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We introduce and study a canonical quadratic form, called the torsion quadratic form,

on the determinant line of the cohomology of a flat vector bundle over a closed oriented

odd-dimensional manifold. This quadratic form caries less information than the refined

analytic torsion, introduced in our previous work, but is easier to construct and closer

related to the combinatorial Farber–Turaev torsion. In fact, the torsion quadratic form

can be viewed as an analytic analogue of the Poincaré–Reidemeister scalar product,

introduced by Farber and Turaev. Moreover, it is also closely related to the complex

analytic torsion defined by Cappell and Miller and we establish the precise relationship

between the two. In addition, we show that up to an explicit factor, which depends on

the Euler structure, and a sign the Burghelea–Haller complex analytic torsion, whenever

it is defined, is equal to our quadratic form. We conjecture a formula for the value of the

torsion quadratic form at the Farber–Turaev torsion and prove some weak version of this

conjecture. As an application, we establish a relationship between the Cappell–Miller

and the combinatorial torsions.

1 Introduction

In [5], we constructed a new invariant of a flat vector bundle (E , ∇) over a closed oriented

manifold M of odd dimension d = 2r − 1. It is a quadratic form τ = τ∇ , called the torsion
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quadratic form, on the determinant line Det(H •(M, E )) of the cohomology of E , which we

defined in terms of another, more sophisticated invariant, the refined analytic torsion

ρan ∈ Det(H •(M, E )), constructed in [6–8].

The invariant τ is closely related to the quadratic form τBH = τBH
∇,b, introduced

by Burghelea and Haller [11]. To construct τBH they need to require that the bun-

dle E admits a complex-valued nondegenerate bilinear form b. The definition of τBH

is similar to the definition of the Ray–Singer torsion, but instead of the standard

Laplacians on differential forms uses the non-self-adjoint Laplace-type operators �b =
∇∇#

b + ∇#
b∇, where ∇#

b denotes the adjoint of ∇ with respect to the bilinear form b. Recall

that the Ray–Singer torsion is a combination of the square roots of the determinants of

the standard Laplacians. Since the determinants of the non-self-adjoint operators �b are

complex numbers their square roots are not canonically defined. This is the reason why

Burghelea and Haller defined τBH in terms of the determinants of �b rather than their

square roots, extending in this way the square of the Ray–Singer torsion.

Farber and Turaev [18, 19] defined a combinatorial torsion ρε,o ∈ Det
(
H •(M, E )

)
,

which depends on the orientation o of the cohomology H •(M) and on the Euler structure

ε introduced by Turaev [27, 28]. It was noticed by Burghelea [9] that the Euler structure

ε can be described by a closed form αε ∈ �d−1(M). Extending the classical Ray–Singer

conjecture, [4, 15, 23, 24], Burghelea and Haller conjectured that

τBH
∇,b(ρε,o) = e

∫
M ω∇,b∧αε , (1.1)

where ω∇,b = − 1
2 Tr b−1∇b is the Kamber–Tondeur form, which measures the nonflatness

of the bilinear form b. This conjecture was proven up to sign by Burghelea–Haller [10]

and in full generality by Su–Zhang [26].

In [5], we showed that τBH = ±τ whenever τBH is defined and extended the

Burghelea–Haller conjecture to the case when τBH is not defined. More precisely, we

conjectured, cf. [5, Conjecture 1.12], that

τ∇ (ρε,o) = e2πi〈Arg∇ ,c(ε)〉. (1.2)

Here c(ε) ∈ H1(M, Z) is the characteristic class of the Euler structure ε, cf. [28, Section

5.3]; Arg∇ ∈ H1(M, C/Z) is the unique cohomology class such that for every closed curve

γ in M we have

det(Mon∇ (γ )) = exp(2πi〈Arg∇ , [γ ]〉),
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where Mon∇ (γ ) denotes the monodromy of the flat connection ∇ along the curve γ ; finally,

〈·, ·〉 denotes the natural pairing H1(M, C/Z) × H1(M, Z) → C/Z.

Note that (1.1) implies (1.2) whenever τBH is defined, see [5, Section 1.11]. In [5]

we proved the following weak version of Conjecture (1.2): For each connected component

C of the space of flat connections on E there exists a constant RC ∈ C with |RC| = 1, such

that

τ∇ (ρε,o) = RC · e2πi〈Arg∇ ,c(ε)〉. (1.3)

Farber and Turaev [19, Section 9] introduced a bilinear form 〈·, ·〉PR on

Det(H •(M, E )), which they call the cohomological Poincaré–Reidemeister scalar prod-

uct. This is an invariant that refines the Poincaré–Reidemeister metric introduced by

Farber [16]. It follows from Theorem 9.4 of [19] that Conjecture (1.2) is equivalent to the

statement that

τ∇ (·) = (−1)z 〈·, ·〉PR,

where z ∈ N is defined in formula (6.5) of [19].

Another related invariant T ∈ Det(H •(M, E )) ⊗ Det(H •(M, E )) was introduced by

Cappell and Miller [14]. To define T they also used non-self-adjoint Laplace-type opera-

tors, but different from the ones used by Burghelea and Haller. In fact, they consider the

square B2 of the Atiyah–Patodi–Singer odd signature operator B = B(∇, gM) and, hence,

don’t need any additional assumptions on E . Further in [14], Cappell and Miller conjec-

tured that, in an appropriate sense, their torsion is equal to the Reidemeister torsion of

the bundle E ⊕ E∗, where E∗ denotes the dual bundle to E .

The goal of this paper is to present a simple construction of the torsion quadratic

form τ , implicitly already contained in [7]. We collect only those parts of [5, 7, 8], which

are needed for this purpose. In particular, we bypass the refined analytic torsion. Recall

that the definition of the refined analytic torsion in [7, 8] uses the graded determinant

of the odd signature operator B, leading to a rather complicated analysis, involving the

determinant of B2 and the η-invariant. In contrast, the definition of τ only involves the

determinant of the Laplace-type operator B2. It turns out that the construction of T by

Cappell and Miller is very similar to our construction of τ , as it uses the same operator

B2. We establish the precise relationship of T with τ . It turns out that T is the dual of τ .

As an application, we prove a weak version of the Cappell–Miller conjecture.
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2 The Quadratic Form on the Determinant Line of a Finite-Dimensional Complex

In this section, we define a canonical quadratic form on a finite-dimensional complex

with involution.

2.1 The construction of a quadratic form

Let

(C •, ∂) : 0 → C 0 ∂−→ C 1 ∂−→ · · · ∂−→ C d → 0 (2.1)

be a complex of finite-dimensional complex vector spaces of odd length d = 2r − 1. A

chirality operator � : C • → C • is an involution such that �(C j) = C d− j, for all j = 0, . . . , d.

Consider the determinant line

Det(C •) :=
d⊗

j=0

Det(C j)(−1) j
,

where Det(C j)−1 := Hom(Det(C j), C) denotes the dual of C j. For an element cj ∈ Det(C j) we

denote by c−1
j the unique element in Det(C j)−1 satisfying c−1

j (cj) = 1. We also denote by

�cj ∈ Det(C d− j) the image of cj under the map Det(C j) → Det(C d− j) induced by � : C j →
C d− j.

Denote by H •(∂) the cohomology of the complex (C •, ∂). Let

φC • : Det(C •) −→ Det(H •(∂)) (2.2)

be the canonical isomorphism, cf. [22]. (In [7] we used a sign refined version of this

isomorphism, but we don’t need this more complicated version in the present paper.)

Note that any element c ∈ Det(C •) can be written in a form c = c0 ⊗ c−1
1 ⊗ · · · ⊗ c−1

d ,

where cj ∈ Det(C j). Hence, any element of Det(H •(∂)) can be written as φC • (c0 ⊗ c−1
1 ⊗ · · ·

⊗ c−1
d ).

Definition 2.2. The torsion quadratic form τ
�

of the pair (C •, �) is the unique quadratic

form on Det(H •(∂)) such that

τ
�

(
φC •

(
c0 ⊗ c−1

1 ⊗ · · · ⊗ c−1
d

)) =
d∏

j=0

[
c−1

j (�cd− j)
](−1) j+1

. (2.3)

�



Canonical Quadratic Form on the Determinant Line 5

2.2 Relationship with the refined torsion

In [7] we introduced a canonical element of Det(H •(∂)), called the refined torsion of the

pair (C •, �), as follows. For each j = 0, . . . , r − 1, fix an element cj ∈ Det(C j) and set

c
�

:= (−1)R(C •) · c0 ⊗ c−1
1 ⊗ · · · ⊗ c(−1)r−1

r−1 ⊗ (�cr−1)(−1)r ⊗ (�cr−2)(−1)r−1 ⊗ · · · ⊗ (�c0)−1 (2.4)

of Det(C •), where

R(C •) = 1

2

r−1∑
j=0

dim C j · (dim C j + (−1)r+ j). (2.5)

It is easy to see that c
�

is independent of the choice of c0, . . . , cr−1. The refined torsion of

the pair (C •, �) is the element

ρ
�

= ρC• ,� := φC • (c
�
) ∈ Det(H •(∂)). (2.6)

It follows immediately from (2.3) and (2.6) that

τ
�
(ρ

�
) = 1. (2.7)

2.3 An acyclic complex

Suppose the complex (C •, ∂) is acyclic. Then Det(H •(∂)) is naturally isomorphic to C. Using

this isomorphism, we identify τ
�

with the complex number

τ̂
�

:= τ
�
(1) ∈ C\{0}, 1 ∈ C � Det(H •(∂)). (2.8)

2.4 Calculation of the refined torsion of a finite-dimensional complex

To compute the refined torsion, we introduce the operator

B := � ∂ + ∂ �. (2.9)

This operator is a finite-dimensional analogue of the signature operator on an odd-

dimensional manifold; see [1, p. 44], [2, p. 405], [20, pp. 64–65], and Section 3 of this
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paper. Then

B2 = � ∂ � ∂ + ∂ � ∂ �. (2.10)

Remark 2.6. In many interesting applications, cf. Section 3, there exists a scalar product

on C • such that the adjoint of ∂ satisfies∂∗ = �∂�. Then B2 is equal to the Laplacian of

the complex C •. �

Let us first treat the case where the signature operator B is bijective.

Lemma 2.7. Suppose that the operator B is invertible. Then the complex (C •, ∂) is acyclic

and the complex number τ̂
�
, cf. (2.8), is given by

τ̂
�

=
d∏

j=0

Det
(
B2

∣∣
C j

)(−1) j j
. (2.11)

�

Proof. Since �2 = Id, for every a ∈ Det(C •), b ∈ Det(C d−•), we have

a−1(�b) = (�a)−1(b) = 1

b−1(�a)
.

Hence, for all j = 0, . . . , d,

[
c−1

j (�cd− j)
](−1) j+1 = [

c−1
d− j(�cj)

](−1)d− j+1

and the definition (2.3) of τ
�

can be rewritten as

τ
�

(
φC •

(
c0 ⊗ c−1

1 ⊗ · · · ⊗ c−1
d

)) =
⎡
⎣

r−1∏
j=0

[
c−1

j (�cd− j)
](−1) j+1

⎤
⎦

2

. (2.12)

As, by assumption, the operator B = �∂ + ∂� is invertible, for each j = 0, . . . , n

we have a direct sum decomposition

C j = Aj ⊕ B j,

where Aj = Ker(∂|C j ) and B j = �∂(C d− j−1). It follows that the complex (C •, ∂) is acyclic and

Aj = ∂(B j−1) for all j = 1, . . . , d. Set nj = dim B j. Then nj = nd− j−1 and dim Aj = nj−1.
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For j = 0, . . . , r − 1 choose a basis {bj
1, . . . , bj

nj } of B j. For j = r, . . . , d − 1 set

bj
i = �∂bd− j−1

i . Then for any j = 0, . . . , d − 1, {bj
1, . . . , bj

nj } is a basis of B j. It follows that

{∂bj−1
1 , . . . , ∂bj−1

nj−1} is a basis of Aj, for j = 1, . . . , d. Hence,

{
∂bj−1

1 , . . . , ∂bj−1
nj−1

, bj
1, . . . , bj

nj

}

is a basis of C j ( j = 1, . . . , d − 1), {b0
1, . . . , b0

n0
} is the basis of C 0, and {∂bd−1

1 , . . . , ∂bd−1
nd−1

} is

the basis of C d . Set

c0 = b0
1 ∧ · · · ∧ b0

n0
, cd = ∂bd−1

1 ∧ · · · ∧ ∂bd−1
nd−1

,

and, for j = 1, . . . , d − 1,

cj = ∂bj−1
1 ∧ · · · ∧ ∂bj−1

nj−1
∧ bj

1 ∧ · · · ∧ bj
nj

∈ Det(C j).

By the definition of the map φC • : Det(C •) → Det(H •(∂)) � C

φC •
(
c0 ⊗ c−1

1 ⊗ · · · ⊗ c−1
d

) = 1 ∈ C.

Therefore, by (2.8) and (2.12),

τ̂
�

=
⎡
⎣

r−1∏
j=0

[
c−1

j (�cd− j)
](−1) j+1

⎤
⎦

2

. (2.13)

We now need to compute the numbers c−1
j (�cd− j). Assume first, that j = 1, . . . , r −

2. Then c−1
j (�cd− j) is equal to the determinant of the operator Sj : C j → C j, which trans-

forms the basis {∂bj−1
1 , . . . , ∂bj−1

nj−1 , bj
1, . . . , bj

nj } to the basis

{
�∂bd− j−1

1 , . . . , �∂bd− j−1
nd− j−1

, �bd− j
1 , . . . , �bd− j

nd− j

} = {
�∂�∂bj

1, . . . , �∂�∂bj
nj

, ∂bj−1
1 , . . . , ∂bj−1

nj−1

}
.

Here we used that, by construction, �∂bj
i = bd− j−1

i , for any i = 1, . . . , nj and bd− j
i = �∂bj−1

i

for any i = 1, . . . , nj−1. We conclude that

c−1
j (�cd− j) = Det(Sj) = ± Det(�∂�∂|B j ), j = 1, . . . , r − 2. (2.14)
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Similarly, c−1
0 (�cd ) is the determinant of the operator, which transforms the basis

{b0
1, . . . , b0

n0
} to the basis

{
�∂bd−1

1 , . . . , �∂bd−1
nd−1

} = {
�∂�∂b0

1, . . . , �∂�∂b0
n0

}
.

Thus,

c−1
0 (�cd ) = Det(�∂�∂|B0 ). (2.15)

Finally, c−1
r−1(�cr) is equal to the determinant of the operator, which transforms the basis{

∂br−2
1 , . . . , ∂br−2

nr−2
, br−1

1 , . . . , br−1
nr−1

}
to the basis

{
�∂br−1

1 , . . . , �∂br−1
nr−1

, �br
1, . . . , �br

nr

} = {
�∂br−1

1 , . . . , �∂br−1
nr−1

, ∂br−2
1 , . . . , ∂br−2

nr−2

}
,

and, hence, is equal to ± Det(�∂|Br−1 ). Therefore,

[
c−1

r−1(�cr)
]2 = Det(�∂|Br−1 )2 = Det(�∂�∂|Br−1 ). (2.16)

Combining Equations (2.13)–(2.16), we obtain

τ̂
�

=
⎡
⎣

r−2∏
j=0

[Det(�∂�∂|B j )](−1) j+1

⎤
⎦

2

· Det(�∂�∂|Br−1 ). (2.17)

The isomorphism �∂ : B j → Bd− j−1 intertwines the operators �∂�∂|B j and

�∂�∂
∣∣
Bd− j−1 . Hence,

Det(�∂�∂|B j ) = Det(�∂�∂|Bd− j−1 )

and (2.17) can be rewritten as

τ̂
�

=
d−1∏
j=0

[Det(�∂�∂|B j )](−1) j+1
. (2.18)
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The isomorphism ∂ : B j−1 → Aj intertwines the operators �∂�∂|B j−1 and ∂�∂�
∣∣

Aj .

Hence,

Det(�∂�∂|B j−1 ) = Det(∂�∂�|Aj ), j = 1, . . . , d.

Thus, from (2.10), we conclude that

Det(B2|C 0 ) = Det(�∂�∂|B0 ), Det(B2|C d ) = Det(�∂�∂|Bd−1 ),

and, for j = 1, . . . , d − 1,

Det(B2|C j ) = Det(�∂�∂|B j ) · Det(∂�∂�|Aj ) = Det(�∂�∂|B j ) · Det(�∂�∂|B j−1 ).

Therefore,

d∏
j=0

Det(B2|C j )(−1) j j =
d−1∏
j=0

Det(Det(�∂�∂|B j ))(−1) j j ·
d∏

j=1

Det(Det(�∂�∂|B j−1 ))(−1) j j

=
d−1∏
j=0

Det(Det(�∂�∂|B j ))(−1) j+1
.

(2.19)

Combining (2.19) and (2.18), we obtain (2.11). ��

To compute the torsion quadratic form in the case B is not bijective, note that, for

j = 0, . . . , d, the operator B2 maps C j into itself. For each j = 0, . . . , d and an arbitrary

interval I, denote by C j
I ⊂ C j the linear span of the generalized eigenvectors of the

restriction of B2 to C j, corresponding to eigenvalues λ with |λ| ∈ I. Since both operators,

� and ∂, commute with B (and, hence, with B2), �(C j
I ) ⊂ C d− j

I and ∂(C j
I ) ⊂ C j+1

I . Hence, we

obtain a subcomplex C •
I of C • and the restriction �I of � to C •

I is a chirality operator for

C •
I. We denote by H •

I (∂) the cohomology of the complex (C •
I, ∂I).

Denote by ∂I and BI the restrictions of ∂ and B to C •
I. Then BI = �I∂I + ∂I�I and

one easily shows (cf. Lemma 5.8 of [7]) that (C •
I, ∂I) is acyclic if 0 ∈ I.

For each λ ≥ 0, C • = C •
[0,λ] ⊕ C •

(λ,∞) and H •
(λ,∞)(∂) = 0 whereas H •

[0,λ](∂) � H •(∂). Hence,

there are canonical isomorphisms

�λ : Det(H •
(λ,∞)(∂)) −→ C, �λ : Det(H •

[0,λ](∂)) −→ Det(H •(∂)).
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In the sequel, we will write t for �λ(t ) ∈ C.

Lemma 2.8. For every x ∈ Det
(
H •(∂)

)
and every λ ≥ 0, we have

τ
�
(x) =

⎡
⎣

d∏
j=0

Det
(
B2

(λ,∞)

∣∣
C j

(λ,∞)

)(−1) j j

⎤
⎦ · τ

�[0,λ]

(
�−1

λ (x)
)
. (2.20)

In particular, the right-hand side of (2.20) is independent of λ ≥ 0. �

Proof. For each j = 0, . . . , d fix c ′
j ∈ Det

(
C j

[0,λ]

)
and c′′

j ∈ Det
(
C j

(λ,∞)

)
. Then, using the nat-

ural isomorphism

Det
(
C j

[0,λ]

) ⊗ Det
(
C j

(λ,∞)

) � Det
(
C j

[0,λ] ⊕ C j
(λ,∞)

) = Det(C j),

we can regard the tensor product cj := c′
j ⊗ c′′

j as an element of Det(C j). Applying (2.3)

twice, we obtain

τ
�

(
φC •

(
c0 ⊗ c−1

1 ⊗ · · · ⊗ c−1
d

)) =
d∏

j=0

[c−1
j (�cd− j)]

(−1) j+1

=
d∏

j=0

[
(c′

j)
−1(�c′

d− j)
](−1) j+1 ·

d∏
j=0

[
(c′′

j )
−1(�c′′

d− j

)](−1) j+1

= τ
�[0,λ]

(
φC •

[0,λ]
(c′

0 ⊗ (c′
1)−1 ⊗ · · · ⊗ (c′

d )−1)
) · τ

�(λ,∞)

(
(φC •

(λ,∞)
(c ′′

0 ⊗ (c ′′
1 )−1 ⊗ · · · ⊗ (c ′′

d )−1)
)
. (2.21)

Let us now choose c ′
j and c′′

j ( j = 0, . . . , d) such that φ•
C (c0 ⊗ c−1

1 ⊗ · · · ⊗ c−1
d ) = x and

�λ ◦ φC •
(λ,∞)

(c ′′
0 ⊗ (c ′′

1 )−1 ⊗ · · · ⊗ (c ′′
d )−1) = 1.

Then

�λ ◦ φC •
[0,λ]

(c′
0 ⊗ (c′

1)−1 ⊗ · · · ⊗ (c′
d )−1) = ±x

and from (2.11) we get

τ
�(λ,∞)

◦ φC •
(λ,∞)

(c ′′
0 ⊗ (c ′′

1 )−1 ⊗ · · · ⊗ (c ′′
d )−1) =

d∏
j=0

Det
(
B2

(λ,∞)

∣∣
C j

(λ,∞)

)(−1) j j
.

Hence, (2.20) is equivalent to (2.21). ��
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3 The Quadratic Form Associated with the Square of the Odd Signature Operator

Let E → M be a complex vector bundle over a closed oriented manifold of odd dimension

d = 2r − 1 and let ∇ be a flat connection on E . Further, let �•(M, E ) denote the de Rham

complex of E-valued differential forms on M. For a given Riemannian metric gM on M,

denote by

� = �(gM) : �•(M, E ) −→ �•(M, E )

the chirality operator (cf. [3, Section 3]), defined in terms of the Hodge ∗-operator by the

formula

� ω := ir (−1)
k(k+1)

2 ∗ ω, ω ∈ �k(M, E ). (3.1)

The odd signature operator introduced by Atiyah, Patodi, and Singer [1, 2] (see also [20])

is the first-order elliptic differential operator B : �•(M, E ) → �•(M, E ), given by

B = B(∇, gM)
Def= � ∇ + ∇ �.

Note that the operator B is elliptic and its leading symbol is self-adjoint with respect

to any Hermitian metric on E . Remark also that B2 maps � j(M, E ) into itself for every

j = 0, . . . , d. We denote by (B2) j the restriction of B2 to � j(M, E ).

For an interval I ⊂ [0, ∞), we denote by �
j
I(M, E ) the image of � j(M, E ) under

the spectral projection of (B2) j corresponding to the eigenvalues whose absolute value

lie in I. The space �
j
I(M, E ) contains the span of the generalized eigenforms of (B2) j

corresponding to eigenvalues whose absolute value lies in I and coincides with this span

if the interval I is bounded. In particular, since B is elliptic, if I is bounded, then the

dimension of �
j
I(M, E ) is finite. Since B2 and ∇ commute, �•

I(M, E ) is a subcomplex of the

de Rham complex �•(M, E ).

For each λ ≥ 0, we have

�•(M, E ) = �•
[0,λ](M, E ) ⊕ �•

(λ,∞)(M, E ).

The complex �•
(λ,∞)(M, E ) is clearly acyclic. Hence, the cohomology H •

[0,λ](M, E ) of the

complex �•
[0,λ](M, E ) is naturally isomorphic to the cohomology H •(M, E ) of �•(M, E ).
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Further, as � commutes with B2, it preserves the space �[0,λ](M, E ) and the restriction

�[0,λ] of � to this space is a chirality operator on �•
[0,λ](M, E ).

Denote by B2
I, j the restrictions of B2 to �

j
I(M, E ). Let θ ∈ (0, 2π ) be an Agmon angle

for B2
I, cf. [25], and denote by Detθ

(
B2

(λ,∞), j

)
the ζ -regularized determinant of the operator

B2
(λ,∞), j defined using the Agmon angle θ . Since the leading symbol of B2

(λ,∞), j is positive

definite this determinant is independent of the choice of θ .

For any 0 ≤ λ ≤ µ < ∞, one easily sees that

d∏
j=0

Detθ

(
B2

(λ,∞), j

)(−1) j j =
⎡
⎣

d∏
j=0

Detθ

(
B2

(λ,µ], j

)(−1) j j

⎤
⎦ ·

⎡
⎣

d∏
j=0

Detθ

(
B2

(µ,∞), j

)(−1) j j

⎤
⎦ . (3.2)

For any given λ ≥ 0, denote by τ
�[0,λ]

the quadratic form on the determinant line of

H •
[0,λ](M, E ) associated with the chirality operator �[0,λ] , cf. Definition 2.2. In view of (2.20)

and (3.2), the product

τ = τ (∇) :=
⎡
⎣

d∏
j=0

Det
(
B2

(λ,∞), j

)(−1) j j

⎤
⎦ · τ

�[0,λ]
(3.3)

viewed as a quadratic form on Det(H •(M, E )) is independent of the choice of λ ≥ 0. It is

also independent of the choice of the Agmon angle θ ∈ (0, 2π ) of B2
(λ,∞).

Definition 3.1. The quadratic form (3.3) on the determinant line of H •(M, E ) is called

the torsion quadratic form. �

Theorem 3.1. The torsion quadratic form τ is independent of the Riemannian metric

gM. �

Proof. Suppose that gM
t , t ∈ R, is a smooth family of Riemannian metrics on M and let

τt denote the torsion quadratic form corresponding to the metric gM
t . We need to show

that τt is independent of t .

Let �t denote the chirality operator corresponding to the metric gM
t , cf. (3.1), and

let B(t ) = B(∇, gM
t ) denote the odd signature operator corresponding to �t .

Fix t0 ∈ R and choose λ ≥ 0 so that there are no eigenvalues of B(t0)2 whose

absolute values are equal to λ. Then there exists δ > 0 such that the same is true

for all t ∈ (t0 − δ, t0 + δ). In particular, if we denote by �•
[0,λ],t (M, E ) the span of the
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generalized eigenvectors of B(t )2 corresponding to eigenvalues with absolute value ≤ λ,

then dim �•
[0,λ],t (M, E ) is independent of t ∈ (t0 − δ, t0 + δ).

Let ρ
�t ,[0,λ]

denote the refined torsion of the pair (�•
[0,λ],t (M, E ), �t ), cf. Subsection 2.2.

As above, we shall view ρ
�t ,[0,λ]

as an element of Det(H •(M, E )) via the canonical isomor-

phism between H •(M, E ) and H •
[0,λ](M, E ).

In [7] we fixed a particular square root of
∏d

j=0 Detθ (B(t )2(λ,∞), j)
(−1) j+1 j (in [7] it is

denoted by eξλ(t ,θ0)). By Lemma 9.2 of [7], the element

ρ :=
√√√√

d∏
j=0

Detθ

(
B(t )2(λ,∞), j

)(−1) j+1 j · ρ
�t ,[0,λ]

∈ Det(H •(M, E )) (3.4)

is independent of t ∈ (t0 − δ, t0 + δ).

Let τ
�t ,[0,λ]

denote the torsion quadratic form of the pair (�•
[0,λ],t (M, E ), �t ). By (2.7)

we have

τt (ρ) =
d∏

j=0

Det
(
B(t )2(λ,∞), j

)(−1) j j · τ
�t ,[0,λ]

(ρ) = τ
�t ,[0,λ]

(
ρ

�t ,[0,λ]

) = 1, (3.5)

where, in the latter equality, we used (2.7). Thus τt (ρ) is independent of t ∈ (t0 − δ, t0 + δ).

Since this is true for an arbitrary value of t0, the theorem is proven. ��

Remark 3.2. One can easily give a direct proof of Theorem 3.1, avoiding any references

to [7]. One only needs to repeat most of the computations of the proof of Lemma 9.2

of [7]. However, to save space we preferred to use this lemma, rather than repeat its

proof. �

4 The Relationship with Burghelea–Haller and Farber–Turaev Torsions

In this section, we show that the torsion quadratic form τ coincides with the quadratic

form defined in [5] and use the results of [5] to establish the relationship between τ and

the Burghelea–Haller and Farber–Turaev torsions.

4.1 Relationship with the refined analytic torsion

Let η(∇) = η(∇, gM) denote the η-invariant of the restriction of the odd signature operator

B = B(∇, gM) to the even forms, see [20], [8, Section 4], [7, Section 6.15], or [5, Section 2.9]
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for the definition of the η-invariant of a non-self-adjoint operator. Let ηtrivial be the η-

invariant of trivial line bundle over M. Let ρan = ρan(∇) ∈ Det
(
H •(M, E )

)
denote the refined

analytic torsion of (E , ∇), cf. [7, Definition 9.8].

Proposition 4.2. τ∇ (ρan(∇)) = e−2πi(η(∇)−rank E ·ηtrivial). �

It follows that the torsion quadratic form τ coincides with the quadratic form

defined by Equation (1.1) of [5].

Proof. Recall that the element ρ ∈ Det(H •(M, E )) is defined in (3.4). From definition of

the refined analytic torsion, [7, Definition 9.8], and formulae (9-5) and (10-21) of [7], we

conclude that

ρan(∇) = ± ρ · e−πi(η(∇)−rank E ·ηtrivial).

Hence, the statement of the proposition follows immediately from (3.5). ��

4.2 Relationship with the Burghelea–Haller torsion

Burghelea and Haller [11, 12] have introduced a refinement of the square of the Ray–

Singer torsion for a closed manifold of arbitrary dimension, provided that the complex

vector bundle E admits a nondegenerate complex-valued symmetric bilinear form b.

They defined a complex-valued quadratic form

τBH = τBH
b,∇ (4.1)

on the determinant line Det(H •(M, E )), which depends holomorphically on the flat con-

nection ∇ and is closely related to the square of the Ray–Singer torsion. We refer the

reader to [11, 12] for the precise definition of the form τBH (see also [5, Section 3] for

a short review). Using Proposition 4.2, we now can reformulate Theorem 1.6 of [5] as

follows:

Theorem 4.1. Suppose M is a closed oriented manifold of odd dimension d = 2r − 1

and let E be a complex vector bundle over M endowed with a flat connection ∇. Assume

that there exists a symmetric bilinear form b on E so that the quadratic form (4.1) on

Det(H •(M, E )) is defined. Then τBH
b,∇ = ±τ∇ . �
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Note that though the Burghelea–Haller form τBH is defined only if E admits a

nondegenerate bilinear form b, the torsion quadratic form τ exists without this additional

assumption. Therefore, τ can be viewed as an extension of τBH to the case when the

bilinear form b does not exist.

4.3 Relationship with the Farber–Turaev torsion

The complex-valued combinatorial torsion has been introduced by Turaev [27–29] and, in

a more general context, by Farber and Turaev [18, 19]. The Farber–Turaev torsion depends

on the Euler structure ε and the orientation o of the determinant line of the cohomology

H •(M, R) of M. The set of Euler structures Eul(M), introduced by Turaev, is an affine

version of the integer homology H1(M, Z) of M. It has several equivalent descriptions

[9, 13, 27, 28]. For our purposes, it is convenient to adopt the definition from Section 6 of

[28], where an Euler structure is defined as an equivalence class of nowhere vanishing

vector fields on M – see [28, Section 5] for the description of the equivalence relation. The

Farber–Turaev torsion, depending on ε, o, and ∇, is an element of the determinant line

Det(H •(M, E )), which we denote by ρε,o(∇).

Suppose M is a closed oriented odd-dimensional manifold. Let ε ∈ Eul(M) be

an Euler structure on M represented by a nonvanishing vector field X, ε = [X]. Fix a

Riemannian metric gM on M and let �(gM) ∈ �d−1(T M\{0}) denote the Mathai–Quillen

form, [21, Section 7], [4, pp. 40–44]. Set

αε = αε(g
M) := X∗�(gM) ∈ �d−1(M).

This is a closed differential form, whose cohomology class [αε] ∈ Hd−1(M, R) is closely

related to the integer cohomology class, introduced by Turaev [28, Section 5.3] and called

the characteristic class c(ε) ∈ H1(M, Z) associated with an Euler structure ε. More pre-

cisely, let PD : H1(M, Z) → Hd−1(M, Z) denote the Poincaré isomorphism. For h ∈ H1(M, Z),

we denote by PD′(h) the image of PD(h) in Hd−1(M, R). Then

PD′(c([X])) = −2 [αε] = −2 [X∗�(gM)]. (4.2)

Burghelea and Haller made a conjecture, [11, Conjecture 5.1], relating the

quadratic form τBH
b,∇ and ρε,o(∇), which extends the Bismut–Zhang theorem [4]. In [5,

Conjecture 1.12], we extended this conjecture to the case when E does not admit a



16 M. Braverman and T. Kappeler

nondegenerate symmetric bilinear form. In view of Proposition 4.2, this conjecture can

be reformulated as follows.

Following Farber [17], we denote by Arg∇ the unique cohomology class Arg∇ ∈
H1(M, C/Z) such that for every closed curve γ in M we have

det(Mon∇ (γ )) = exp(2πi〈Arg∇ , [γ ]〉),

where Mon∇ (γ ) denotes the monodromy of the flat connection ∇ along the curve γ and

〈·, ·〉 denotes the natural pairing H1(M, C/Z) × H1(M, Z) → C/Z.

Conjecture 4.5. Assume that (E , ∇) is a flat vector bundle over a closed odd-dimensional

oriented manifold M. Then

τ∇ (ρε,o(∇)) = e2πi〈Arg∇ ,c(ε)〉. (4.3)

�

The original Burghelea–Haller conjecture was proven independently by

Burghelea–Haller [10] (up to sign) and Su–Zhang [26] (in full generality). Using this result,

Theorem 4.1, and formula (1.12) of [5], we obtain the following theorem, which estab-

lishes Conjecture 4.5 up to sign in the case when E admits a nondegenerate bilinear

form:

Theorem 4.2. Suppose M is a closed oriented manifold of odd dimension d = 2r − 1

and let E be a complex vector bundle over M endowed with a flat connection ∇. Assume

that there exists a symmetric bilinear form b on E . Then

τ∇ (ρε,o(∇)) = ± e2πi〈Arg∇ ,c(ε)〉. (4.4)

�

Also, from Proposition 4.2 and Theorem 1.14 of [5], we obtain the following.

Theorem 4.3. (i) Under the same assumptions as in Conjecture 4.5, for each connected

component C of the set Flat(E ) of flat connections on E there exists a constant RC ∈ C

with |RC| = 1, such that

τ∇ (ρε,o(∇)) = RC · e2πi〈Arg∇ ,c(ε)〉, for all ∇ ∈ C. (4.5)
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(ii) If the connected component C contains an acyclic Hermitian connection then

RC = 1, i.e.

τ∇ (ρε,o(∇)) = e2πi〈Arg∇ ,c(ε)〉, for all ∇ ∈ C. (4.6)

�

Note that the proof of Theorem 4.3 was obtained in [5] by much softer methods

than those used in the proof of the original Burghelea–Haller conjecture [10, 26].

5 The Cappell–Miller Torsion

In this section, we first recall the definition of Cappell–Miller torsion

T ∈ Det(H •(M, E )) ⊗ Det(H •(M, E ))

from [14], then establish its relationship with the torsion form τ , and finally, under some

additional assumptions, express T in terms of the Farber–Turaev torsion ρε,o.

5.1 The Cappell–Miller torsion of a finite-dimensional complex

Let the complex (C •, ∂) and the involution � be as in Subsection 2.1. Recall that the

element ρ
�

∈ Det(H •(∂)) was introduced in (2.6).

In Section 5 of [14], Cappell and Miller introduced a torsion of a class of finite-

dimensional complexes, which in case of a complex of odd length d = 2r − 1 and in the

presence of the involution �, can be described as

T = T
�

:= ρ
�
⊗ ρ

�
∈ Det(H •(∂)

) ⊗ Det
(
H •(∂)). (5.1)

The torsion quadratic form τ
�

defined in (2.3) can be viewed as an element of

Det(H •(∂))∗ ⊗ Det(H •(∂))∗ � (Det(H •(∂)) ⊗ Det(H •(∂)))∗.

It follows from (2.7) that τ
�

is the dual of T
�
, i.e.

τ
�
(T

�
) = 1. (5.2)
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In particular, if the complex (C •, ∂) is acyclic, then T can be viewed as a complex num-

ber via the isomorphism Det(H •(∂)) � C, and in this case T = 1/τ . It follows now from

Lemma 2.7 that if the operator (2.9) is invertible, then

T
�

=
d∏

j=0

Det(B2|C j )(−1) j+1 j. (5.3)

Remark 5.2. In [14] the element T is defined in slightly different terms. However, com-

paring the construction of ρ
�

with the construction of Section 5 of [14], one immediately

sees that our definition coincides with the one of Cappell–Miller up to sign. To see that

the signs agree one compares (5.3) with formula (5.43) of [14]. �

5.2 The Cappell–Miller torsion of a flat vector bundle

Let E → M be as in Section 3. Fix a Riemannian metric gM on M and let � denote the

chirality operator (3.1). We shall use the notation introduced in Section 3. In particular,

for each subset interval I ⊂ [0, ∞), we denote by �
j
I(M, E ) the image of � j(M, E ) under the

spectral projection of B2|C j corresponding to the eigenvalues whose absolute value lie in

I. Also B j,I denotes the restriction of B to �
j
I(M, E ) and �I denotes the restriction of � to

�•
E(M, E ).

Fix λ > 0 and let T
�[0,λ]

be the Cappell–Miller torsion of the complex �
j
[0,λ](M, E )

corresponding to the chirality operator �[0,λ]. Via the canonical isomorphism H •
[0,λ](M, E ) �

H •(M, E ), we can view T
�[0,λ]

as an element of Det(H •(∂)) ⊗ Det(H •(∂)).

Definition 5.4. Let θ ∈ (0, 2π ) be an Agmon angle for the operator B2
(λ,∞). The Cappell–

Miller torsion T∇ of the flat vector bundle (E , ∇) over a closed oriented odd-dimensional

manifold M is the element

T∇ :=
⎡
⎣

d∏
j=0

Detθ

(
B2

(λ,∞), j

)(−1) j+1 j

⎤
⎦ · T

�[0,λ]
∈ Det(H •(∂)) ⊗ Det(H •(∂)). (5.4)

�

It is shown in [14, Theorem 7.3] and also follows from Theorem 5.1 that T∇ is

independent of the choice of λ.

From (5.2), (5.4), and the definition (3.3) of τ∇ , we obtain the following.

Theorem 5.1. τ∇ (T∇ ) = 1. �
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Hence, Conjecture 4.5 can be reformulated in the form

T∇ = e−2πi〈Arg∇ ,c(ε)〉 · ρε,o(∇) ⊗ ρε,o(∇). (5.5)

Let E∗ denote the vector bundle dual to E . In particular, the fiber E∗
x of E∗ at a

point x ∈ M is the dual vector space E∗
x = HomC(Ex, C). Let ∇∗ denote the connection on E∗

dual to ∇. Then the direct sum bundle E ⊕ E∗ with the connection ∇ ⊕ ∇∗ is unimodular

and its fibers have even dimension. Hence, cf., for example, Lemmas 3.2 and 3.3 of [19],

the Reidemeister torsion

ρR(∇ ⊕ ∇∗) ∈ Det(H •(M, E ⊕ E∗)) � Det(H •(M, E )) ⊗ Det(H •(M, E∗)).

is well defined and is equal to the Farber–Turaev torsion ρε,o(∇ ⊕ ∇∗). In particular,

ρε,o(∇ ⊕ ∇∗) is independent of ε and o.

Farber and Turaev [19, p. 219] introduced the duality operator

D : Det(H •(M, E )) → Det(H •(M, E∗).

Using the definition of the Poincaré–Reidemeister scalar product, cf. pp. 206 and 219 of

[19] and Theorem 9.4 of [19], we obtain

ρε,o(∇) ⊗ D(ρε,o(∇)) = (−1)z e2πi〈Arg∇ ,c(ε)〉 · ρR(∇ ⊕ ∇∗),

where z ∈ N is defined in formula (6.5) of [19]. Hence, (5.5) is equivalent to the following

conjecture, originally made by Cappell and Miller [14]:

Conjecture 5.5 (Cappell–Miller). Assume that (E , ∇) is a flat vector bundle over a closed

odd-dimensional oriented manifold M. Then the Cappell–Miller torsion is related to the

Reidemeister torsion by the equation

(1 ⊗ D) T∇ = (−1)z ρR(∇ ⊕ ∇∗), (5.6)

where z ∈ N is defined in formula (6.5) of [19] (The sign factor (−1)z is missing in [14]

because of a different sign convention.) �
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Theorems 4.2 and 4.3 give a partial solution of this conjecture. In particular,

Theorem 4.3 says that Conjecture 5.5 holds up to the factor RC and holds exactly in the

case when ∇ belongs to a connected component of the space Flat(E ), which contains an

acyclic Hermitian connection. Theorem 4.2 states that Conjecture 5.5 holds up to sign if

E admits a nondegenerate bilinear form b.
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