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S U M M A R Y
3-D electrical resistivity surveys and inversion models are required to accurately resolve
structures in areas with very complex geology where 2-D models might suffer from artefacts.
Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much
greater than in the perpendicular direction (y). Frequently, due to limitations in the number of
independent electrodes in the multi-electrode system, the surveys use a roll-along system with
a small number of parallel survey lines aligned along the x-direction. The ‘Compare R’ array
optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset
versions of the inline arrays used in 2-D surveys are included in the number of possible arrays
(the comprehensive data set) to improve the sensitivity to structures in between the lines. The
array geometric factor and its relative error are used to filter out potentially unstable arrays in
the construction of the comprehensive data set. Comparisons of the conventional (consisting
of dipole-dipole and Wenner–Schlumberger arrays) and optimized arrays are made using a
synthetic model and experimental measurements in a tank. The tests show that structures
located between the lines are better resolved with the optimized arrays. The optimized arrays
also have significantly better depth resolution compared to the conventional arrays.
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1 I N T RO D U C T I O N

2-D resistivity surveys are now widely used to map areas with
moderately complex geology. These surveys have become a stan-
dard exploration tool to solve many field problems in agriculture,
groundwater exploration, engineering site investigation, environ-
mental assessment, mineral exploration and even hydrocarbon map-
ping (Dahlin 1996; Auken et al. 2006; Loke et al. 2013a). How-
ever, in areas with very complex geology, it has been found that
the models obtained from 2-D surveys can suffer from artefacts
due to offline structures (Dahlin & Loke 1998; Bentley & Gharibi
2004). For such problems, 3-D surveys using a rectangular grid of
electrodes provide the best solution (Dahlin et al. 2002; Gharibi
& Bentley 2005; Chambers et al. 2006, 2012). Frequently, due to
physical limitations in many commercial multielectrode resistivity
meters systems, the number of electrode positions along one direc-
tion (the ‘x’ direction) is much larger than in the perpendicular (the
‘y’) direction. Furthermore, the distance between the lines in the y
direction is frequently twice (or more) the inline electrode spacing
in the x direction (Gharibi & Bentley 2005). This is a common prac-
tical arrangement to cover the widest possible area with a limited
number of independent electrodes.

In recent years, there has been significant progress in algorithms
to automatically determine the set of array configurations that will
maximize the resolution of the subsurface inversion model for 2-D

surveys (Stummer et al. 2004; Wilkinson et al. 2006). The ‘Compare
R’ algorithm proved to be the best method in terms of determining
arrays that have the highest resolution among the techniques that
were tested (Loke et al. 2010a). A very fast version of the ‘Compare
R’ method using the microcomputer graphics processing unit (GPU)
was implemented by Loke et al. (2010b). However, 3-D surveys
present new challenges even for the fast GPU-based algorithm due
to the larger number of electrodes in the survey grid, as well the
larger number of parameters in the subsurface model.

In this paper, the mathematical background for the ‘Compare
R’ method is briefly described. We then describe a new method to
generate the set of possible arrays for 3-D surveys grids where the
number of electrodes along one axis is much greater than along
the perpendicular direction. This is followed by plots of the model
resolution for the optimized arrays and conventional arrays. Finally
we present results from tests using a synthetic model and an exper-
imental data set.

2 T H E O RY

2.1 Data inversion, model resolution
and the ‘Compare R’ method

The smoothness-constrained least-squares optimization method is
frequently used for 2-D and 3-D inversion of resistivity data

C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1751

mailto:drmhloke@hotmail.com


1752 M. H. Loke et al.

(deGroot-Hedlin & Constable 1990; Ellis & Oldenburg 1994; Loke
et al. 2013a, 2014b). The 3-D model usually consists of many
quadrilateral cells (Loke & Barker 1996). The linearized least-
squares equation that gives the relationship between the model
parameters (r) and the data misfit (g) is(

GTG + λC
)
�r i = GTg − λCri−1. (1)

The Jacobian matrix G contains the sensitivities of the (loga-
rithms of the) apparent resistivities with respect to the model resis-
tivity values, C contains the roughness filter constraint and λ is a
damping factor. The model resolution matrix R (Loke et al. 2010a)
is given by

R = BA,

where

A = GTG and B = (A + λC)−1 . (2)

The number of possible four-electrode configurations is N(N −
1)(N − 2)(N − 3)/8, where N is the number of electrodes. This
number is reduced by excluding the gamma type arrays with crossed
current and potential electrodes (Carpenter & Habberjam 1956) and
those with large geometric factors (Stummer et al. 2004; Loke et al.
2010a). A maximum geometric factor limit is set according to the
expected noise level in a field survey (Wilkinson et al. 2012). A
local optimization procedure is used to select a subset of the viable
configurations (the comprehensive data set) that will maximize the
model resolution. A small base data set consisting of the dipole–
dipole configurations with a dipole length ‘a’ of 1 unit electrode
spacing and maximum ‘n’ value (the ratio of the dipole separation
to the dipole length) of 6–8 (depending on the maximum geometric
factor set) is usually used. The change in the model resolution
matrix �R for each new configuration added to the base set is then
calculated (Loke et al. 2010b) using the following equation.

�Rb = z

1 + μ

(
gT − yT

)
, (3)

where z = Bbg, y = Abz and μ = g.z. Ab and Bb are the matrices,
as specified in eq. (2), for the arrays in the current base data set.
The vector g contains the sensitivity values of the model cells for
the new test configuration. The following function FCR (Wilkinson
et al. 2012) is used to the rank the improvement in the resolution of
a model with m cells due to an add-on array.

FC R = 1

m

j=m∑
j=1

�Rb( j, j)

Rc( j, j)
, (4)

where Rc is the comprehensive data set model resolution. A se-
lected number of configurations that have the largest FCR values are
added to the base set after each iteration until the target number of
optimized array configurations is selected. We note that both the
least-squares and array optimization methods can be modified to
include the L1 and L2 norms for the model roughness and data
misfit, as well as the effect of known data errors (Farquharson &
Oldenburg 1998; Loke et al. 2010b; Wilkinson et al. 2012).

2.2 Use of the geometric factor relative error
for 3-D surveys

For surveys along 2-D lines, excluding the gamma configurations
and setting a maximum limit for the geometric factor is sufficient
to remove arrays that are likely to be unstable. Wilkinson et al.
(2008) found that for cross-borehole surveys it was necessary to set

a limit on the sensitivity of the array geometric factor to errors in
the position of the electrodes as well to remove arrays that are likely
to be unstable. As 3-D surveys involve cross-line measurements, we
also use this method. The geometric factor K for any four electrode
array located on the ground surface is given by

K = 2π/H, H =
[

1

rAM
− 1

rAN
− 1

rB M
+ 1

rB N

]
. (5)

The current electrodes are denoted by A and B, while the potential
electrodes are M and N. rAM is the distance between A and M. The
sensitivity (s) of the geometric factor to errors in the positions of
the electrodes is given by

s2 =
(

∂K

∂ A

)2

+
(

∂K

∂ B

)2

+
(

∂K

∂ M

)2

+
(

∂K

∂ N

)2

. (6)

The sensitivity of the geometric factor to errors in the position
of the A electrode located at (xA, yA) can be calculated using the
following equation:

(
∂K

∂ A

)2

=
(

∂K

∂xA

)2

+
(

∂K

∂yA

)2

. (7)

An error in xA will only affect rAM and rAN, thus

∂K

∂xA
= − 2π

H 2

(
∂ H

∂rAM
· ∂rAM

∂xA
+ ∂ H

∂rAN
· ∂rAN

∂xA

)
, (8)

where

r 2
AM = (xA − xM )2 + (yA − yM )2 , r 2

AN = (xA − xN )2+(yA − yN )2

and

∂ H

∂rAM
= − 1

r 2
AM

,
∂ H

∂rAN
= 1

r 2
AN

,
∂rAM

∂xA
= −2 (xA − xM ) ,

∂rAN

∂xA
= −2 (xA − xN ) .

Similar equations may be derived for yA and the other parameters.
The geometric factor relative error is then defined to be

RE = s/K . (9)

Following Wilkinson et al. (2008), we use a value of 5 m−1 as the
cut-off factor when the unit electrode spacing is 1 m, which gives
a maximum RE of 5 per cent for a 1 cm uncertainty in electrode
position.

2.3 Creating the comprehensive data set for 3-D surveys

The time taken by the ‘Compare R’ method is proportional to the
number of arrays in the comprehensive data set (nc). In theory, the
number of arrays in the comprehensive set is proportional to the
fourth power of the number of electrodes in the survey grid. Thus,
it would appear that using the ‘Compare R’ method would prove
impractical for 3-D survey grids where the number of electrode po-
sitions often exceeds 200 that might produce a comprehensive data
set with over 100 million arrays (Maurer et al. 2010). However,
many commercial 3-D surveys use an arrangement where the num-
ber of electrodes along one (the ‘x’) direction is much larger than
in the perpendicular (the ‘y’) direction. Furthermore, the number of
electrodes in many commercial multielectrode systems is frequently
very limited (less than 100). To obtain a reasonable areal coverage,
a roll-along method is sometimes used. One example is shown in
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Figure 1. Arrangement of survey lines and electrodes using a three-cable system with the Abem SAS instrument.

Figure 2. Arrangement of alpha type array with (a) inline electrodes, (b) single offset, (c) double offset, (d) triple line and (e) quadruple line configurations. Beta
type array arrangement with (f) inline electrodes, (g) single offset, (h) double offset, (i) triple line and (j) quadruple line configurations. Array configurations
of the equatorial dipole–dipole type are shown in (k) and (l).

Fig. 1 where the Abem SAS system uses three cables with 21 elec-
trodes each (Dahlin et al. 2002). While four cables are provided
with the SAS system, only three of them can be connected to the
resistivity meter at the same time for the 3-D electrode layout used
(Fig. 1). Thus, a maximum of 63 electrodes can be addressed at a
single time. However, a larger area can be surveyed by moving the
setup in the y direction. As an example, a 21 × 17 survey grid was
used by Dahlin et al. (2002). Although the final survey grid has 357
electrodes positions, not all possible combinations of the electrodes
can be used. Since there are only three electrodes positions in the
y direction in a single setup, only measurements in the x direction
are possible with four-electrode arrays. The method used to gen-
erate the comprehensive data set previously used for 2-D survey
lines (Loke et al. 2010a) is modified for such an arrangement with
several parallel lines.

The comprehensive data set for a 2-D survey line consists of
all possible arrays with the viable alpha and beta four-electrode
configurations (Carpenter & Habberjam 1956; Loke et al. 2010a).
Fig. 2(a) show a typical arrangement of an array of the alpha type
where the potential electrodes (M and N) are nested between the
current electrodes (A and B). For a given number of electrode po-
sitions along a survey line, all the viable alpha configurations can

be easily generated. In addition to the inline alpha array, an offset
version of the array where the potential electrodes are shifted to the
next line is also generated (Fig. 2b). The offset version array will
have a higher geometric factor than the inline array. However, if
the geometric factor and geometric factor relative error (eq. 9) are
less than the set limits, it is added to the comprehensive data set. A
similar double offset version of the array is also generated (Fig. 2c).
Fig. 2(d) shows a possible variation where the electrodes are dis-
tributed on three different lines. Similarly variations of the beta
array types are shown in Figs 2(f)–(i). We also include arrays with
the equatorial dipole–dipole type of configuration (Figs 2k and l).

Other variations of the offset arrays were tested but they did not
significantly improve the model resolution while greatly increasing
the size of the comprehensive data set. One such variation is of
the arrays in Figs 2(b) and (c) where A and M electrodes are on
the same line while N and B are on the offset line (and a similar
variation of Figs 2g and h for the beta array). Adding these com-
binations increases the size of the comprehensive data set by about
57 per cent but only increases the average model resolution by less
than 2 per cent. This shows that adding them will not add significant
new information to that already provided by the existing config-
urations at the expense of significantly increasing the calculation
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Figure 3. Sensitivity patterns at a depth of 0.1 m for alpha type array with (a) inline electrodes, (b) single offset, (c) double offset (d) triple line and (e)
quadruple line configurations.

Figure 4. Sensitivity patterns at a depth of 0.1 m for beta type array with (a) inline electrodes, (b) single offset, (c) double offset, (d) triple line and (e) quadruple
line configurations.

time. The practical use of array optimization techniques for 3-D
surveys lies in a judicious selection of array types to include in the
comprehensive data set that balances the improvement in the model
resolution with the increase in the size of the comprehensive data
set (and thus the calculation time).

The rationale for using the offset versions of the inline arrays are
illustrated in Figs 3 and 4 in the form of the sensitivity patterns of

the arrays at a horizontal plane with a depth of 0.1 m. The highest
positive and negative sensitivity values for the inline alpha array
(Fig. 3a) are concentrated near the array axis along the y = 0 line.
The largest sensitivity values extend less than 1 m in the y direc-
tion from the array axis. Thus, we would expect surveys carried out
using only inline arrays along the x direction to have significantly
less sensitivity to parts of the subsurface between the lines. The
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Figure 5. Sensitivity patterns at a depth of 0.1 m for the equatorial dipole–dipole array. (a) Square arrangement with A–B dipole 1 m from the M–N dipole.
Each dipole length is 1 m. (b) Tall version with the A–B and M–N dipoles of 2 m length placed 1 m apart. (c) Long version with the A–B and M–N dipoles 2 m
apart.

sensitivity pattern for the alpha array with the potential electrodes
offset by 1 m in the y direction (Fig. 3b) shows much larger sensitiv-
ity values in the region between the two lines. Extending the offset
to 2 m increases the areas with the largest sensitivity values between
the y = 0 and y = 2 lines, although the regions with the highest sen-
sitivity values are now less contiguous. The triple line alpha array
configuration (Fig. 3d) has a fairly similar sensitivity pattern to the
inline array except the sensitivity pattern is oriented in a diagonal
direction covering the areas between the lines. The different ver-
sions of the beta array configuration (Fig. 4) show a similar pattern
where the offset versions show larger sensitivity patterns between
the lines, and the triple line configuration has a diagonal sensitivity
pattern.

For survey systems where any four electrodes in four different
lines can be used at the same time, another array type that has
electrodes along four different lines can be included in the com-
prehensive data set (Figs 2e and j). The sensitivity patterns of the
‘quadruple line’ configurations for the alpha and beta types of arrays
are shown in Figs 3(e) and 4(e). The sensitivity pattern is similar
to the inline arrays (Figs 3a and 4a) except that the high sensitivity
values have a diagonal orientation in the area between the four lines.
The sensitivity patterns for the equatorial dipole–dipole array type
show large positive sensitivity values in the central region between
the A–B current and M–N potential dipole pairs (Fig. 5), with re-
gions of large negative values between the A–M and B–N current
–potential pairs.

In the array optimization algorithm used by Loke et al. (2010a)
for 2-D survey lines, for arrays that are not symmetrical about the
midpoint of the survey line the corresponding array configuration
on the other half of the survey line is also automatically included
in the optimized data set. For a 3-D survey using a rectangular grid
of electrodes, there is a four way symmetry compared to a two-way
symmetry for a 2-D survey line. Thus a check is included to ensure
the symmetrical variations of an array in the three other quadrants
of the grid are added to the optimized data set. This can result in
the optimized data set having up to three additional arrays over the
target number of data points in some cases.

3 R E S U LT S

The results are first presented in terms of the model resolution
sections for the conventional arrays and optimized data sets. This is
followed by tests using a synthetic model and an experimental tank
data set.

3.1 Model resolution sections

In this section the model resolution values for surveys carried out
using conventional arrays and the optimized arrays are shown. We
consider a 21 m × 15 m survey grid with an electrode spacing of 1
m in the x direction and line spacing of 2 m in the y direction. It is
a common practice in many 3-D field surveys to use a line spacing
of about twice (or more) the inline electrode spacing (Bentley &
Gharibi 2004; Johansson et al. 2007; Rosqvist et al. 2010). The
electrodes are arranged along eight parallel lines with 21 electrodes
along each line, giving a total of 168 electrode positions. It is first
assumed the survey was carried out using the configuration shown
in Fig. 1 that imposes limitations on the possible measurements in
the y direction using arrays with four electrodes. Only the electrodes
along three adjacent lines can be accessed simultaneously. The sides
of the model used to calculate the resolution values are extended
4 m in both the x and y directions beyond the edges of the survey
grid. This is to ensure that all the regions of the subsurface that
have significant resolution values are included (Loke et al. 2014a).
The subsurface is subdivided into model cells with widths of 1 m in
both the x and y directions. The thickness of the first layer is set at
0.5 m, and the thickness of each deeper layer is increased by
5 per cent. A total of nine layers are used with the deepest layer
at a depth of about 5.5 m (or about one-quarter the line length in the
x direction), giving a total of 5544 model cells. We use a maximum
geometric factor of 2261.9 m. (corresponding to a dipole–dipole
array with ‘a’ spacing of 1 m and ‘n’ value of 8) and geometric
factor relative error of 5 m−1. The comprehensive data set for this
survey grid, which consists of the possible inline alpha and beta ar-
rays as well as their offset and triple line versions, has 538 077 data
points. The model resolution values for the comprehensive data set
are shown in Fig. 6(a) in the form of horizontal sections for the first
four layers and a vertical section in the x–z plane across the middle
of the survey area. The regions with significant resolution values
(above 0.05) extend until the sixth layer (Fig. 6a) with a mean depth
of 3.1 m.

Next we consider a data set consisting of all the possible inline
(along the x direction) Wenner–Schlumberger (Pazdirek & Blaha
1996) and dipole–dipole arrays. This gives a total of 3152 data
points. The model resolution sections for this data set (Fig. 6b)
have significantly lower resolution values. This is partly because the
inline arrays have lower sensitivity values for the regions between
the lines. The ‘Compare R’ method is then used to generate a
set of 3153 optimized arrays using a 5 per cent step size (Loke
et al. 2010b). The optimized data set has one extra data point due
to the symmetry requirement for the arrays generated. The model
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Figure 6. Horizontal and vertical model resolution sections for (a) comprehensive data set, (b) conventional (combined dipole–dipole and Wenner–
Schlumberger) arrays data set with 3152 data points, (c) optimized data set with 3153 data points, (d) ‘extended’ comprehensive data set that includes
arrays that cross more than three survey lines and (e) ‘extended’ optimized data set with 3152 data points. The top four horizontal slices are shown to illustrate
the variations in the x and y directions, while a vertical x–z slice passing through the centre of the model is used to show the vertical variations.

resolution sections for this data set (Fig. 6c) have significantly higher
values compared to the conventional arrays data set in all the layers.
The region with resolution values of over 0.05 extends to the fifth
layer with a mean depth of 2.5 m, compared to the conventional
arrays data set where it only extends to the fourth layer with a
mean depth of 2.5 m. The average resolution of 0.143 achieved
by the optimized data set is significantly higher than that of the
conventional arrays data set (0.081). It is about 70 per cent of that
achieved by the comprehensive data set (0.200) although the number
of data points is only 0.6 per cent of that in the comprehensive data
set.

We next consider the case where all the electrodes in the survey
grid can be accessed at the same time. This allows the array used
to traverse across the entire grid instead of being limited to three
adjacent lines. Such a system has been developed for special pur-
poses, such as long-term monitoring of hydraulic processes and soil
movement (Merrit et al. 2013; Chambers et al. 2014). This allows

the use of the ‘quadruple line’ configurations, as well as the other
configurations, with the electrodes spread over several lines (Fig. 7).
It also allows the use of the same array configuration oriented in
the y-direction. The comprehensive data set for the same 21 × 15
grid, where any four electrodes within the grid can be accessed at the
same time, has 1 161 203 arrays that is about twice that of the earlier
more ‘restricted’ comprehensive set where the electrodes in an array
are confined to three adjacent lines. The model resolution section
for this ‘extended’ comprehensive data set is shown in Fig. 6(d).
Although the average resolution (0.214) for the ‘extended’ compre-
hensive data set is less than 10 per cent higher than the ‘restricted’
comprehensive set (0.200), the resolution values at the deeper lay-
ers are significantly higher. The regions with significant resolution
values extend to the seventh layer (Fig. 6d) with a mean depth of
3.7 m. The optimized data set with 3152 data points generated from
the ‘extended’ comprehensive data set also has significantly higher
resolution values in the fourth to sixth layers (Fig. 6e) than the set
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Figure 7. Examples of the (a) double line, (b) quadruple line and (c) equatorial dipole–dipole array types that spread across multiple survey lines in the
measurement grid. The small black dots are the positions of the electrodes in the grid.

Figure 8. Change of the relative model resolution with the number of data
points. The survey grid has 21 electrodes with a spacing of 1m in the
x-direction, and a spacing of 2 m between eight lines in the y-direction.
The per cent step size is the percentage increase in the size of the optimized
data set after each iteration.

with the ‘restricted’ comprehensive set (Fig. 6c). This suggests that
the arrays generated from the ‘extended’ comprehensive set have a
deeper depth of investigation.

Fig. 8 shows the change of the relative model resolution Sr, given
below in eq. (11), with the number of data points for the optimized
data set (generated from the ‘restricted’ comprehensive set) using
different step sizes to increase the size of the optimized data set
after each iteration.

Sr = 1

m

j=m∑
j=1

Rb ( j, j)

Rc ( j, j)
. (11)

The optimized data set generated using a smaller step size gen-
erally has a higher resolution value for the same number of data
points, at the expense of a longer calculation time. This is similar to
that obtained by Loke et al. (2010b) for 2-D surveys. To generate
40 000 data points, the algorithms with the 1, 5 and 10 per cent
step sizes take 42 556, 8969 and 4739 s, respectively on a com-
puter system with an Intel Sandy Bridge-E 3930 hex-core CPU

and a Nvidia 670GTX graphics card. The relative model resolution
rises rapidly until about 20 000 data points after which it increases
slowly. Beyond 30 000 data points, the three curves converge to
almost identical values.

3.2 Synthetic model test for a 16 × 6 electrodes survey grid

The test model consists of three rectangular blocks embedded in
a two-layer medium (Fig. 9). The electrodes are arranged along
6 lines at 20 m apart with 16 electrodes 10 m apart along each
line, giving a total of 96 electrodes positions. We set the maximum
geometric factor at 22 620 m (corresponding to a dipole–dipole
array with a = 10 m and n = 8). The conventional arrays data
set, consisting of all the possible inline Wenner–Schlumberger and
dipole–dipole arrays along the x direction, has 1218 data points. In
this test, we generate the optimized data sets where the electrodes
in an array are restricted to three adjacent lines as well the case
where the electrodes can be on any line. The comprehensive data
sets for the ‘restricted’ and ‘extended’ optimized data sets have
88 428 and 141 602 arrays, respectively. A step size of 1 per cent
was used in the array optimization algorithm to generate the arrays
(Loke et al. 2010b). Three optimized data sets were generated. The
first two optimized data sets have a similar number of data points
as the conventional arrays. We generate the arrays for both the
‘restricted’ and the ‘extended’ optimized data sets. This was done to
investigate the possible improvement that can be obtained by using
the additional configurations available in the ‘extended’ optimized
set. The fourth and larger set (from the ‘extended’ optimized set) has
2500 points to study the improvement in the model resolution with
more data points. Voltage-dependent Gaussian random noise (Press
et al. 1992; Zhou & Dahlin 2003) with a mean amplitude of 0.4 m�

was added to the data sets before they were converted into apparent
resistivity values. The data sets have a minimum resistance value
of about 4.2 m�. Thus, the data points with the lowest resistance
values have a noise level of nearly 10 per cent. The average noise
level is about 0.8 per cent for the conventional arrays data set and
1.5 per cent for the optimized data sets. The optimized data sets
have a higher noise level due to a higher average geometric factor
of the arrays generated compared to conventional arrays (Loke et al.
2010a). The L1-norm method was used for both the data misfit and
model roughness (Farquharson & Oldenburg 1998; Loke et al. 2003)
in inversion of the data. A large value of about 0.10 is initially used
for the damping factor in eq. (1), which is then adjusted after each
iteration by the L-curve method (Farquharson & Oldenburg 2004;
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Figure 9. Synthetic test model with three rectangular blocks in a two-layer medium shown in the form of horizontal slices. The positions of the electrodes
along the survey lines are marked by black dots. The red arrows at the sides of the horizontal model slice with block 3 show the positions of the inversion
model vertical planes shown in Fig. 11.

Loke et al. 2014b) until it reaches an almost constant value (usually
within six to eight iterations).

Fig. 10 shows the top five horizontal slices of the inversion model
that better illustrates the two blocks in the upper layer. The two
blocks are less well resolved by the conventional arrays data set
compared to the optimized data sets. The widths of blocks (in the
y direction) in the conventional arrays inversion model is twice
the true width, while the optimized arrays models show the cor-
rect width (Fig. 10). The optimized arrays models give a minimum
resistivity value within 2 per cent of the true value of 50 �m for
the topmost block while the conventional arrays model give a sig-
nificantly higher value of 77 �m (Table 1). The optimized arrays
models also achieve a higher maximum resistivity value of about
400 �m for the deeper 500 �m block, compared to about 300 �m
for the conventional arrays model.

All the data sets correctly position the boundary between the two
layers at a depth of 2.16 m (Fig. 11). The resistivity values in the
layers (outside the immediate vicinity of the blocks) are generally
within 10 per cent of the true values of 200 and 100 �m for all the
models, except near the edges of the models where there is not much
data. Fig. 11 shows vertical slices of the models that pass through
the centre of the 1000 �m high-resistivity block (Fig. 9). The con-
ventional arrays model fails to resolve the block. The ‘restricted’
and smaller ‘extended’ optimized data sets do show a region with
significantly higher resistivity values at the location of the block
(Figs 11b and c). It is more clearly resolved in the large ‘extended’
optimized data set (Fig. 11d) that gives a maximum value of 145
�m (Table 1) that is well above the background value of 100 �m.

To quantitatively determine the differences in the accuracy of the
models, we calculate the average absolute model misfits between
the true (rt) and the calculated (rc) model values using the following
equation.

δm = 1

n

n∑
i=1

|log(rt (i)) − log(rc (i))|. (12)

The average model misfits of the conventional arrays, ‘restricted’
optimized, small and large ‘extended’ optimized data sets are 0.159,

0.147, 0.146 and 0.139 (Table 1). The optimized data sets models
have significantly lower model misfits compared to the conventional
arrays model, while the large optimized data set model is signifi-
cantly more accurate. Although the data misfits for the optimized
arrays models (1.4–1.6 per cent) are about twice that of the conven-
tional arrays model (0.8 per cent), the inversion models are more
accurate.

3.3 Experimental data set

In this section, we show the results from an experimental data set
measured in a tank using the 16 × 6 electrodes survey grid lay-
out described in the previous section. However, the inline spacing
between the electrodes is scaled down to 0.05 m (5 cm). The tank
has dimensions of 1.4 m × 0.8 m × 1.0 m. The tank was filled
with water with resistivity of about 13.8 �m to a depth of 0.995 m,
and three rectangular plastic blocks were placed at different depths
in the water (Fig. 12). The sides of the tank are 0.325 m from the
ends of the lines in the x direction, and 0.15 m from the first and
last lines in the y direction. Since the distance of the electrodes
at the ends of the grid from the tank sides is less than the extent
of the grid in the x direction (0.75 m), the tank boundaries have a
significant effect on the measured potentials. We set the maximum
geometric factor at 343.1 m (corresponding to a dipole–dipole array
with a = 0.05 m and n = 12). Initially measurements were made
using optimized arrays generated using a homogeneous half-space
model. The conventional arrays gave reasonable apparent resistiv-
ity values but it was found that some of the optimized arrays gave
values that were much higher or lower. Some of the optimized array
configurations even gave negative apparent resistivity values. This
was caused by the sides of the tank that appear as boundaries with
very large resistivity contrasts. The areas with large sensitivity val-
ues for the conventional inline arrays are mainly confined near the
array axis, so they are not as sensitive to the sides of the tank. How-
ever, the offset versions used in the optimized arrays, particularly
for the beta array configuration (Fig. 4), have comparatively larger
sensitivity values away from the electrode positions. The geometric
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Figure 10. First five layers of inversion models for (a) conventional arrays data set (1218 data points), (b) restricted optimized data set (1219 data points),
(c) extended optimized data set (1218 data points) and (d) large extended optimized data set (2500 data points). The actual positions of the two blocks in the
top layer are marked by black rectangles. The boundary between the two layers is at the top of layer 5.

Table 1. Maximum resistivity values (in �m) achieved by the inversion models for
the different data sets at the positions of the blocks 2 and 3 in the synthetic model,
together with the overall model misfit. The minimum resistivity value is shown for
block 1. True resistivity values at blocks 1, 2 and 3 are 50, 500 and 1000 �m,
respectively.

Data set Block 1 Block 2 Block 3 Model misfit

Conventional arrays 1218 arrays 77 296 124 0.159
Restricted optimized 1219 arrays 51 380 131 0.147
Extended optimized 1218 arrays 50 411 129 0.146
Extended optimized 2500 arrays 49 396 145 0.139

factor relative error values calculated for a homogeneous half-space
that were used to filter out the unstable arrays are then not suffi-
ciently accurate since they do not take into account the effect of the
sides of the tank. To obtain more accurate values for the geometric
factor relative error for the optimized arrays within the tank, we
calculate them numerically using a 3-D finite-difference program
(Dey & Morrison 1979). A tank model filled with a homogenous
medium is used. The details on the finite-difference method used
are given in the Appendix. By using the numerically calculated ge-
ometric factor relative errors values to filter out the unstable arrays,

it was found that the optimized arrays generated gave reasonable
apparent resistivity values of between 7 and 25 �m. The Jacobian
matrix used in the calculation of the optimized arrays was also gen-
erated using the finite-difference program so that it includes the
effect of the tank walls. Data were measured for the redesigned
optimized arrays and the conventional arrays using a GEOTOM
Geolog2000 single channel resistivity meter capable of addressing
up to 100 electrodes. Reciprocal measurements were also made for
each array, and the difference between each reciprocal pair of val-
ues was used to calculate the standard error in the mean for each
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Figure 11. Inversion models shown in the form of vertical slices through the middle of the bottom high-resistivity block. (a) Conventional arrays, (b) restricted
optimized arrays, (c) extended optimized arrays and (d) large extended optimized data set with 2500 data points. The actual position of the block is marked by
a black rectangle, and the boundary between the two layers is marked by a black line.

measurement, referred to as the reciprocal error. Data quality was
very high; for the conventional arrays, 97.1 per cent of the data had
reciprocal errors <1 per cent. The corresponding fractions of the
optimized data sets were 94.8, 94.7 and 94.3 per cent for the arrays
with 1416, 2500 and 5001 measurements, respectively.

Fig. 13 shows the inversion models for the conventional arrays
data set (Wenner–Schlumberger and dipole–dipole arrays with 1414
data points), as well as the optimized data sets with 1416, 2500 and
5001 data points. The inversion model consists of 20 layers with
a total of 6720 cells. The models are shown as 3-D plots due to
the large number of cells and the fairly simple homogenous back-
ground medium. In this plot, the cells with resistivity values of above
35.5 �m in the vicinity of blocks A and B are shown. For block C,
we highlight model cells with resistivity values of above 17.8 �m
as the resolution decreases with depth. In the conventional arrays
model (Fig. 13a), the top two blocks (A and B) have widths of about

twice the true width. This is similar to the result obtained for the
near surface high-resistivity blocks (Fig. 10a) in the synthetic model
test. The deepest block (C) appears as a region with slightly higher
resistivity values with a maximum value of 17.9 �m (Table 2) near
the top of the actual block position (Fig. 13a). This maximum value
is significantly lower than the value of 19.4 �m achieved by the
optimized data set (Fig. 13b, Table 2). The model for the optimized
data set also exhibits higher resistivities for blocks A and B, as well
as resolving their widths correctly. The main effect of increasing the
number of data points in the optimized data set to 2500 and 5001
data points is an increase in the model resistivity at the locations of
the three blocks (Figs 13c and d, Table 2). The region with resis-
tivity values above 17.8 �m also covers the entire volume of block
C. Pearson correlation coefficients between the inverted images and
the model were also calculated to quantify image quality (Wilkin-
son et al. 2012). Since the model targets are infinitely resistive, the
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Figure 12. Tank layout with positions of boundaries (outer rectangle), electrodes (dots) and plastic rectangular blocks (inner rectangles). The inline electrode
spacing is 5 cm while the distance between the lines is 10 cm. Note A is the topmost block while C is the deepest block.

resistivities ρ, of the model and images were transformed into a
coefficient given by

r = ρ − ρ0

ρ + ρ0
, (13)

where r = 1.0 corresponds to the infinite target resistivity and
r = 0.0 corresponds to the resistivity of the water (ρ0 = 13.8
�m). The correlation coefficients are then calculated between the
model and images in terms of r (Table 2). They indicate that a
significant improvement in image quality is obtained by using the
optimized 1416 data set instead of the conventional arrays. A further
increase of similar magnitude is gained by increasing the size of the
optimized set to 2500 data points. However, going to 5001 mea-
surements produces only modest increases in the target’s contrasts,
and therefore does not improve the correlation coefficient much
further.

The models for the optimized data sets have slightly higher data
misfits compared to the conventional arrays data set. This is ex-
pected as the optimization procedure tends to choose arrays with
higher geometric factors (Wilkinson et al. 2012). However, despite
the higher data misfits, the optimized data sets have better res-
olution, particularly at the deepest block. Note that the depth of
0.45 m to the base of the deepest block is more than half the length
of the lines (in the x direction) of 0.75 m. Despite being a challeng-
ing target, it is reasonably well resolved by the largest optimized
data set. The optimization procedure provides an automatic and
convenient means to generate the most suitable arrays for a 3-D
survey. It takes about 197 min to generate the optimized data set
with 5001 data points using the single-step algorithm (Loke et al.
2010b) on the computer system used.

4 C O N C LU S I O N

A modification of the algorithm used to generate the viable arrays for
2-D surveys to include offset versions of the alpha and beta arrays
is presented for 3-D surveys. The geometric factor relative error,
together with the geometric factor, was used to filter out the unstable

arrays in generating the comprehensive data set. Tests with synthetic
models and an experimental data set show that the optimized arrays
perform significantly better than conventional arrays.

The results from this study show that by using offset versions of
the conventional four-electrode arrays in a 3-D survey, the resolution
of the inversion models can be significantly increased (particularly
in the deeper sections of the models) using the same number of
data points compared to the use of only conventional arrays. A
significant improvement is obtained even in situations where the
electrodes in an array are confined to three adjacent lines, such
as with the ABEM SAS resistivity meter system. However, if the
electrodes in an array can occupy any position in the measurement
grid, the model resolution can be further improved. Increasing the
number of data points used in the optimized arrays does increase
the model resolution, but the incremental benefit of adding more
measurements decreases beyond a certain limit (about 2 per cent of
the comprehensive data set).

Research is currently being carried on using the 3-D array op-
timization algorithm for surveys with subsurface electrodes using
conventional vertical boreholes (Wilkinson et al. 2008), as well
as along horizontal lines of subsurface electrodes (Harro & Kruse
2013). As these surveys involve electrodes on different lines, it will
also be necessary to use the geometric factor relative error to fil-
ter out potentially unstable arrays. The use of optimized versions
of the pole–dipole array to obtain a deeper depth of investigation
(White et al. 2001, 2003; Blome et al. 2011) is also being investi-
gated. Modifications to the array optimization routine to accommo-
date the special requirements for I.P. (Induced Polarization) surveys
(such as reducing EM coupling and telluric noise) are also being
developed.
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Figure 13. Inversion models (for the tank layout shown in Fig. 12) for (a) conventional arrays data set with 1414 data points, (b) optimized data set with 1416
data points, (c) optimized data set with 2500 data points and (d) optimized data set with 5001 data points. The actual positions of the blocks are marked by
prisms with black outlines.

Table 2. Maximum resistivity values achieved by the inversion models for the
different tank experiment data sets at the positions of the plastic blocks, together
with the overall model correlation coefficients.

Data set Maximum resistivity (�m) Model correlation
Block A Block B Block C coefficient

Conventional arrays 49.1 39.8 17.9 0.435
Optimized 1416 arrays 67.7 58.2 19.4 0.514
Optimized 2500 arrays 132.9 134.1 20.2 0.571
Optimized 5001 arrays 160.0 172.0 20.7 0.575
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A P P E N D I X : C A L C U L AT I O N O F T H E
G E O M E T R I C FA C T O R R E L AT I V E
E R RO R F O R A TA N K M O D E L

The calculation of the geometric factor sensitivity values for a
homogenous half-space was described earlier in the paper. The
values can be calculated analytically as the potential values have
a simple mathematical form. However for a non-infinite or non-
homogeneous medium where the potentials due to a current source
do not have a simple mathematical form, the effective geometric
factor (and associated sensitivity values) have to be calculated nu-
merically (Chambers et al. 2004). To calculate the potentials values,
we use the finite-difference method (Dey & Morrison 1979; Loke
& Barker 1996). To simulate the walls of the tank, the mesh cells
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beyond the tank walls are assigned a very high resistivity value
compared to the medium within the tank. We calculated the poten-
tial values for the dipole–dipole and Wenner–Schlumberger arrays
for a homogenous medium (ρw) with a resistivity of about 13.8 �m
(from measurements of the water resistivity) within the tank. Tests
were conducted using resistivity values ranging from 10 to 10 000
times the water resistivity for the material beyond the tank walls.
It was found that the potential values did not change significantly
beyond a resistivity contrast of about 1000 times. Thus we used this
value in the forward modelling routine.

A rectangular mesh in the x and y directions was used for the
finite-difference routine. Normally using a mesh with four nodes
between adjacent electrode positions give sufficiently accurate re-
sults for calculating the potential values (Dey & Morrison 1979).
The relationship between the apparent resistivity (ρa), the geometric
factor (K) and the potential (φ) can be written as

ρa = Kφ/I

or

ρa = KR,

where R is the resistance. The above equation can be rearranged as

K = R/ρa .

The apparent resistivity (ρa) is the same as the true resistivity
(ρw) for a homogeneous half-space. To calculate the effective ge-
ometric factor numerically for a non-infinite medium, we use the
ratio of the calculated resistance value (using the finite-difference
method) to the resistivity of the homogeneous material within the

tank. To calculate the change in the geometric factor due to a change
in the electrode position in the x-direction, we calculate the resis-
tance value (Rx) using an auxiliary electrode position placed at one
node spacing from the normal electrode position. The change in the
geometric factor due to a change in the position of the electrode in
the x-direction is approximated by

∂K

∂x
≈ Rx − R

ρw�x
. (A1)

The change in the geometric factor due to a change in the elec-
trode position in the y-direction can be calculated in a similar way
using an auxiliary electrode position that is shifted by one node
spacing in this direction. Finally, we calculate the geometric factor
sensitivity and relative error using eqs (6) and (9). We first com-
pare the values calculated numerically using the finite-difference
program with those calculated analytically for a homogenous half-
space. It was found that the difference between analytically and
numerically calculated values increase with the geometric factor
relative error value RE. For values of RE greater than 5 m−1, the
difference was greater than 5 per cent if a mesh using four nodes
between adjacent electrode positions was used. It was necessary to
use a mesh with eight nodes between adjacent electrodes positions
to obtain sufficiently accurate values for the geometric factor rel-
ative error. We note that the geometric factor relative error values
are only used to filter out the unstable arrays in the comprehen-
sive data set prior to finding the optimized arrays, and are not used
for the calculation of the apparent resistivity values or the Jaco-
bian matrix values in the inversion of the data sets. Thus, the finer
mesh with eight nodes was only used for the calculation of the ge-
ometric factor relative error values, while for the data inversion we
use the standard mesh with four nodes between adjacent electrode
positions.


