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The nonlinear propagation of a circularly polarized, electromagnetic wave in a
collisional, infinite, magnetized plasma is considered. The presence of collisions
leads to spatial variation in the amplitude of the wave field which gives rise to a
time-independent ponderomotive force. The ponderomotive potential for a left
(right) circularly polarized wave attains a maximum at the ion (electron)
cyclotron frequency. In the vicinity of the cyclotron frequency it is shown to be
always positive. A decrease in both the particle density and the real and imaginary
parts of the complex wavenumber is shown to result from the effect of the pondero-
motive force.

1. Introduction
It is well known that spatial gradients in the amplitude of an oscillating electric

field can give rise to a time-independent, ponderomotive force. This force plays a
fundamental role in nonlinear plasma dynamics owing to its influence on the
equilibrium plasma parameters. Considerable effort has been made in the past to
obtain a general expression for the ponderomotive force in a collisionless mag-
netized plasma. (An extensive review of this work is given by Statham & ter
Haar (1983).)

In a bounded plasma, electric field gradients may be externally imposed by a
localized antenna. Numerous authors have considered the effect of the pondero-
motive force for such a non-self-consistent electromagnetic field on, for example,
the acceleration of charged particles (Consoli & Hall 1963), and the radio-
frequency plugging (Eubank 1969; Fader et al. 1981) and low-frequency mode
stabilization (Ferron et al. 1983; Yasaka & Itatani 1984) of open-ended mirror
devices.

For a collisionless, infinite, magnetized plasma, Festeau-Barrioz & Weibel
(1980) have investigated the ponderomotive force due to an ion cyclotron wave
which, for spatial gradients in the amplitude of the self-consistent electric field
to exist, must be either a standing wave or a wave beyond cut-off. An expression
for the ponderomotive force, exerted by a circularly polarized wave with
gradients in the direction of the steady magnetic field, was obtained in terms of
the gradient of a quasi-potential. This ponderomotive potential is zero, in the
laboratory frame, for an undamped wave propagating in an infinite plasma
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488 M. L. Sawley

(although, as discussed by Roberts & Buchsbaum (1964), a travelling wave can
create a quasi-potential in the wave frame).

In the present paper, we consider a self-consistent treatment of the propagation
of a circularly polarized, electromagnetic wave along the direction of a steady
magnetic field in a collisional, infinite plasma. The presence of collisions leads to
a spatial decay of the electric field amplitude, the decay being exponential for a
wave of sufficiently small amplitude. We show that this spatial variation of the
wave field gives rise to a non-zero, time-independent ponderomotive force.
Solving the nonlinear equations to second order in electric field strength, an
expression for the ponderomotive potential is obtained. The modification of the
particle densities and the complex wavenumber (that is, the phase velocity and
attenuation length) that results from the influence of the ponderomotive force is
calculated.

2. Basic equations
The nonlinear propagation of an electromagnetic wave in a collisional, warm

plasma may be adequately described by the self-consistent solution of the
following set of multi-fluid equations: the equation of motion for species cr,

the equation of continuity,
dnJdt + V.fauJ^O; (2)

Maxwell's equations,
V x E = - dB/dt, (3)

1 3E
VxB=ASMA+-s-jji (4)

and the equation of state,
P* = nvTr (5)

In (1), a simple form for the collision term, namely - »„#&„ vaua, has been used to
avoid unnecessary mathematical complications. This collision term is appro-
priate, for example, to describe charged particle-neutral collisions in a weakly
ionized plasma. We shall assume that the temperature Ta of each species is
constant, and unaffected by the presence of the wave.

The equilibrium quantities, in the absence of the wave, are

B = J30z, »„ = »„ (6)

where Bo and na are constants in space and time. The equilibrium values of E
and u^ are assumed to be zero.

We shall consider the propagation in the positive z direction (i.e. parallel to
Bo) of a circularly polarized electromagnetic wave with an electric wave field of
the form

EB(M) = E0(l, ±t,O)exp[t(Zz-arf)], (7)
where

K = k{z) + iy{z), (Ife.y real) (8)
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Ponderomotive force 489

and JE70, the amplitude at z = 0, is constant in time. In (7), the upper (lower) sign
refers to the right (left) circularly polarized wave.

Using (3) and (7), the magnetic field component of the wave may be obtained:

>[i(Kz-u)t)]. (9)

Equation (1) can then be split into the perpendicular and parallel components:

xBJ-2gr = 0. (11)

Equation (10) is linear in the wave quantities. It yields the following fluid
velocities for species o~\

where Qff = q<TB0/ma is the cyclotron frequency for species cr.
The force balance along the direction of the magnetic field Bo, is given by (11).

Taking the real part of (9) and (12), it may be shown that for a circularly polarized
wave propagating in a collisional plasma, the nonlinear (ponderomotive) force
exerted by the wave on each species is independent of time and given by

C x BJ - Z T O ^ ± ° g + ^ f a + (»± Q,)?*]. (13)

In the steady state, the ponderomotive force is balanced by axial pressure
gradients and the time-independent electrostatic field Es, which arise from the
spatial separation of the different species.

The electric wave field given by (7) must satisfy the wave equation obtained
from (3) and (4):

Substituting from (7) and (12) yields the nonlinear dispersion relation

fiK*Y amz ^r < 1 o
\~dz~) ~% dz* ~ ? l f ' ^ i ^ + tOJ-0'

where 0)po. = (n^ql/m^e^i is the plasma frequency for species cr.

3. The linear wavenumber
If we assume that the wave amplitude is sufficiently small to neglect the non-

linear interaction, the wavenumber (denoted as Ko = ko + iyo for the linear
solution) is independent of z and given, using (14), by

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377800002221
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:41:02, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377800002221
https:/www.cambridge.org/core
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This is the usual form of the linear dispersion relation for an electromagnetic
wave propagating in a collisional plasma (Ginzburg, 1961).

Defining

and
(16)

the real and imaginary parts of the complex wavenumber may be expressed as

yl = ~[-A
*

In the presence of collisions, the wave does not suffer from the effects of resonance
and cut-off; for all frequencies the wave possesses a non-zero, finite value of k0.
However, in the frequency ranges of cut-off for the undamped wave, we find
7o ^ ô> that is, the wave is heavily damped.

For future reference, we note that the ratio of real and imaginary parts of the
complex wavenumber may be written as

If the collision frequency va is sufficiently small, then for o) ~ i Q r w e may
approximate A and B by the contribution due to the species <r alone. Thus

-

and, substituting into (18),

^ - ° ~ - (a, i
To

»£]*. (19)

4. The nonlinear solution
The axial force balance equation (11) may be solved to second order in electric

field strength by substituting the wavenumber to first order, calculated in § 3,
into the expression (13) for the ponderomotive force. We then obtain

where the ponderomotive potential for species <T is given, for y0 4= 0, by
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Writing the axial electrostatic field as the gradient of a scalar potential,

Es= -dU/dz,
we obtain from (11), using (5),

_ dU_d^_Tsd^ = Q

" dz dz na dz

The solution to second order in electric field strength is

where we have used the boundary condition, na{z^-<x>) = ng.
The electrostatic potential U may be obtained by imposing the condition that

the plasma is quasi-neutral, that is,

Substituting from (21) yields

U - -

Defining

and

•--TS27»P (23)

<r

the density of species <r, to second order in electric field strength, may be written
as

[ ( « * j t S > j (24)
The electric field therefore produces a nonlinear modification of the density of
each particle species. The change in density causes, in turn, a change in the wave-
number. Substituting (24) into (14), the modified wavenumber satisfies the
following nonlinear dispersion relation:

{^J^ O, (25)
where

The solution of (25) that satisfies the boundary conditions

K(z = 0) finite, K(z -> oo) = KO,

is, to second order in electric field strength,

yoz
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492 M. L. Sawley

5. Ponderomotive effect for w ~ ± Qff

It was shown in § 4 that the nonlinear force exerted by an electromagnetic wave
in a collisional plasma may be expressed, for each particle species cr, as the
gradient of a ponderomotive potential, Q>a. This potential, in addition to exhibi-
ting the usual dependence on \EJ[Z, has also, in general, a dependence on the
wave properties through the parameter V^/JQ. However, if va is sufficiently
small, then for o> ~ + Q.a we may substitute into (20) the approximate value
of this parameter given by (19). We then obtain

(28)

where

The ponderomotive potential for each particle species, in the presence of a
wave with appropriate polarization, attains a maximum at the cyclotron
frequency of that species. In addition, (28) shows that it is always positive in the
vicinity of the cyclotron frequency. We note that this is contrary to the case of an
electromagnetic wave in a collisionless plasma. The standard expression for the
ponderomotive potential (Motz & Watson 1967),

aijg(S)r
* 2mw(«±Q) > K '

reveals a change of sign of the left (right) circularly polarized wave as the
frequency crosses the ion (electron) cyclotron frequency. However, care must be
taken when applying expression (29) if the electric field E(z) is calculated self-
consistently. For a collisionless plasma, the wave is propagatory for OJ < IQJ
but evanescent for w > | Q^l. Therefore the wave must satisfy different boundary
conditions in the different frequency regimes (Festeau-Barrioz & Sawley 1984).
Hence, expression (29) cannot be applied to a self-consistent wave in a continuous
fashion as the wave frequency crosses the cyclotron frequency.

If we consider a plasma for which |gff| and Ta are the same for all particle
species, then for o) ~ + Q.a we may approximate (23) as

Therefore

g? li My+^o (30)

and from (24) it may be seen that the ponderomotive force causes a decrease in
the particle density of species cr.

Writing
y = yo(l+Ay),
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Ponderomotive force 493

then from (27) we may obtain approximate expressions for the modification of
the real and imaginary parts of the complex wavenumber for OJ ~ ± iiff:

Afc ~ -0{(a> ± flg) + 2[(o> ± Q,)* +
7oz

~ -0{(co± Qg) + [{w ± Q^ (1 -
7oz

where

From (30), ft > 0, and therefore the decrease in particle density that results from
the effect of the ponderomotive force for w ~ + Qff) causes a decrease in both the
real and imaginary parts of the complex wavenumber. Thus, as a result of the
ponderomotive force, both the phase velocity (o>/k) and the attenuation length
(1/y) are increased. The nonlinear density modification caused by the pondero-
motive force therefore acts to oppose its source, that is, the spatial attenuation
of the wave.

6. Conclusions
The spatial decay of a circularly polarized, electromagnetic wave in a collisional

plasma has been shown to give rise to a time-independent, ponderomotive force.
An expansion to second order in the electric field strength has been used to write
this force in terms of the gradient of a ponderomotive potential. This potential
attains a maximum at the cyclotron frequency of the resonant particle species. In
the vicinity of the cyclotron frequency, the ponderomotive potential is always
positive, and causes a decrease in the particle density which results in an increase
in the phase velocity and attenuation length of the wave.
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