hypothesis that R_0 is in addition a domain. In Section 4 we show that this latter hypotheses can be omitted. There we also shall explicitly give an example, essentially due to Singh-Swanson [20], which shows that (1.5) need not hold if R_0 is a three-variate polynomial ring over a field. In Section 5 we apply the results of Section 4 to projective schemes and establish our statements (1.1)–(1.4). For basic notions and notations from Algebraic Geometry and Commutative Algebra we refer to [9] resp. [8].

2. Preliminaries

By \mathbb{N} we denote the set of positive integers, by \mathbb{N}_0 the set of non-negative integers.

2.1. Notations and conventions. (A) Throughout this paper let $R = R_0 \oplus R_1 \oplus \cdots$ be a *homogeneous noetherian ring*. So R is \mathbb{N}_0 -graded, R_0 is noetherian and there are finitely many elements $a_1, \ldots, a_k \in R_1$ such that $R = R_0[a_1, \ldots, a_k]$.

By R_+ we denote the *irrelevant ideal* of R, thus $R_+ = R_1 \oplus R_2 \oplus \cdots$.

Polynomial rings over R_0 are always furnished with their standard grading, so that they are homogeneous.

(B) If $i \in \mathbb{N}_0$ and M is a graded R-module, we write $H_{R_+}^i(M)$ for the i-th local cohomology module of M with respect to R_+ , and we always furnish this module with its natural grading.

For $n \in \mathbb{Z}$ we denote by $H_{R_+}^i(M)_n$ the n-th graded component of $H_{R_+}^i(M)$.

Keep in mind that if the graded R-module M is finitely generated, the R_0 -module $H^i_{R_+}(M)_n$ is finitely generated for all $n \in \mathbb{Z}$ and vanishes for all $n \gg 0$.

- **2.2. Definition.** Let \mathscr{S} be a set and let $(\mathscr{S}_n)_{n\in\mathbb{Z}}$ be a family of subsets of \mathscr{S} . We say that (the set) \mathscr{S}_n is asymptotically stable for $n\to -\infty$ if there is some $n_0\in\mathbb{Z}$ such that $\mathscr{S}_n=\mathscr{S}_{n_0}$ for all $n\leq n_0$.
- **2.3. Notation.** (A) Let A be a (commutative unitary) ring. If $\mathfrak{a} \subseteq A$ is an ideal, we denote the variety $\{\mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{a} \subseteq \mathfrak{p}\}$ of \mathfrak{a} by $\operatorname{Var}(\mathfrak{a})$. In this situation we write $\min(\mathfrak{a})$ for the set of minimal members of $\operatorname{Var}(\mathfrak{a})$. $\operatorname{Max}(A)$ is used to denote the set of maximal ideals in A, whereas $\operatorname{Min}(A)$ is used to denote the set of minimal primes of A.
 - (B) If $\mathscr{S} \subseteq \operatorname{Spec}(A)$ and $\ell \in \mathbb{N}_0$, we write $\mathscr{S}^{=\ell} := \{ \mathfrak{p} \in \mathscr{S} \mid \operatorname{height}(\mathfrak{p}) = \ell \} \quad \text{and} \quad \mathscr{S}^{\leq \ell} := \{ \mathfrak{p} \in \mathscr{S} \mid \operatorname{height}(\mathfrak{p}) \leq \ell \}.$
 - (C) If T is an A-module we write $Ass_A(T)$ for the set of associated primes of T in A.

Quite often we shall have to use the following two results on asymptotic stability of sets of associated primes:

2.4. Proposition. Assume that R_0 is essentially of finite type over a field K (so that $R_0 = S^{-1}R_0'$, where $R_0' = K[a_1, \ldots, a_r]$ is a finitely generated K-algebra and $S \subseteq R_0'$ is multiplicatively closed). Let $i \in \mathbb{N}_0$ and let M be a finitely generated graded R-module. Then, the set $\operatorname{Ass}_{R_0}(H_{R_+}^i(M)_n)^{\leq 1}$ is asymptotically stable for $n \to -\infty$.

Proof. See [2], Theorem 3.7. \square

2.5. Proposition. Assume that R_0 is semilocal, essentially of finite type over a field and of dimension ≤ 2 . Let $i \in \mathbb{N}_0$ and let M be a finitely generated graded R-module.

Then, the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ is asymptotically stable for $n \to -\infty$.

Proof. See [2], Corollary 4.8. \square

In addition, the following two results will be used as technical tools.

2.6. Proposition. Assume that R_0 is a domain and let M be a finitely generated graded R-module.

Then, there is an element $x \in R_0 \setminus \{0\}$ such that the $(R_0)_x$ -module $H^i_{R_+}(M)_x$ is torsion free (or vanishes) for all $i \in \mathbb{N}_0$.

Proof. See [2], Theorem 2.5. \square

2.7. Proposition. Assume that (R_0, \mathfrak{m}_0) is local and of dimension ≤ 1 .

Then, for each $i \in \mathbb{N}_0$ and each finitely generated graded R-module M, the R-module $\Gamma_{\mathfrak{m}_0R}(H^i_{R_+}(M))$ is artinian.

Proof. See [3], Theorem 2.5 b). \square

3. Integral base rings

3.1. Lemma. Let $r \in \mathbb{N}$, let (A, \mathfrak{m}) be a noetherian local ring and let $x \in \mathfrak{m}$. Let T be a finitely generated A-module such that $\dim_A(T) \leq 2$ and $\dim_A(T/xT) \leq 1$. Assume that $x^r \Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}}) = 0$ for each $\mathfrak{p} \in \mathrm{Ass}_A(T)$ with $\dim(A/\mathfrak{p}) = 1$. Assume in addition, that $\mathfrak{m} \in \mathrm{Ass}_A(T)$.

Then $\mathfrak{m} \in \operatorname{Ass}_A(T/x^{r+1}T)$.

Proof. It suffices to show that $\Gamma_{\mathfrak{m}}(T) \nsubseteq x^{r+1}T$. As $\mathfrak{m} \in \mathrm{Ass}_A(T)$ we have $\Gamma_{\mathfrak{m}}(T) \neq 0$. Set

$$\mathscr{S} := \{ \mathfrak{p} \in \mathrm{Ass}_A(T) \, | \, \dim(A/\mathfrak{p}) = 1 \}.$$

Assume first, that $\mathscr{S} = \emptyset$. As $\dim_A(T/xT) \le 1$ and $\dim(T) \le 2$ it follows that x avoids all members of $\operatorname{Ass}_A(T) \setminus \{\mathfrak{m}\}$, so that x is a non-zero divisor with respect

to $T/\Gamma_{\mathfrak{m}}(T)$. We obtain $xT \cap \Gamma_{\mathfrak{m}}(T) = x \left(\Gamma_{\mathfrak{m}}(T) : x\right) = x\Gamma_{\mathfrak{m}}(T)$, hence by Nakayama $xT \cap \Gamma_{\mathfrak{m}}(T) \subseteq \Gamma_{\mathfrak{m}}(T)$, thus $\Gamma_{\mathfrak{m}}(T) \subseteq xT$. Therefore $\Gamma_{\mathfrak{m}}(T) \subseteq x^{r+1}T$.

So, let $\mathscr{S} \neq \emptyset$. Choose $\mathfrak{p} \in \mathscr{S}$. Then $0 : T \subseteq \mathfrak{p}$ and $\Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}}) \neq 0$. As $x^r \Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}}) = 0$ it follows $x \in \mathfrak{p}$, thus $\mathfrak{p} \in \mathrm{Var}\big(xA + (0 \overset{A}{:} T)\big) \setminus \{\mathfrak{m}\} = \mathrm{Supp}_A(T/xT) \setminus \{\mathfrak{m}\}$. Therefore $\mathscr{S} \subseteq \mathrm{Supp}_A(T/xT) \setminus \{\mathfrak{m}\}$.

Now, let $\mathfrak{p} \in \operatorname{Supp}_A(T/xT) \setminus \{\mathfrak{m}\}$. As $\dim_A(T/xT) \leq 1$ it follows that \mathfrak{p} is generic in $\operatorname{Supp}_A(T/xT) = \operatorname{Var}(xA + (0:T))$. Therefore $xA_{\mathfrak{p}} + (0:T_{\mathfrak{p}}) = (xA + (0:T))_{\mathfrak{p}}$ is a $\mathfrak{p}A_{\mathfrak{p}}$ -primary ideal of $A_{\mathfrak{p}}$, hence $\Gamma_{xA}(T)_{\mathfrak{p}} \cong \Gamma_{xA_{\mathfrak{p}}}(T_{\mathfrak{p}}) = \Gamma_{(xA_{\mathfrak{p}} + (0:T_{\mathfrak{p}}))}(T_{\mathfrak{p}}) = \Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}})$.

Assume first that $\mathfrak{p} \notin \operatorname{Ass}_R(T)$. Then $\Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}}) = 0$ and hence $x^r \Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}}) = 0$. If $\mathfrak{p} \in \operatorname{Ass}_R(T)$, then $\mathfrak{p} \in \mathscr{S}$, hence $x^r \Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}}) = 0$. It follows that $x^r \Gamma_{xA}(T)_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Supp}_A(T/xT) \setminus \{\mathfrak{m}\}$, hence $\operatorname{Supp}_A(x^r \Gamma_{xA}(T)) \subseteq \{\mathfrak{m}\}$. So, there is some $n \in \mathbb{N}$ with $\mathfrak{m}^n x^r \Gamma_{xA}(T) = 0$.

Assume now, that $\Gamma_{\mathfrak{m}}(T) \subseteq x^{r+1}T$. Let $t \in \Gamma_{\mathfrak{m}}(T)$. Then, there is some $s \in T$ with $t = x^{r+1}s$. Moreover $\Gamma_{\mathfrak{m}}(T) \subseteq \Gamma_{xA}(T)$ shows that $x^{r+1}s = t \in \Gamma_{xA}(T)$, so that $s \in \Gamma_{xA}(T)$. Consequently $\mathfrak{m}^n x^r s = 0$, whence $x^r s \in \Gamma_{\mathfrak{m}}(T)$, thus $t = x(x^r s) \in x\Gamma_{\mathfrak{m}}(T)$. This yields $\Gamma_{\mathfrak{m}}(T) \subseteq x\Gamma_{\mathfrak{m}}(T)$ and hence the contradiction that $\Gamma_{\mathfrak{m}}(T) = 0$. \square

3.2. Lemma. Let $m \in \mathbb{Z}$, let R_0 be essentially of finite type over a field, let $i \in \mathbb{N}_0$ and let M be a finitely generated graded R-module. Assume that

$$\# \bigcup_{n \leq m} \operatorname{Ass}_{R_0} \big(H^i_{R_+}(M)_n \big)^{=2} < \infty.$$

Then $\operatorname{Ass}_{R_0}(H_{R_+}^i(M)_n)^{\leq 2}$ is asymptotically stable for $n \to -\infty$.

Proof. Observe that

$$\operatorname{Ass}_{R_0} \left(H_{R_+}^i(M)_n \right)^{\leq 2} = \operatorname{Ass}_{R_0} \left(H_{R_+}^i(M)_n \right)^{\leq 1} \dot{\cup} \operatorname{Ass}_{R_+} \left(H_{R_+}^i(M)_n \right)^{=2} \quad \text{for all } n \in \mathbb{Z}.$$

According to Proposition 2.4 the set $\operatorname{Ass}_{R_0} \left(H^i_{R_+}(M)_n \right)^{\leq 1}$ is asymptotically stable for $n \to -\infty$. Therefore, the set $\mathscr{S} := \bigcup_{n \leq m} \operatorname{Ass}_{R_0} \left(H^i_{R_+}(M)_n \right)^{\leq 2}$ is finite.

According to Proposition 2.5 the set $\mathscr{T}_n^{(\mathfrak{p}_0)} := \mathrm{Ass}_{(R_0)_{\mathfrak{p}_0}} \left(H^i_{(R_{\mathfrak{p}_0})_+} (M_{\mathfrak{p}_0})_n \right)$ is asymptotically stable for $n \to -\infty$ and all $\mathfrak{p}_0 \in \mathrm{Spec}(R_0)^{\leq 2}$. As $H^i_{(R_{\mathfrak{p}_0})_+} (M_{\mathfrak{p}_0})_n \cong \left(H^i_{R_+} (M)_n \right)_{\mathfrak{p}_0}$, we have $\mathrm{Ass}_{R_0} \left(H^i_{R_+} (M)_n \right) = \bigcup_{\mathfrak{p}_0 \in \mathscr{S}} \{ \mathfrak{q}_0 \cap R_0 \mid \mathfrak{q}_0 \in \mathscr{T}_n^{(\mathfrak{p}_0)} \}$ and this gives our claim. \square

3.3. Lemma. Let $B = \bigoplus_{n \geq 0} B_n$ be a positively graded ring such that (B_0, \mathfrak{n}_0) is noetherian local and let $G = \bigoplus_{n \in \mathbb{Z}} G_n$ be a graded B-module which is artinian and such that the B_0 -module G_n is finitely generated for all $n \in \mathbb{Z}$.

Then, there is some $r \in \mathbb{N}$ such that $\mathfrak{n}_0^r G = 0$.

Proof. For each $n \in \mathbb{Z}$, the B_0 -module $G_n \cong G_{\geq n}/G_{\geq (n+1)}$ is artinian and finitely generated. As G is artinian, there is some $r \in \mathbb{N}$ with $\mathfrak{n}_0^r G = \mathfrak{n}_0^{r+1} G$. So, for each $n \in \mathbb{Z}$ we have $\mathfrak{n}_0^r (G_n) = (\mathfrak{n}_0^r G)_n = (\mathfrak{n}_0^{r+1} G)_n = \mathfrak{n}_0^{r+1} (G_n) = \mathfrak{n}_0 (\mathfrak{n}_0^r (G_n))$, thus $\mathfrak{n}_0^r G_n = 0$ by Nakayama.

3.4. Lemma. Let $k, \ell, m \in \mathbb{Z}$ be such that $\ell \geq 0$ and k > 0. Let x_1, \ldots, x_k be indeterminates and assume that there is a surjective homomorphism of graded rings

$$R_0[\underline{x}] := R_0[x_1, \ldots, x_k] \longrightarrow R.$$

Assume that

$$\# \bigcup_{n \leq m} \operatorname{Ass}_{R_0} \left(H_{R_0]\underline{x}]_+}^k (N)_n \right)^{\leq \ell} < \infty$$

for all finitely generated graded $R_0[\underline{x}]$ -modules N.

Then, for all finitely generated graded R-modules M and all $i \in \mathbb{N}_0$ we have

$$\displaystyle \# \bigcup_{n \in \mathbb{Z}} \operatorname{Ass}_{R_0} \left(H^i_{R_+}(M)_n \right)^{\leq \ell} < \infty.$$

Proof. By the graded base ring independence property of local cohomology we may assume that $R = R_0[\underline{x}]$. For i > k we have $H^i_{R_+}(M) = 0$ and there is nothing to show. For i = k our claim follows as $H^i_{R_+}(M)_n = 0$ for all n > 0. So, let i < k. There is an exact sequence of finitely generated graded R-modules

$$0 \to N \to F \to M \to 0$$

in which $F=\bigoplus_{j=1}^r R(a_j)$ is a graded free R-module with $a_j\in\mathbb{Z}$ for $j=1,\ldots,r$. As $R=R_0[\underline{x}]$ we have $H^i_{R_+}(F)=0$, so that for each $n\in\mathbb{Z}$ there is a monomorphism of R_0 -modules $0\to H^i_{R_+}(M)_n\to H^{i+1}_{R_+}(N)_n$ and hence $\mathrm{Ass}_{R_0}\big(H^i_{R_+}(M)_n\big)^{\leqq\ell}\subseteq \mathrm{Ass}_{R_0}\big(H^{i+1}_{R_+}(N)_n\big)^{\leqq\ell}$. Now, we may conclude by descending induction on i. \square

3.5. Proposition. Let R_0 be a domain which is essentially of finite type over a field, let $i \in \mathbb{N}_0$ and let M be a finitely generated graded R-module.

Then $\operatorname{Ass}_{R_0}(H_{R_+}^i(M)_n)^{\leq 2}$ is asymptotically stable for $n \to -\infty$.

Proof. According to Lemma 3.2 it suffices to show that the set

$$\underset{n \leq m}{\bigcup} \mathrm{Ass}_{R_0} \big(H^i_{R_+}(M)_n \big)^{=2} =: \mathscr{W}^i_m$$

is finite for some $m \in \mathbb{Z}$. To prove this, we use Lemma 3.4 and restrict ourselves to the case where $R = R_0[\underline{x}] = R_0[x_1, \dots, x_k]$ is a polynomial ring and where i = k. According to Proposition 2.6 there is an element $x \in R_0 \setminus \{0\}$ such that the $(R_0)_x$ -module $H_{R_+}^k(M)_x$ is torsion-free (or vanishes). Therefore

$$\operatorname{Ass}_{R_0}(H_{R_+}^k(M)_n)\setminus\{0\}\subseteq \operatorname{Var}(xR_0), \quad \forall n\in\mathbb{Z}.$$

Г

According to Proposition 2.4 the set $\operatorname{Ass}_{R_0} (H_{R_+}^k(M)_n)^{\leq 1}$ is asymptotically stable for $n \to -\infty$. So, there is an integer m and a finite set $U \subseteq \operatorname{Var}(xR_0)$ such that

$$\operatorname{Ass}_{R_0} \left(H_{R_+}^k(M)_n \right)^{-1} = U, \quad \forall n \leq m.$$

Now, let $\mathfrak{p}_0 \in U$. Then the graded $R_{\mathfrak{p}_0}$ -module $\Gamma_{\mathfrak{p}_0 R} \left(H_{R_+}^k(M) \right)_{\mathfrak{p}_0} \cong \Gamma_{\mathfrak{p}_0 R_{\mathfrak{p}_0}} \left(H_{(R_{\mathfrak{p}_0})_+}^k(M_{\mathfrak{p}_0}) \right)$ is artinian by Proposition 2.7. Moreover, for each $n \in \mathbb{Z}$ the n-th graded component $\Gamma_{\mathfrak{p}_0} \left(H_{R_+}^k(M)_n \right)_{\mathfrak{p}_0}$ of this module is finitely generated over $(R_{\mathfrak{p}_0})_0 = (R_0)_{\mathfrak{p}_0}$. As $x \in \mathfrak{p}_0$ we thus find a positive integer $r(\mathfrak{p}_0)$ such that $x^{r(\mathfrak{p}_0)} \Gamma_{\mathfrak{p}_0} \left(H_{R_+}^k(M) \right)_{\mathfrak{p}_0} = 0$ (cf. Lemma 3.3). Thus

$$x^{r(\mathfrak{p}_0)}\Gamma_{\mathfrak{p}_0}(H_{R_+}^k(M)_n)_{\mathfrak{p}_0}=0, \quad \forall n\in\mathbb{Z}.$$

Now, set r := 1 if $U = \emptyset$, and $r := \max\{r(\mathfrak{p}_0) \mid \mathfrak{p}_0 \in U\}$ otherwise.

By the base ring independence of local cohomology we have isomorphisms of R_0 modules

$$H_{R_+}^k(M/x^{r+1}M)_n \cong H_{(R/x^{r+1}R)_+}^k(M/x^{r+1}M)_n$$

which yield that

$$\operatorname{Ass}_{R_0} \left(H_{R_+}^k (M/x^{r+1}M)_n \right)^{\leq 2}$$

$$= \left\{ \mathfrak{p}_0 \in \operatorname{Var}(xR_0) \mid \mathfrak{p}_0/x^{r+1}R_0 \in \operatorname{Ass}_{R_0/x^{r+1}R_0} \left(H_{(R/x^{r+1}R)_+}^k (M/x^{r+1}M)_n \right)^{\leq 1} \right\}.$$

As the set $\operatorname{Ass}_{R_0/x^{r+1}R_0} (H^k_{(R/x^{r+1}R)_+}(M/x^{r+1}M)_n)^{\leq 1}$ is asymptotically stable for $n \to -\infty$ (cf. Proposition 2.4), it follows that the set

$$\mathscr{T} := \bigcup_{n \in \mathbb{Z}} \mathrm{Ass}_{R_0} \big(H_{R_+}^k (M/x^{r+1}M)_n \big)^{\leq 2}$$

is finite.

Now, let $n \leq m$ and let $\mathfrak{p}_0 \in \operatorname{Ass}_{R_0} \left(H_{R_+}^k(M)_n \right)^{=2}$. Then $(A,\mathfrak{m}) := \left((R_0)_{\mathfrak{p}_0}, \mathfrak{p}_0(R_0)_{\mathfrak{p}_0} \right)$ is a noetherian local domain of dimension 2 with $x \in \mathfrak{m} \setminus \{0\}$ and \mathfrak{m} is associated to $T := \left(H_{R_+}^k(M)_n \right)_{\mathfrak{p}_0}$. Moreover, $\dim_A(T/xT) \leq \dim(A/xA) = 1$. In addition, if

$$\mathfrak{p} \in \mathrm{Ass}_A(T)$$
 with $\dim(A/\mathfrak{p}) = 1$.

we may write $\mathfrak{p}=\mathfrak{q}_0A$ with $\mathfrak{q}_0:=\mathfrak{p}\cap R_0\in \mathrm{Ass}_{R_0}\big(H^k_{R_+}(M)_n\big)^{=1}=U.$ Therefore

$$x^r \Gamma_{\mathfrak{p}A_{\mathfrak{p}}}(T_{\mathfrak{p}}) = x^r \Gamma_{\mathfrak{q}_0(R_0)_{\mathfrak{q}_0}} (H_{R_+}^k(M)_n)_{\mathfrak{q}_0} = 0.$$

According to Lemma 3.1 we thus get $\mathfrak{m} \in \mathrm{Ass}_A(T/x^{r+1}T)$, whence

$$\mathfrak{p}_0 \in \operatorname{Ass}_{R_0} (H_{R_+}^k(M)_n / x^{r+1} H_{R_+}^k(M)_n)^{=2}.$$

Now, we consider the following commutative diagram of graded R-modules with exact first row in which π is the canonical epimorphism:

As $H_{R_+}^{k+1} \big(\mathrm{Ker}(\pi) \big) = 0$ we thus get a commutative diagram of R_0 -modules with exact first row and an epimorphism $\psi := H_{R_+}^k(\pi)$:

$$H_{R_{+}}^{k}\left(M/(0\underset{M}{:}x^{r+1})\right)_{n} \xrightarrow{\varphi} H_{R_{+}}^{k}(M)_{n} \longrightarrow H_{R_{+}}^{k}(M/x^{r+1}M)_{n}$$

$$\downarrow \psi \uparrow \qquad \qquad \qquad \parallel$$

$$H_{R}^{k}(M)_{n} \xrightarrow{\xrightarrow{x^{r+1}}} H_{R}^{k}(M)_{n}.$$

It follows that $\operatorname{Im}(\varphi) = x^{r+1} H_{R_+}^k(M)_n$, so that there is a monomorphism

$$0 \to H_{R_+}^k(M)_n/x^{r+1}H_{R_+}^k(M)_n \to H_{R_+}^k(M/x^{r+1}M)_n$$

Therefore $\mathfrak{p}_0 \in \operatorname{Ass}_{R_0} \left(H_{R_+}^k (M/x^{r+1}M)_n \right)^{-2} \subseteq \mathscr{T}$. So, $\mathscr{W}_m^k \subseteq \mathscr{T}$. As \mathscr{T} is finite, this proves our claim. \square

4. General base rings

4.1. Theorem. Let R_0 be essentially of finite type over a field. Let $i \in \mathbb{N}_0$ and let M be a finitely generated graded R-module.

Then, the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)^{\leq 2}$ is asymptotically stable for $n \to -\infty$.

Proof. By the graded base ring independence property of local cohomology we may assume that $R = R_0[\underline{x}] = R_0[x_1, \dots, x_k]$ is a polynomial ring. Moreover, we may write $R_0 = S_0^{-1}A_0$, where A_0 is a subring of R_0 which is of finite type over a field K, and where $S_0 \subseteq A_0$ is multiplicatively closed. Let $m_1, \dots, m_s \in M$ be homogeneous elements such that $M = \sum_{j=1}^s Rm_i$. As $A_0[\underline{x}]$ is a subring of $R_0[\underline{x}]$ we may consider the finitely generated graded $A_0[\underline{x}]$ -module $N := \sum_{j=1}^s A_0[\underline{x}]m_j$. As $R = S_0^{-1}A_0[\underline{x}]$ and $M = S_0^{-1}N$, the graded flat base change property of local cohomology yields an isomorphism of R_0 -modules

$$H^i_{R_+}(M)_n = H^i_{(S_0^{-1}A_0[\underline{x}])_+}(S_0^{-1}N)_n \cong S_0^{-1}H^i_{A_0[\underline{x}]_+}(N)_n$$

for each $n \in \mathbb{Z}$. So, for each $n \in \mathbb{Z}$ we have

$$\operatorname{Ass}_{R_0} (H^i_{R_+}(M)_n)^{\leq 2} = \{ \mathfrak{q}_0 R_0 \mid \mathfrak{q}_0 \in \operatorname{Ass}_{A_0} (H^i_{A_0[x]_+}(N)_n)^{\leq 2} \text{ and } \mathfrak{q}_0 \cap S_0 = \emptyset \}.$$

Thus it suffices to show that $\operatorname{Ass}_{A_0}(H^i_{A_0[\underline{x}]_+}(N)_n)^{\leq 2}$ is asymptotically stable for $n \to -\infty$. Therefore we may assume that R_0 is of finite type over the field K.

We do this by induction on the dimension deficiency

$$\delta = \delta(R_0) := \dim(R_0) - \min\{\dim(R_0/\mathfrak{q}_0) \mid \mathfrak{q}_0 \in \min(R_0)\}.$$

Assume first that $\delta=0$, so that $\dim(R_0/\mathfrak{q}_0)=\dim(R_0)$ for each $\mathfrak{q}_0\in \mathrm{Min}(R_0)$. Let $d:=\dim(R_0)$. By the Normalization Lemma there is a polynomial ring $B_0:=K[y_1,\ldots,y_d]\subseteq R_0$ such that R_0 is a finite integral extension of B_0 . Moreover $\mathfrak{q}_0\cap B_0=0$ for each $\mathfrak{q}_0\in \mathrm{Min}(R_0)$ so that

$$\operatorname{height}(\mathfrak{p}_0 \cap B_0) = \operatorname{height}(\mathfrak{p}_0) \quad \text{for all } \mathfrak{p}_0 \in \operatorname{Spec}(R_0).$$

As $R = R_0[\underline{x}]$ is a finite integral extension of $B := B_0[\underline{x}]$, we see that M is a finitely generated graded B-module. So, according to Proposition 3.5 the set $\mathrm{Ass}_{B_0}(H^i_{B_+}(M)_n)^{\leq 2}$ is asymptotically stable for $n \to -\infty$. In particular, the set

$$\mathscr{W}' := \bigcup_{n \in \mathbb{Z}} \mathrm{Ass}_{B_0} \big(H^i_{B_+}(M)_n \big)^{=2}$$

is finite. As R_0 is a finite integral extension of B_0 , it follows that the set

$$\mathscr{W} := \{ \mathfrak{p}_0 \in \operatorname{Spec}(R_0) \mid \mathfrak{p}_0 \cap B_0 \in \mathscr{W}' \}$$

is finite.

Now, let $n \in \mathbb{Z}$ and let $\mathfrak{p}_0 \in \mathrm{Ass}_{R_0} \big(H^i_{R_+}(M)_n \big)^{=2}$. By the graded base ring independence property of local cohomology there is an isomorphism of B_0 -modules $H^i_{R_+}(M)_n \cong H^i_{B_+}(M)_n$. Therefore $\mathfrak{p}_0 \cap B_0 \in \mathrm{Ass}_{B_0} \big(H^i_{B_+}(M)_n \big)$. As

$$height(\mathfrak{p}_0 \cap B_0) = height(\mathfrak{p}_0) = 2$$

it follows that $\mathfrak{p}_0 \in \mathcal{W}$. So, the set $\bigcup_{n \in \mathbb{Z}} \operatorname{Ass}_{R_0} \left(H^i_{R_+}(M) \right)^{=2}$ is finite and hence by Lemma 3.2 the set $\operatorname{Ass}_{R_0} \left(H^i_{R_+}(M)_n \right)^{\leq 2}$ is asymptotically stable for $n \to -\infty$.

Next, let $\delta = \delta(R_0) > 0$. We write $\mathfrak{q}_0^{(1)}, \mathfrak{q}_0^{(2)}, \ldots, \mathfrak{q}_0^{(r)}$ for the different minimal primes of R_0 , assuming that $\dim(R_0/\mathfrak{q}_0^{(f)}) = \dim(R_0)$ for $j = 1, \ldots, s$ and $\dim(R_0/\mathfrak{q}_0^{(f)}) < \dim(R_0)$ for $\ell = s + 1, \ldots, r$ for some $s \in \{1, \ldots, r - 1\}$. By prime avoidance we find elements

$$f_1,\ldots,f_p\in\bigcap_{j=1}^s\mathfrak{q}_0^{(j)}\backslash\bigcup_{\ell=s+1}^r\mathfrak{q}_0^{(\ell)},$$

$$g_1,\ldots,g_q\in\bigcap_{\ell=s+1}^r\mathfrak{q}_0^{(\ell)}\setminus\bigcup_{j=1}^s\mathfrak{q}_0^{(j)}$$

such that

$$\mathfrak{a}_0 := \bigcap_{j=1}^s \mathfrak{q}_0^{(j)} = (f_1, \dots, f_p) \quad \text{and} \quad \mathfrak{b}_0 := \bigcap_{\ell=s+1}^r \mathfrak{q}_0^{(\ell)} = (g_1, \dots, g_q).$$

It follows

$$\bigcup_{\mu=1}^p \operatorname{Spec}(R_0)_{f_{\mu}} \cup \bigcup_{\nu=1}^q \operatorname{Spec}(R_0)_{f_{\nu}} = \operatorname{Spec}(R_0) \backslash \operatorname{Var}(\mathfrak{a}_0 + \mathfrak{b}_0).$$

Let $\mathfrak{p}_0 \in \operatorname{Var}(\mathfrak{a}_0 + \mathfrak{b}_0)$. Then, there are indices $j \in \{1, \dots, s\}$ and $\ell \in \{s+1, \dots, r\}$ such that $\mathfrak{q}_0^{(j)} \subseteq \mathfrak{p}_0$ and $\mathfrak{q}_0^{(\ell)} \subseteq \mathfrak{p}_0$. As R_0 is of finite type over a field, it follows

$$\begin{split} \text{height}(\mathfrak{p}_0) &= \text{height}(\mathfrak{p}_0/\mathfrak{q}_0^{(j)}) = \dim(R_0/\mathfrak{q}_0^{(j)}) - \dim(R_0/\mathfrak{p}_0) > \dim(R_0/\mathfrak{q}_0^{(\ell)}) - \dim(R_0/\mathfrak{p}_0) \\ &= \text{height}(\mathfrak{p}_0/\mathfrak{q}_0^{(\ell)}) > 0, \end{split}$$

so that height(\mathfrak{p}_0) \geq 2. This shows that the set $Var(\mathfrak{a}_0 + \mathfrak{b}_0)^{=2}$ consists of minimal primes of $\mathfrak{a}_0 + \mathfrak{b}_0$ and hence is finite. Consequently the set

$$\mathscr{S} := \operatorname{Spec}(R_0)^{=2} \backslash \left[igcup_{\mu=1}^p \operatorname{Spec}(R_0)_{f\mu} \cup igcup_{\nu=1}^q \operatorname{Spec}(R_0)_{f\nu}
ight]$$

is finite.

Now, observe that

$$\operatorname{Min}((R_0)_{f_{\mu}}) = \{(\mathfrak{q}_0^{(\ell)})_{f_{\mu}} | \ell = s+1, \dots, r\} \quad (\mu = 1, \dots, p), \\
\operatorname{Min}((R_0)_{g_{\nu}}) = \{(\mathfrak{q}_0^{(j)})_{g_{\nu}} | j = 1, \dots, s\} \quad (\nu = 1, \dots, q).$$

Using again that R_0 is of finite type over a field we thus get

$$\delta((R_0)_{f_{\mu}}) = \max_{\ell=s+1}^{r} \{\dim(R_0/\mathfrak{q}_0^{(\ell)})\} - \min_{\ell=s+1}^{r} \{\dim(R_0/\mathfrak{q}_0^{(\ell)})\}$$

$$< \dim(R_0) - \min_{t=1}^{r} \{\dim(R/\mathfrak{q}_0^{(t)})\} = \delta(R_0)$$

for $\mu = 1, ..., p$. Moreover it follows that $\delta((R_0)_{q_v}) = 0$ for v = 1, ..., q.

So by induction, for all $\mu \in \{1, ..., p\}$ and all $\nu \in \{1, ..., q\}$, the sets

$$\mathrm{Ass}_{(R_0)_{f_{\mu}}}\big(H^i_{(R_{f_{\mu}})_+}(M_{f_{\mu}})_n\big)^{\leq 2}\quad\text{and}\quad \mathrm{Ass}_{(R_0)_{g_{\nu}}}\big(H^i_{(R_{g_{\nu}})_+}(M_{g_{\nu}})_n\big)^{\leq 2}$$

are asymptotically stable for $n \to -\infty$. By the graded flat base change property of local cohomology it follows easily that the sets

$$egin{aligned} \mathscr{W}_{\mu} &:= igcup_{n \in \mathbb{Z}} \left[\mathrm{Ass}_{R_0} \left(H^i_{R_+}(M)_n
ight)^{=2} \cap \mathrm{Spec}(R_0)_{f_{\mu}}
ight], \ \mathscr{V}_{v} &:= igcup_{n \in \mathbb{Z}} \left[\mathrm{Ass}_{R_0} \left(H^i_{R_+}(M)_n
ight)^{=2} \cap \mathrm{Spec}(R_0)_{g_v}
ight] \end{aligned}$$

are finite for all $\mu \in \{1, \dots, p\}$ and all $\nu \in \{1, \dots, q\}$.

As
$$\bigcup_{n\in\mathbb{Z}} \operatorname{Ass}_{R_0} (H_{R_+}^i(M)_n)^{=2} \subseteq \bigcup_{\mu=1}^p \mathscr{W}_{\mu} \cup \bigcup_{\nu=1}^q \mathscr{V}_{\nu} \cup \mathscr{S}$$
 our claim follows by Lemma 3.2.

4.2. Corollary. Let R_0 , i and M as in Theorem 4.1, and let $\dim(R_0) \leq 2$.

Then, the set $\operatorname{Ass}_{R_0}(H_{R_1}^i(M)_n)$ is asymptotically stable for $n \to -\infty$.

4.3. Example (cf. [20], Remark 4.2, [1], Example (7.5)). Let K be a field and let x, y, z, u, v be indeterminates. Let $R_0 = K[x, y, z]$ and consider the homogeneous noetherian R_0 -algebra

$$R := R_0[u, v]/(y^2u^2 + xyzuv + z^2v^2).$$

Then, the set $\bigcup_{n\leq 0} \operatorname{Ass}_{R_0} \left(H_{R_+}^2(R)_n \right)$ is infinite, so that the set $\operatorname{Ass}_{R_0} \left(H_{R_+}^2(R)_n \right)$ is not asymptotically stable for $n \to -\infty$.

This shows, that the conclusion of Corollary 4.2 need not hold if $\dim(R_0) \ge 3$.

5. Applications to ample divisors

- **5.1. Notations and conventions.** (A) Throughout this section let X_0 denote a noetherian scheme and let $\pi: X \to X_0$ be a projective scheme over X with very ample sheaf $\mathcal{O}_X(1)$.
 - (B) Let $\ell \in \mathbb{N}_0$. If Y is a noetherian scheme and if $Z \subseteq Y$, we set

$$Z^{\leq \ell} := \{ z \in Z \mid \operatorname{codim}_{Y}(z) \leq \ell \},\$$

where $\operatorname{codim}_{Y}(z) = \dim(\mathcal{O}_{Y,z})$ denotes the codimension of the (closure of the) point $z \in Y$.

- (C) If Y is a scheme and \mathscr{F} is a sheaf of \mathscr{O}_Y -modules, we write $\mathrm{Ass}_Y(\mathscr{F})$ for the set $\{y \in Y \mid \mathfrak{m}_{Y,y} \in \mathrm{Ass}_{\mathscr{O}_{Y,y}}(\mathscr{F}_y)\}$ of points in Y which are associated to \mathscr{F} .
 - (D) The symbol $\tilde{\cdot}$ is used to denote induced sheaves.
- **5.2. Proposition.** Assume that X_0 is affine and essentially of finite type over a field. Let \mathscr{F} be a coherent sheaf of \mathscr{O}_X -modules and let $i \in \mathbb{N}_0$.

Then, the set $\operatorname{Ass}_{\mathcal{O}(X_0)} (H^i(X, \mathcal{F}(n)))^{\leq 2}$ is asymptotically stable for $n \to -\infty$.

Proof. Let $R_0 := \mathcal{O}(X_0)$. Then there is a homogeneous noetherian R_0 -algebra $R = \bigoplus_{n \geq 0} R_n$ such that $X_0 = \operatorname{Spec}(R_0)$, $X = \operatorname{Proj}(R)$ and $\mathcal{O}_X(1) = R(1)^{\sim}$. Moreover there is a finitely generated graded R-module M such that $\mathscr{F} = \tilde{M}$. For each $n \in \mathbb{Z}$ the Serre-Grothendieck correspondence yields a short exact sequence of R_0 -modules

$$0 \to H^0_{R_+}(M)_n \to M_n \to H^0\big(X, \mathscr{F}(n)\big) \to H^1_{R_+}(M)_n \to 0$$

and isomorphisms of R_0 -modules

$$H^{j}(X, \mathscr{F}(n)) \cong H^{j+1}_{R_{+}}(M)_{n}$$
 for all $j > 0$.

Now, we conclude by Theorem 4.1. \square

5.3. Theorem. Assume that X_0 is affine and essentially of finite type over a field. Let \mathscr{F} be a coherent sheaf of \mathscr{O}_X -modules, let \mathscr{L} be an ample invertible sheaf of \mathscr{O}_X -modules and let $i \in \mathbb{N}_0$.

Then, the set $\operatorname{Ass}_{\mathcal{O}(X_0)}(H^i(X, \mathcal{L}^n \otimes_{\mathcal{O}_X} \mathcal{F}))^{\leq 2}$ is asymptotically stable for $n \to -\infty$.

Proof. There is an integer $r_0 \in \mathbb{N}$ such that \mathscr{L}^r is very ample for each $r > r_0$. Fix such an r and let $t \in \{0, \dots, r-1\}$. If we apply Proposition 5.2 with \mathscr{L}^r instead of $\mathscr{O}_X(1)$ and $\mathscr{L}^t \otimes_{\mathscr{O}_X} \mathscr{F}$ instead of \mathscr{F} we find an integer n_t and a set $\mathscr{L}_t \subseteq \operatorname{Spec}(\mathscr{O}(X_0))$ such that

$$\mathrm{Ass}_{\mathscr{O}(X_0)}\big(H^i(X,\mathscr{L}^{nr+t}\otimes_{\mathscr{O}_X}\mathscr{F})\big)^{\leq 2}=\mathscr{S}_t\quad\text{for all }n\leq n_t.$$

Choosing a second integer $s > r_0$ we find some $m \in \mathbb{Z}$ and some set $\mathscr{T} \subseteq \operatorname{Spec}(\mathscr{O}(X_0))$ such that

$$\operatorname{Ass}_{\mathscr{O}(X_0)} (H^i(X, \mathscr{L}^{ns} \otimes \mathscr{F}))^{\leq 2} = \mathscr{F} \quad \text{for all } n \leq m.$$

Choosing s such that it has no common divisor with r, we find integers $n \le n_t$ and $n' \le m$ such that nr + t = n's. This shows that $\mathcal{S}_t = \mathcal{T}$ for $t = 0, \dots, r - 1$. From this our claim follows immediately. \square

5.4. Corollary. Let $X_0, \mathcal{F}, \mathcal{L}$ and i be as in Theorem 5.3, and let $\dim(X_0) \leq 2$.

Then, the set
$$\operatorname{Ass}_{\mathcal{O}(X_0)} (H^i(X, \mathcal{L}^n \otimes_{\mathcal{O}_X} \mathcal{F}))^{\leq 2}$$
 is asymptotically stable for $n \to -\infty$.

5.5. Theorem. Let X_0 be essentially of finite type over a field. Let \mathscr{F} be a coherent sheaf of \mathcal{O}_X -modules. Let \mathscr{L} be an ample invertible sheaf of \mathcal{O}_X -modules and let $i \in \mathbb{N}_0$.

Then, the set
$$\operatorname{Ass}_{X_0}(\mathscr{R}^i\pi_*(\mathscr{L}^n\otimes_{\mathscr{O}_X}\mathscr{F}))^{\leq 2}$$
 is asymptotically stable for $n\to -\infty$.

Proof. The result is local in the base. So we may assume that X_0 is affine. Now we conclude by Theorem 5.3 as $\mathscr{R}^i\pi_*(\mathscr{L}^n\otimes_{\mathscr{O}_x}\mathscr{F})\cong H^i(X,\mathscr{L}^n\otimes_{\mathscr{O}_x}\mathscr{F})^{\sim}$.

5.6. Corollary. Let $X_0, \mathcal{F}, \mathcal{L}$ and i be as in Theorem 5.5, and let $\dim(X_0) \leq 2$.

Then, the set
$$\operatorname{Ass}_{X_0} \left(\mathscr{R}^i \pi_* (\mathscr{L}^n \otimes_{\mathscr{O}_X} \mathscr{F}) \right)$$
 is asymptotically stable for $n \to -\infty$. \square

5.7. Example. Let R_0 and R be as in Example 4.3, so that $X_0 := \operatorname{Spec}(R_0)$ is the affine 3-space \mathbb{A}^3_K and $X = \operatorname{Proj}(R) \subseteq \mathbb{P}^1_{X_0}$ is the projective line over \mathbb{A}^3_K . Then the Serre-Grothendieck Correspondence (cf. Proof of Proposition 5.2) yields, that the set

$$\bigcup_{n\leq 0} \mathrm{Ass}_{\mathcal{C}(X_0)}\big(H^1\big(X,\mathcal{O}_X(n)\big)\big) \text{ is not finite.}$$

Therefore the set

$$\operatorname{Ass}_{\mathscr{O}(X_0)}(H^1(X,\mathscr{O}_X(n))) = \operatorname{Ass}_{X_0}(\mathscr{R}^1\pi_*(\mathscr{O}_X(1)^n))$$

is not asymptotically stable for $n \to -\infty$. This shows, that in a surprisingly simple situation the conclusions of Corollaries 5.4 and 5.6 need not hold over a base scheme X_0 of dimension ≥ 3 .

References

- [1] *Brodmann*, M., Asymptotic behaviour of cohomology: tameness, supports and associated primes, in: Commutative Algebra and Algebraic Geometry, S. Ghorpade, H. Srinivasan, J. Verma, eds., Contemp. Math. **390** (2005), 31–61.
- [2] *Brodmann, M., Fumasoli, S., Lim, C. S.*, Low-codimensional associated primes of graded components of local cohomology modules, J. Algebra **275** (2004), 867–882.
- [3] *Brodmann, M., Fumasoli, S., Tajarod, R.*, Local cohomology over homogeneous rings with one-dimensional local base ring, Proc. AMS 131, No 10 (2003), 2977–2985.
- [4] Brodmann, M., Hellus, M., Cohomological patterns of coherent sheaves over projective schemes, J. Pure Appl. Algebra 172 (2002), 165–182.
- [5] Brodmann, M., Katzman, M., Sharp, R. Y., Associated primes of graded components of local cohomology modules, Transact. AMS 354, No 11 (2002), 4261–4283.
- [6] Brodmann, M., Lashgari, F. A., A finiteness result for associated primes of local cohomology modules, Proc. AMS 128 (2000), 2851–2853.
- [7] Brodmann, M., Sharp, R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Stud. Adv. Math. 60, Cambridge University Press, 1998.
- [8] Eisenbud, D., Commutative algebra with a view towards algebraic geometry, Springer, New York 1996.
- [9] Hartshorne, R., Algebraic Geometry, Grad. Texts Math. 52, Springer-Verlag, New York 1977.
- [10] Hellus, M., On the set of associated primes of a local cohomology module, J. Algebra 237 (2001), 406-419.
- [11] Huneke, C., Problems on local cohomology, Res. Notes Math. 2 (1992), 93–108.
- [12] Huneke, C., Sharp, R. Y., Bass numbers of local cohomology modules, Transact. AMS 339 (1993), 765-779.
- [13] Kashyarmanesh, K., Salarian, S., On the associated primes of local cohomology modules, Commun. Algebra 27 (1999), no 12, 6191–6198.
- [14] *Katzman*, M., An example of an infinite set of associated primes of a local cohomology module, J. Algebra **252** (2002), 599–612.
- [15] Lorestrani, B. L., Samandi, P., Yassemi, S., Artinian local cohomology modules, Canad. J. Math., to appear.
- [16] Lyubeznik, G., Finiteness properties of local cohomology modules (an application of *D*-modules to commutative algebra), Invent. Math. **113** (1993), 41–55.
- [17] Lyubeznik, G., A partial survey of local cohomology, in: Local cohomology and its Applications, G. Lyubeznik, ed., M. Dekker Lect. Notes Pure Appl. Math. 226 (2002), 121–154.
- [18] Marley, T., The associated primes of local cohomology modules of small dimension, Manuscr. Math. 104 (2001), 519–525.
- [19] Singh, A. K., p-torsion elements in local cohomology modules II, in: Local Cohomology and its Applications, G. Lyubeznik, ed., M. Dekker Lect. Notes Pure Appl. Math. 226 (2002), 155–167.
- [20] Singh, A. K., Swanson, I., Associated primes of local cohomology modules and Frobenius powers, Intern. Math. Res. Notices 33 (2004).

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland e-mail: brodmann@math.unizh.ch

Eingegangen 1. Dezember 2005, in revidierter Fassung 24. März 2006