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S

We explore the properties of projection pursuit discriminant analysis. This discriminant
method is very powerful but relies heavily on a univariate density estimate. We show that
the procedure based on wavelets maintains the same rate of convergence as with univariate
wavelet density estimation. We also show the Bayes risk strong consistency of both the
kernel- and wavelet-based methods. Simulated data and real data concerning character
recognition show that the method is effective and robust against the curse of dimensional-
ity. The wavelet alternative seems more likely than the kernel counterpart to find an
interesting projection. Wavelets are often criticised for giving too wiggly an estimate and
for being too localised to give good global properties. In the above context, these potential
drawbacks do not weaken the method but the use of wavelets seems to enhance it. A
multiple projection generalisation is also considered.
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1. I

Wavelet regression and density estimation in one dimension enjoy properties such as
minimax and adaptive estimation not shared with other nonparametric methods. Much
less is known about multivariate aspects of wavelet-based estimators. This paper discusses
a multivariate application of wavelet density estimation and compares its performance
with a kernel-based method.
For signal and image processing, there exist widely applied two- and three-dimensional

generalisations of wavelets that preserve the good properties of the univariate case (Vetterli
& Kovačević, 1995). For example, wavelet-based methods are allowed in the standard for
the video coder MPEG 4. However, for statistical applications, one often needs methods
that work in much higher dimensions. The curse of dimensionality implies that a wavelet
basis will not capture the general behaviour of the underlying process. In fact, no local
method, including kernels and splines, is well adapted to this problem. As a consequence,
almost any statistical procedure involves some kind of dimension reduction.
The multivariate setting is however a good test for any nonparametric method. The

procedure described in § 2·3, called projection pursuit discriminant analysis, is a projective
method for discriminant analysis and needs a density estimator as a building block. In
this paper, we will use and compare wavelet and convolution kernel density estimators in
this framework. The projection pursuit discriminant analysis method is versatile but,
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numerically, relies heavily on the properties of the density estimator. It should thus give
insight about the strengths and weaknesses of wavelet and kernel methods. In § 3, we
show that the procedure based on wavelets enjoys the same rate of convergence as wavelet
density estimators in one dimension. The Bayes risk strong consistency of both the wavelet
and the kernel-based methods is also established. The numerical aspects of the procedure
are of great importance, since it provides only an implicit form, and the function to be
optimised is complicated. These concerns are discussed in § 4, along with simulation stud-
ies. The method is then applied in § 5 in the context of character recognition. Section 6
treats an extension of the method that involves iterative selection of projections to improve
discrimination power.

2. B

2·1. Density estimation with wavelets

For a complete coverage of wavelet theory in statistics, we refer to Härdle et al. (1998)
and Vidakovic (1999). For the density-estimation setting let (X1 . . . . , XN ) be a vector of
independent and identically distributed observations with density fµL 2 . As in regression,
the estimator of f,

f@ (x)= ∑
kµZ
a@ ( j
0
, k)w
j
0
k
(x)+ ∑

J−1

j=j
0

∑
kµZ
b@ ( j, k)y

jk
(x),

is expanded on the truncation of an orthonormal basis of L 2 based on wjk (x)=
2j/2w(2jx−k) and y

jk
(x)=2j/2y(2jx−k). In density estimation, b@ ( j, k) estimates E{y

jk
(X)}.

The natural moment-based estimator is b@ ( j, k)=∆y
jk

(y) dF
N
(y), where F

N
is the empirical

distribution function. A similar estimator is obtained for a@ ( j, k). However, no real noise
reduction has yet been made. The first regularisation is a projection that sets all the b’s
to zero, leading to the linear wavelet density estimator. A more powerful regularisation
that shrinks the b@ ( j, k) towards zero leads to the thresholded wavelet density estimator.
The amount of shrinkage has to be selected, either globally or as a function of the level
j, and represents the trade-off between bias and variance.
In a series of papers by G. Kerkyacharian, D. Picard and I. M. Johnstone, summarised

in Härdle et al. (1998, Ch. 10, 11), the properties of the linear and the thresholded density
estimators are explored. In particular, their L

p
risk can be bounded, as recalled here in

the linear case.

T 1. L et B (s, p, q, L ) be the ball of densities whose Besov Bs
pq

norms are smaller
than L . L et w be a scaling function such that, for some MµN*, |w(x) |<V ( |x | ), with
|x |MV( |x | )µL 1 , and VµL

p
] L 1 is bounded, symmetric around 0, and nonincreasing for

positive values. If 0<s<M, 2∏p<2, 1∏q<2 and 2j
0
jN1/(2s+1), we have

sup
fµB(s,p,q,L)

Ed f@− f dp
L
p

<CN−sp/(2s+1)

for some constant C>0. T his still holds for 1∏p<2 if in addition f (x)<w(x), where
wµL

p/2
, is symmetric around a point x0 and is nonincreasing for x>x0 .

2·2. Discriminant analysis

The aim of discriminant analysis is to classify an observation into one of G different
populations G1 , . . . , GG . If M continuous measurements x= (x1 , . . . ,xM ) are recorded on
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an individual, the assignment rule partitions RM into G mutually exclusive regions
R1 , . . . , RG that define the group membership. We denote by R the set of the G regions.
We suppose that each group possesses a density f

g
, and we denote the a priori probability

or proportion of group g by p
g
. The quality of a rule is given by the global probability of

misclassification of an individual X randomly selected from the entire population, which
is given by

∑
G

g=1
p
g
pr(X not assigned to G

g
|XµG

g
)=1− ∑

G

g=1
P
R
g

p
g

f
g
(x) dx. (2·1)

The best rule, Bayes’ rule, corresponds to R
g
={xµRM |p

g
f
g
(x)>p

i
f
i
(x), for all iNg}.

Various allocation rules try to imitate the best rule, using data from N individuals of
known origins. The simplest is Fisher’s discriminant function. If there are two groups, the
only information about a point x used by this rule is a one-dimensional projection of x.
Recent nonparametric methods in discriminant analysis also resort to some form of dimen-
sion reduction.
To our knowledge wavelets have been used in discriminant analysis only when the

objects to be discriminated are one-dimensional curves and not multi-dimensional points;
see Coifman & Saito (1994) and a Stanford University technical report by J. Buckheit
and D. L. Donoho.

2·3. Projection pursuit

Projection pursuit (Friedman & Tukey, 1974) seeks interesting projections of high-
dimensional data in one, two or three dimensions, as a tool for looking at the hidden
structure of a dataset, such as clusters, outliers and so on. The value of a projection, a
point h in the unit sphere SM−1, is called the projection index and is denoted by P (h ).
In exploratory analysis, most projections of a high-dimensional dataset appear as a
random sample drawn from a Gaussian density (Diaconis & Freedman, 1984). Thus,
almost any index proposed in the literature is a measure of distance between the density
of the projected points and a Gaussian density. Projection pursuit includes many other
situations, such as regression (Friedman & Stuetzle, 1981), where dimension reduction is
present.
Posse (1992) develops a technique for group discrimination, called projection pursuit

discriminant analysis for estimating Bayes’ rule. Since it is not manageable to estimate
the rule in a nonparametric way from the dataset itself, its projections will be used.
Suppose f h

g
(x) is the marginal density of the group G

g
on the projected space defined by

h. Then the projection index is its ability to separate the groups, i.e. the global probability
of misclassification under projection on h. If the sample is randomly drawn from the entire
population, one can estimate the proportions p

g
by the sample proportions, and the

empirical projection index is

PC (h )=1− P
R
max
g=1,...,G

{p@
g

f@ h
g

(x)} dx, (2·2)

where f@ h
g
is a suitable estimator of f h

g
, based on the projection of the training sample. As

we project on a one-dimensional space, a nonparametric density estimator can exhibit
all its power without being hampered by the dimensionality problem. We will use and
compare the wavelet and the kernel density estimators.
Even in moderate dimension this procedure poses a complex problem for any nonpara-
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metric density estimator. On the one hand, the estimated projection index, as a function
of the angle, must be as smooth as possible and not display many more local minima
than does the true projection index. On the other hand, it has to take advantage of its
nonparametric nature to find genuine differences between the groups.
In the following sections, we use the linear and the thresholded wavelet density estimator

in the empirical projection index. We will prove the convergence of the estimator to the
true optimiser of the projection index and we will compare the wavelet procedure with
that obtained using a kernel density estimator.
Note that wavelets do not give bona-fide density estimates f@. They generally do not

integrate to unity and may take negative values. Moreover, the usual wavelet-based projec-
tion index is neither affine nor scale invariant; see two unpublished reports by the author.
This implies that densities obtained by projecting on h or on −h differ. However, these
issues affect neither the optimisation algorithm nor the convergence properties given in
the next section.

3. C    

Let

P (R, h )=1− ∑
G

g=1
P
R
g

p
g

f h
g

(x) dx, PC (R, h )=1− ∑
G

g=1
P
R
g

p@
g

f@ h
g

(x) dx

be the true and the estimated projection indices in the direction h and for the set of
univariate regions R={R1 , . . . , RG}. Let sup# denote the supremum over all hµSM−1
and over all Borel partitions R of R in G groups.
The infimum over R and h of both P and PC is attained for fixed h by the Bayes’ rule
in the univariate case, and minimisation with respect to h is over a compact space.
We will denote by R* and h* the possibly not unique optimal choices, i.e. such that
P (R*, h*)=min#P (R, h ). Analogously, RC and h@ are such that PC (RC , h@ )=min#PC (R, h ).
The following theorem gives the rate of convergence of the estimated projection index.

T 2. L et { f
g
} be the M-dimensional densities of the G groups. Suppose that all

the marginal densities f h
g

are in the Besov ball B (s, 1, q, L ) for some values s, q and L , and
satisfy f h

g
(x)<w(x) for p=1; see T heorem 1. T hese restrictions are for example met if the

marginal densities are compactly supported and of bounded variation, or in a Sobolev space
Hs
1
. Suppose also that the wavelet basis and the level j0 satisfy all the conditions of T heorem 1.

T hen, for increasing values of N,

sup#E |PC (R, h )−P (R, h ) |=O(N−s/(2s+1) ).

Proof. It is not difficult to show that

|PC (R, h )−P (R, h ) |∏ ∑
G

g=1
|p@
g
−p
g
|+ ∑
G

g=1
P
R
| f@ h
g

(x)− f h
g

(x) | dx.

This bound does not depend on R. This implies that the sup#E(.) of the left-hand side is
dominated by two terms. The first term has the parametric rate of convergence O(N−D )
whereas Theorem 1 shows that the second is O(N−s/(2s+1) ). %

Stronger results can be obtained for the thresholded estimator if in the proof one uses
Theorem 10.4 or Proposition 11.1 in Härdle et al. (1998) instead of Theorem 1.
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A rule is said to be Bayes risk strongly consistent if its probability of misclassification
converges almost surely to the probability of misclassification of the best rule. With very
general assumptions on f

g
, one can prove that the procedures based on wavelets or on

convolution kernels are consistent. This is a consequence of the following theorem.

T 3. L et f be a uniformly continuous M-dimensional density that vanishes outside
a ball. L et f@ h denote either the linear wavelet or the convolution kernel estimator of the
marginal density f h. Suppose for the wavelet estimator that the scaling function is of bounded
variation and satisfies the condition in T heorem 1 for M=p=1, and that the level j0 (N)
grows at least as rapidly as 2j

0
=O{(N/log1+cN)D} for some c>0. Suppose for the kernel

estimator that the kernel K is continuous with bounded variation, and that the bandwidth h
satisfies h�0 and Nh2/log1+cN�2 when N�2, for some c>0. T hen it follows that

sup

hµSM−1

sup
xµR
| f@ h(x)− f h(x) |�0, (3·1)

sup

hµSM−1
P
R
| f@ h(x)− f h(x) | dx�0, (3·2)

almost surely, as N�2. T his implies that, if the M-dimensional densities f
g

for all groups
satisfy the above assumptions, then

sup# |PC (R, h )−P (R, h ) |�0, (3·3)

almost surely, as N�2.

The proof is in the Appendix. Note that, among the usual wavelet bases, only the sinc
wavelet does not satisfy the assumptions of Theorem 3. Moreover, the minimal rate for
j0 is not a constraint since it is always satisfied for the usual choices. For compactly
supported convolution kernels, E. Elguero, in a 1988 Ph.D. thesis from l’Université des
Sciences et Techniques du Languedoc proves equation (3·1) and Posse (1992) proves
equation (3·3). The compactness hypothesis simplifies the proof of (3·1) considerably, since
it implies the compactness of the estimator. Furthermore, (3·2) follows immediately from
(3·1) in this case. However, this hypothesis is necessary for neither convolution kernels
nor wavelets.
Theorem 3 proves the desired Bayes risk strong consistency of the estimated rule, using

Posse (1992) who shows the following corollary in the case of compact convolution kernel
estimation. As his proof depends only on the almost sure convergence of the projection
index, it applies to the estimators described in Theorem 3.

C 1. W ith the same assumptions as in T heorem 3, the rule defined by {RC , h@ }
is Bayes risk strongly consistent. Moreover, the estimated error rate converges almost surely
to the ideal value, that is P (RC , h@ )�P (R*, h*) and PC (RC , h@ )�P (R*, h*), almost surely,
as N�2.

Note that, by the boundedness of P and PC , the almost sure convergences imply not
only convergence in probability but also L

p
convergence for any p>0.

4. N   

4·1. An optimisation algorithm

As Friedman stated in his discussion of Jones & Sibson (1987), the power of a projection
pursuit procedure depends crucially on the reliability and thoroughness of the numerical
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optimiser. Very simple two-dimensional examples show that empirical indices are very
likely to have additional local minima, a problem we might expect to be even worse in
higher dimensions.
Algorithms like steepest descent are too strongly influenced by local minima. Huber,

reported in Posse (1995), defined an algorithm that performs local and global searches at
the same time: given the current direction of the projection h, PC is computed for six
neighbouring directions, i.e. local search, and two global directions. If one of them has a
smaller PC , it replaces h. The procedure is repeated and, if no improvement is recorded
during g=50 steps, the size of the local neighbourhood is halved. The procedure is stopped
when the neighbourhood is small enough. The procedure is repeated with 10 different
starting values.
Concerning the wavelet estimator, any non-continuous thresholding rule, like the hard

threshold, has to be avoided at all costs. It leads to many discontinuities in the index,
when we move continuously from one projection to another; any raw coefficient will vary
continuously with the projection, but its thresholded version with such a rule can become
discontinuous, and each discontinuity will be transmitted to the empirical projection index,
creating ‘nuisance’ local minima. Simulations shows that a huge number of such disconti-
nuities are present even in very simple examples. The soft threshold behaves much better,
being a continuous transformation.

4·2. Simulation results

The procedure of projection pursuit discriminant analysis can be divided into two
sub-problems. The first is to select a direction h that best separates the marginal densities,
and the second is to define the univariate regions R

g
on this projection so as to minimise

the probability of misclassification. Of course, both steps can be done with the same
estimators f@

g
, in which case the angle is defined as the minimiser of (2·2) and

R
g
={xµR |p@

g
f@ h
g

(x)>p@
i
f@ h
i
(x) for all iNg}. However, one can gain by separating the two

problems; the estimator for the first step takes advantage of being less smooth, being
composed of integrals of densities. For the second step, a smoother estimator is not only
more efficient but also more convenient for interpretation, since it has more chances to
give rise to connected regions. Therefore, to obtain a correct comparison between esti-
mators, one should separate the two problems. As the second sub-problem is one-dimen-
sional, we will concentrate in this section on the first one. In the following simulation
study, we compare wavelet density estimators with kernel estimators in their ability to
select an interesting direction.
For the kernel density estimator, we use the two-window procedure of Sheather & Jones

(1991) to estimate the bandwidth and we use the cosine kernel. For the wavelet density
estimator, we use the basis of the Daubechies family, extremal phase, with four vanishing
moments. The level J is selected as 2J=tN/logNs, and we used universal thresholding
with soft threshold.
Since our index is an integral form of the estimated densities, the choices for the

smoothing parameters should typically be smaller. However, the numerical optimisation
of the index would benefit from larger smoothing parameters, that smooth the function
being optimised. It is not clear which is more important. For that reason, for the kernel
estimate, we tried bandwidths that are twice as small as Sheather & Jones’ selection rule,
h/2, four times smaller, h/4 and twice as large, 2h. We also tried more extreme values,
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but the performances were poorer. For the wavelet estimate, we show the results for the
universal threshold, w, and half its value, w+.
Details of the simulation are given in Table 1 and Fig. 1. To explain how our study

results are presented, consider the example of Fig. 2(a). The number of groups, the number
of observations per group and the densities of the groups are given in Table 1. In this
case, it is a two-group four-dimensional example. The first direction is discriminatory as
the marginal distributions are Gaussian with different means, whereas the directions in
the orthogonal three-dimensional subspace are not discriminatory. The two weighted
marginal densities are sketched in Fig. 1(a), showing how well the groups are separated
in the discriminant direction. The global probability of misclassification for this direction,
P (h ), is the hatched zone and is equal to W (−1·3/2)j 0·258, which is the minimum value
over all projections; W is the distribution function of the standard normal.

Table 1. Details of the scenarios for the simulation study

Associated Sample Other
figure Group size X1 distribution variables Distribution

Fig. 1(a) 1 50 N(0, 1) X2 , X3 , X4 N(0, 1)
2 50 N(1·3, 1) X2 , X3 , X4 N(0, 1)

Fig. 1(b) 1 200 1
2
N(−2, 1)+1

2
N(2, 1) X2 , X3 , X4 N(0, 1)

2 100 N(0, 1) X2 , X3 , X4 N(0, 1)

Fig. 1(c) 1 60 1
2
N(−2, 1)+1

2
N(2, 1) X2 , X3 , X4 N(0, 1)

2 60 N(0, 1) X2 , X3 , X4 N(0, 1)

Fig. 1(d) 1 260 1
2
N(−2, 1)+1

2
N(2, 1) X2 , . . . , X10 N(0, 1)

2 260 N(0, 1) X2 , . . . , X10 N(0, 1)

Fig. 1(e) 1 50 Be(1·5, 5) X2 Un(0, 1)
2 50 Be(5, 5) X2 Un(0, 1)
3 50 Be(5, 1·5) X2 Un(0, 1)
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Fig. 1. Models for the simulation displayed in Fig. 2, showing weighted marginal densities for discriminant
projections in the groups, with shaded areas denoting misclassification probabilities.

For each simulation, 50 observations of each group are generated. The kernel-based
procedure returns the direction h@ that minimises its PC . We do the same for the three other
kernel-based methods and the two wavelet-based methods.
Since we know the underlying distributions, we can compute the capability of dis-

crimination of the direction selected by any method by reporting P (h@ ). In this example
P (h )=W{−1·3 cos (r)/2}, where r is the angle between h and the discriminant direction.
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Fig. 2. Simulation study. Boxplots of the discriminant capability of the direction selected by different
methods for projection pursuit discriminant analysis. Methods are wavelet-based for w and w+, and kernel-
based for the rest. We used Sheather & Jones’ (1991) rule for h and also bandwidth h/4, h/2 and 2h. (a) shows
global probability of misclassification for scenario in Fig. 1(a); (b)–(f ) show angle r with true discriminant

direction for scenarios in Figs 1(a)–(e).

Boxplots of the discrimination capability of the directions selected by each method are
reported based on 200 simulations. The best method is the one with a boxplot as close
as possible to the minimal probability of misclassification, which is 0·258 in this case.
Kernels and wavelets give roughly equivalent boxplots, the kernel based on the largest

bandwidth being slightly better.
In this and later simulations, the setting is such that the projection index of a direction

is an increasing function of the angle r between the selected direction and the discriminant
direction. We can therefore report the angle r instead of the projection index P. The
values on the y-axis are thus more demonstrative: if the angle r is close to zero, this means
that the method essentially found the right direction, and, if it is close to p/2j 1·57,
the method ‘lost itself ’ finding a direction that is orthogonal to the discriminant direc-
tion. Figure 2(b) shows boxplots for r obtained from the same simulations as in
Fig. 2(a). Clearly all methods find directions that are close to, but rarely very close to, the
discriminant axis.
Figures 2(c)–(f ) show boxplots for r from simulations based on the settings in
Figs 1(b)–(e) and Table 1. In Fig. 2(c), one group has a bimodal density and represents
two-thirds of the population. Even though both groups have smooth densities, the wavelet
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estimator is slightly better than the kernel. Figure 2(d) has the same setting as in Fig. 2(c),
except that the two groups have equal probabilities. Here both methods give similar
results. Figure 2(e), in which the non-discriminant subspace is of dimension 9, shows that
even in 10 dimensions the projection index for the wavelet is not too oscillatory and a
direction close to the discriminant one can be found. This result is surprising to us.
Figure 2(f ) provides an example where the densities are not everywhere smooth. The three
groups come from different Beta densities for the discriminant marginal densities, and the
non-discriminant direction is uniform. In fact, the conditions for applying the kernel are
not met, and, as one might expect, the wavelet estimate with the right amount of smoothing
is less perturbed by the irregularities in the densities; the extent of the improvement is
substantial. However, the second wavelet estimate is not better than the kernel estimates.
Our experience from these and other simulations is that, for kernel estimates, band-

widths larger than Sheather & Jones’ rule give better results than do smaller ones. In this
application, reduction of variance seems more important than reduction of bias. However,
it is an open question to find a criterion for the bandwidth that takes into account the
integral form of the projection index and the choice of the optimisation algorithm. It is
also unclear whether or not higher-order kernels can improve results over regular ones.
It seems that the index based on wavelets is smooth enough for the optimiser to find a

very good discriminant projection. Note however that all the thresholding rules in the
literature, including the universal threshold used here, are defined in terms of regression,
not density estimation. It is unclear whether or not rules adapted to density estimation
and to the integral form of the index would improve the method further.

5. E

We applied the methods to character recognition, using a dataset created and tested in
Frey & Slate (1991). The objective is to identify each of a large number of black-and-white
rectangular pixel displays as one of the 26 capital letters in the English alphabet. The character
images were based on 20 different fonts and each letter within these 20 fonts was randomly
distorted to produce a file of 20 000 unique datapoints, approximately 800 per letter. Each
image was converted into 16 primitive numerical attributes, namely sample moments in the
marginal x and y directions, and edge counts (Frey & Slate, 1991). We only compare pairs
of letters. Hastie & Tibshirani (1998) show that a good discriminant rule for each pair of
groups is the core of an efficient rule that predicts the letter using a majority vote from all
pairwise comparisons. We compare pairs of letters that are somewhat similar, i.e. such that
the two sets of samples of the letters cannot be separated by a hyperplane.
For each pair, we compare three methods: projection pursuit discriminant analysis,

based on wavelet and kernel density estimation and linear discriminant analysis. For the
first two methods, all the settings of § 4·2 are kept, except that we allow 20 different
starting values.
The results are shown in Fig. 3(a), (c), (e) for the pair (B, E) and in Fig. 3(b), (d), (f ) for
the pair (G, Q). Each plot shows a kernel estimate of the marginal density of the projection
points for each letter, with a bandwidth purposefully smaller than the usual guideline
value in order to reduce the bias and better capture the structure of the projected points.
The vertical lines on the plots define the two assignment regions, a half-line for each group
or a middle segment for one group and the complementary two half-lines for the other.
This division minimises the training error amongst all possible divisions of up to three
connected components. The corresponding training error, noted on the top of each plot,
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gives a good estimate of the probability of misclassification, given the fairly large group
sizes of about 800.
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Fig. 3. Best projection according to wavelet, (a) and (b), and kernel, (c) and (d), projection pursuit
discriminant analysis, , and linear discriminant analysis, , given (e) and (f ) in a 16-dimensional
example of character recognition. (a), (c) and (e) show results of the methods for discrimination between
about 800 instances of B and about 800 instances of E. (b), (d) and (f ) show results as for (a), but for G and
Q. Kernel density estimates for the projection points for each letter are shown and the assignment regions

are separated by the vertical lines.

For the pair (B, E), the wavelet-based procedure selected a projection that almost separ-
ates the two groups. This projection misclassifies only 9 instances out of 1534, representing
a training error of 0·0059. The separation point is sharp, and the local sensitivity of the
wavelet was essential to find it. The kernel-based procedure selected a projection that is
quite different; the angle between the two projections, in a 16-dimensional space, is 62°.
The training error is almost ten times bigger than that of wavelet projection pursuit
discriminant analysis. The third method suffers from the obvious nonnormality of the
dataset and selects a very poor projection.
For the pair (G, Q), it seems that the best discriminant projection is such that the

instances of the letter Q are separated into two groups, with the instances of G in between.
In this context again, the wavelet-based projection pursuit discriminant analysis does a
slightly better job, compared to the kernel-based method. The angle between the two
projections, 23°, as well as the difference in the training errors are smaller than in the
previous example, but the projection in the top panel is clearly better. Once again, the
linear discriminant analysis is not able to capture the structure of the groups and selects
a projection with a high training error.

6. M    

The idea of projection pursuit discriminant analysis can be generalised by using more
than one projection. Friedman et al. (1984) define a nonparametric dimension reduction
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tool called projection pursuit density estimation. To estimate the multivariate density f
based on a random sample of size N, the first step is to create a parametric estimate f@0 (x),
such as a Gaussian density with parameters equal to the sample mean and sample variance
matrix. Then, the direction where changes are most beneficial is selected. At step k, one
selects h

k
and estimates a function h

k
such that f@

k
(x)= f@

k−1
(x)h
k
(h∞
k
x) fits the sample better

than for any other choice of h. The measure of goodness of fit is the Kullback–Leibler
divergence ∆ log{ f@

k
(x)/ f (x)} f (x) dx. Suppose a superscript h on a density denotes its mar-

ginal density in the direction h. For a fixed h, the function h
k
that maximises the divergence

is given by h
k
(x)= f h(x)/ f@ h

k−1
(x). The Kullback–Leibler distance associated with this func-

tion h
k
is then the projection index P (h ) that has to be maximised. The optimisation is

slightly more difficult than in other projection pursuit methods, as one must calculate the
univariate f@ h

k−1
(x).

The density estimator so defined can, of course, be used for discriminant analysis.
E. Elguero uses this procedure in his thesis and applies it to pollution data. He also proves
the uniform convergence of the estimator. Polzehl (1995) exploits this construction and
adapts the choice of the direction to optimise the ability of the density to discriminate
between the groups. The projection indexP (h ) is the global probability of misclassification
given in equation (2·1), where the regions R

g
are given by

R
g
={xµRM |p@

g
f@
g,k−1

(x)h
g,k

(h∞x)>p@
i
f@
i,k−1

(x)h
i,k

(h∞x) for all iNg}.

Replacing f (x) dx by dF
n
(x) in equation (2·1) gives a discontinuous estimate PC (h ) as

a function of h. The discontinuities arise when observations pass from one region to
another. Writing ∆

R
g

p
g

f
g
(x) dx as ∆ I(xµR

g
)p
g

f
g
(x) dx, one may replace the indicator

function I by a smoother function. This leads to a continuous estimated projection index.
Wavelets are serious competitors. First, the convergence results of § 3 carry over without

much difficulty. In Theorem 3 we generalised the uniform convergence results of Elguero’s
thesis for univariate projection. It is not difficult to carry over to the wavelets approach
his results concerning the uniform convergence of the multivariate estimator f@

k
(x).

Moreover, the simulations of § 4·2 show that wavelets behave quite well in such com-
plicated settings. When we only need one one-dimensional estimator at a time, the
conclusions of § 4·2 apply.
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A

Proof of T heorem 3

For this proof, it is convenient to view the linear wavelet estimate as an approximation kernel.
The kernel associated with a wavelet basis with scaling function w is given by K(x, y)=
W

k
w(x−k)w(y−k), and we define K

j
(x,y)=2jK(2jx, 2jy). Under a weaker condition on w than in

Theorem 1, ∆K
j
(x, y) dy=1. Moreover, for a chosen level j0 for the linear wavelet estimator, we
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have

f@ (x)= P Kj0 (x, y) dF
N
(y), E{ f@ (x)}= P Kj0 (x, y) dF(y). (A·1)

For a unified notation, the operator J is defined either as the supremum operator J
x
b(x)=sup

x
b(x)

or as the integration operator J
x
b(x)=∆

R
b(x) dx. For the same reason we denote by h=1/2j

0
the

parameter of the wavelet density estimator. We have to show that

sup
h

J
x
| f@ h(x)− f h(x) |∏ sup

h

J
x
| f@ h(x)−E{ f@ h(x)}|+ sup

h

J
x
|E{ f@ h(x)}− f h(x) | (A·2)

converges to 0 almost surely, as N�2, and we consider the two terms separately.
First consider the second term, which is deterministic. Elguero’s thesis shows that the family

f h(x) is equi-uniformly continuous, equi in h and uniformly in x, which means that, for all e>0,
there exists an g>0 such that, for all hµSM−1 and for all x1 , x2µR with |x1−x2 |<g, we have
| f h(x1 )− f h(x2 ) |<e. For the wavelet case, by Lemma 8.6 in Härdle et al. (1998, p. 85), the bounding
condition on w implies that |K

h
(x, y) |∏C1C2h−1V(C2 |x−y |/h), where C1 and C2 are positive

constants. Denote ∆V( |y | ) dy by C3 . The possibly higher-order convolution kernel estimator is also
trivially bounded. By equation (A·1), we have that

|E{ f@ h(x)}− f h(x) |∏ P C1C2h−1V(C2 |x−y |/h) | f h(y)− f h(x) | dy. (A·3)

Denote by wh(x, y) the above integrand, which is symmetric in its arguments. Note that it is zero
when both x and y are outside [−r; r], where r is the radius of the ball containing the support of
f. Thus

P
R
|E{ f@ h(x)}− f h(x) | dx∏2 P r

−r
P
R

wh(x, y) dy dx. (A·4)

We can now show that J
x
|E{ f@ h(x)}− f h(x) | converges to 0 uniformly over h. For fixed d>0

we show that there exists N
d
, independent of h and x, such that (A·3) is bounded by d for any

N�N
d
. For this, set e=d/{2C1C3 max (4r, 1)} and pick the corresponding g, which, because of

equicontinuity, does not depend on h or x. Then separate the domain of integration in the integral
(A·3) into two parts, [x−g, x+g] and (−2, x−g)^ (x+g,2), thereby defining integrals I1 (x)
and I2 (x). The first one gives

I
1
(x)∏ P x+g

x−g
C
1
C
2
h−1V(C

2
|x−y |/h)e dy∏C

1
C
3
e.

This shows that sup
h
sup
x
I1 (x)∏d/2. For the integral operator,

sup
h
P
R

I
1
(x) dx∏ sup

h

2 P r
−r

I
1
(x) dx∏d/2,

by equation (A·4) and the choice of e. The second integral I2 (x) is

I
2
(x)=AP x−g

−2
+ P2
x+g
B C1C2h−1V(C2 |x−y |/h) | f h(y)− f h(x) | dy

∏2 max
h

max
v

f h(v) AP−g/h
−2

+ P2
g/h
B C1C2V(C2 |z | ) dz.

Since this expression does not depend on x or h, it is a bound for sup
h
sup
x
I2 (x) and, by equation

(A·4), the same expression multiplied by 4r is a bound for sup
h
∆ I
2
(x) dx. In addition, as V is in

L 1 , I2 (x) tends to zero for decreasing values of h. There exists therefore an h, and thus an N
d
, such



141Discrimination using projection pursuit

that I2 (x) is smaller than d/2 for any N�N
d
. For the same values of N, the sum of the two integrals

I1 (x) and I2 (x) is bounded by d, which proves the claimed convergence.
We now turn to sup

h
J
x
| f@ h(x)−E{ f@ h(x)}|, the first term in (A·2). This term is stochastic and we

prove almost sure convergence. Denote by Fh(y) and Fh
N
(y) the true and the empirical distributions

on the margin defined by h. We will show that, for both kernels and wavelets, and for both
operators, we can find a constant C4 such that

sup
h

J
x
| f@ h(x)−E{ f@ h(x)}|∏C

4
h−1 sup

h

sup
x
|Fh(x)−Fh

N
(x) |. (A·5)

From this, we can show that

pr Csup
h

J
x
| f@ h(x)−E{ f@ h(x)}|�eD∏pr qsup

h

sup
x
|Fh(x)−Fh

N
(x) |�

e

C
4
h−1r

∏C
5
exp qC6M log (N/M)−

e2

8C2
4
h2Nr ,

where the second inequality follows from Proposition 5.1 of Diaconis & Freedman (1984). Here,
M is the dimension, and C5 and C6 are positive constants. By the Borel–Cantelli lemma, one has
almost sure convergence if the series with its general term given by the last expression converges
for any e>0. This happens if h2N=O( log1+cN) for some c>0, which is equivalent to the given
conditions for 2j

0
and h.

We now prove equation (A·5), first for the kernel estimator and then for the wavelet estimator.
For the kernel case, as K is continuous, of bounded variation and tends to zero for x�±2, it
can be written as the distribution of a finite signed measure m : K(x)=∆ I(u<x) dm(u). We then
have

| f@ h(x)−E{ f@ h(x)}|= K1h PP I{u< (x−y)/h} dm(u){dFh
N
(y)−dFh(y)}K

= K1h P {Fh(x−hu)−Fh
N
(x−hu)} dm(u) K∏ 1

h P |Fh(x−hu)−Fh
N
(x−hu) | d |m | (u).

For the supremum operator, this implies that

sup
h

sup
x
| f@ h(x)−E{ f@ h(x)}|∏

dmd
h
sup
h

sup
x
|Fh(x)−Fh

N
(x) |,

where dmd=|m | (R) is the total variation of m. This proves equation (A·5) with C4=dmd. For the
integration operator, one writes

P
R
| f@ h(x)−E{ f@ h(x)}| dx∏

1

h P
R
|Fh(z)−Fh

N
(z) | dz P

R
d |m | (u).

Since the true and empirical distributions coincide outside the ball of radius r, the domain of the
first integral can be restricted to the interval [−r, r]. This shows that (A·5) holds in this case also
with C4=2rdmd.
We now establish (A·5) in the wavelet case. As w is of bounded variation and tends to zero for

x�±2, it can be written as the distribution of a bounded signed measure m: w(x)=
∆ I(u<x) dm(u). We thus have
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| f@ h(x)−E{ f@ h(x)}|= K P ∑
kµZ
w
j
0
k
(x)w
j
0
k
(y){dFh

N
(y)−dFh(y)}K

= K ∑
kµZ
w
j
0
k
(x) PP 2j0/2I(u<2j

0
y−k) dm(u){dFh

N
(y)−dFh(y)}K

∏ ∑
kµZ
|w
j
0
k
(x) | P 2j0/2 |Fh{(u+k)/2j

0
}−Fh

N
{(u+k)/2j

0
}| d |m | (u), (A·6)

where the inversion of the integral and the sum is allowed because of the bounding condition on
w; see Proposition 8.4 in Härdle et al. (1998, p. 83). To bound the supremum operator, it suffices
to note that

| f@ h(x)−E{ f@ h(x)}|∏ ∑
kµZ
|w
j
0
k
(x) |2j

0
/2dmd sup

v
|Fh(v)−Fh

N
(v) |.

By the condition on w, sup
x
W

k
|w(x−k) |<C7<2; see Proposition 8.5 in Härdle et al. (1998,

p. 83). This allows us to establish equation (A·5) with C4=C7dmd, since 2j
0
=h−1. The proof for

the integration operator is slightly trickier. Since the density vanishes outside the ball of radius r,
the domain of the integral of (A·6) can be restricted to the interval [−2j

0
r−k, 2j

0
r−k]. We then

have

sup
h
P
R
| f@ h(x)−E{ f@ h(x)}| dx∏2j

0
/2 ∑
kµZ
P
R
|w
j
0
k
(x) | dx P 2j0r−k

−2j0r−k
d |m | (u) sup

h

sup
v
|Fh(v)−Fh

N
(v) |

∏C
3
∑
kµZ
P 2j0qrr−k
−2j0

qrr−k
d |m | (u) sup

h

sup
v
|Fh (v)−Fh

N
(v) |

=2j
0
qrrdmd sup

h

sup
v
|Fh(v)−Fh

N
(v) |,

where the second inequality is a consequence of ∆ |w(x) | dx∏∆V ( |x | ) dx=C
3
. This establishes (A·5)

for the last case, since 2j
0
=h−1. This ends the proof of equations (3·1) and (3·2).

The last part of the theorem, equation (3·3), is a direct consequence of the uniform convergence
of the integral in (3·2), since, from the proof of Theorem 2, we have for any partition R and any
direction h that

|PC (R, h )−P(R, h ) |∏ ∑
G

g=1
|p@
g
−p
g
|+ ∑
G

g=1
sup
h
P
R
| f@ h
g
(x)− f h

g
(x) | dx.

As the bound does not depend on R or on h, it also bounds sup#.

R

C, R. R.& S,N. (1994). Constructions of local orthonormal bases for classification and regression.
Comptes Rendus 319, 191–6.

D, P. & F, D. (1984). Asymptotics of graphical projection pursuit. Ann. Statist. 12, 793–815.
F, P. W. & S, D. J. (1991). Letter recognition using holland-style adaptive classifiers. Mach. L earn.
6, 161–82.
F, J. H. & S, W. (1981). Projection pursuit regression. J. Am. Statist. Assoc. 76, 817–23.
F, J. H. & T, J. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE
T rans. Comp. 23, 881–90.
F, J. H., S,W. & S, A. (1984). Projection pursuit density estimation. J. Am. Statist.
Assoc. 79, 599–608.
H, W., K, G., P, D. & T, A. (1998). Wavelets, Approximation, and
Statistical Applications, Lecture Notes in Statistics, 129. Berlin: Springer-Verlag.

H, T. & T, R. (1998). Classification by pairwise coupling. Ann. Statist. 26, 451–71.
J,M. C.& S, R. (1987). What is projection pursuit? (with Discussion). J. R. Statist. Soc. A 150, 1–36.



143Discrimination using projection pursuit

P, J. (1995). Projection pursuit discriminant analysis. Comp. Statist. Data Anal. 20, 141–57.
P, C. (1992). Projection pursuit discriminant analysis for two groups. Commun. Statist. A 21, 1–19.
P, C. (1995). Tools for two-dimensional exploratory projection pursuits. J. Comp. Graph. Statist. 4, 83–100.
S, S. J. & J, M. C. (1991). A reliable data-based bandwidth selection method for kernel density
estimation. J. R. Statist. Soc. B 53, 683–90.
V, M. & K , J. (1995). Wavelets and Subband Coding. Upper Saddle River, NJ: Prentice Hall.
V, B. (1999). Statistical Modeling by Wavelets. New York: Wiley.

[Received June 2000. Revised March 2001]


