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To recognize visual objects, our sensory perceptions are trans-
formed through dynamic neural interactions into meaningful rep-
resentations of the world but exactly how visual inputs invoke
object meaning remains unclear. To address this issue, we apply
a regression approach to magnetoencephalography data, modeling
perceptual and conceptual variables. Key conceptual measures
were derived from semantic feature--based models claiming shared
features (e.g., has eyes) provide broad category information, while
distinctive features (e.g., has a hump) are additionally required
for more specific object identification. Our results show initial
perceptual effects in visual cortex that are rapidly followed by
semantic feature effects throughout ventral temporal cortex within
the first 120 ms. Moreover, these early semantic effects reflect
shared semantic feature information supporting coarse category-
type distinctions. Post-200 ms, we observed the effects along the
extent of ventral temporal cortex for both shared and distinctive
features, which together allow for conceptual differentiation and
object identification. By relating spatiotemporal neural activity to
statistical feature--based measures of semantic knowledge, we
demonstrate that qualitatively different kinds of perceptual and
semantic information are extracted from visual objects over time,
with rapid activation of shared object features followed by
concomitant activation of distinctive features that together enable
meaningful visual object recognition.

Keywords: feature-based statistics, magnetoencephalography, multiple
regression, object recognition, semantic knowledge

Introduction

Recognizing visual objects is an effortless and subjectively

instantaneous cognitive ability, the details of which are poorly

understood. Identifying an object requires some degree of

stimulus-based visual processing before the emerging repre-

sentation becomes increasingly abstract and semantic over

time. However, little is known about how meaningful semantic

information is extracted from perceptual inputs. Responses

sensitive to coarse-grained category-level information (e.g., know-

ing an object is an animal or vehicle) have been observed at

latencies within 150 ms (VanRullen and Thorpe 2001; Kirchner

and Thorpe 2006; Liu et al. 2009), suggesting that coarse

semantic information is rapidly accessed. More fine-grained

semantic information, such as that required to identify an

animal as a dog (known as basic-level recognition), is associated

with additional processes, which take place after 150 ms

(Martinovic et al. 2007; Schendan and Maher 2009; Clarke et al.

2011). While these findings suggest that increasingly detailed

semantic information rapidly emerges across time, core aspects

of this process remain unclear. To understand how meaningful

object representations emerge from visual percepts, it is

necessary to determine the kind of information available in

neural signals over time and the brain regions which process

this information. The aim of the current study is to address

these fundamental issues. Specifically, we investigate the nature

of the semantic information that drives the transition from the

rapid coarse-grained representations to the emergence of more

detailed semantic representations, and the neuroanatomical

regions supporting this transition. These core issues are

addressed in the current study using magnetoencephalography

(MEG), which enables us to track the time course of perceptual

and conceptual processes during the recognition of meaningful

objects.

Visual object recognition is known to rely on a hierarchically

organized processing stream through occipital and ventral

temporal cortices, where increasingly complex information is

processed in progressively more anterior regions (Ungerleider

and Mishkin 1982; Felleman and Van Essen 1991; Bussey et al.

2005). The posterior aspects of the ventral temporal lobes

process both perceptual and category-level semantic informa-

tion about visual objects (Haxby et al. 2001; Vuilleumier et al.

2002; Kriegeskorte et al. 2008), with the anteromedial temporal

cortex, at the endpoint of the visual hierarchy, supporting the

most fine-grained semantic processes (Tyler et al. 2004; Moss,

Rodd, et al. 2005; Taylor et al. 2006; Barense et al. 2007).

Temporally, visual object processing is hypothesized to progress

from a coarse-to-fine--grained analysis of object identity across

time (Hochstein and Ahissar 2002; Hegdé 2008)—a cognitive

feat underpinned by both feedforward and recurrent processing

mechanisms (Bar et al. 2006; Clarke et al. 2011). Within the first

100 ms, the cortical responses generated within the visual

cortex reflect perceptual stimulus--based properties of the

image, including the complexity of the visual image, object

color, texture, and natural image statistics (Tarkiainen et al.

2002; Martinovic et al. 2008; Scholte et al. 2009). These initial

responses propagate anteriorially along the ventral axis of the

temporal lobe in a feedforward manner—characterized as the

initial feedforward sweep (Lamme and Roelfsema 2000; Bullier

2001), where information is integrated and accumulated to

support coarse category-type decisions. For example, in both

human and nonhuman primates, neural responses have been

recorded in ventral temporal and prefrontal cortices with a

latency of 100--150 ms that were related to the category of the

visual object (Freedman et al. 2001; Liu et al. 2009), and

electroencephalography (EEG) measurements show category-

related activity after 150 ms (Thorpe et al. 1996; VanRullen and

Thorpe 2001). Furthermore, this information appears to be

behaviorally relevant as category-based decisions can be per-

formed within 100--150 ms of picture onset as measured by eye

movement latencies (Kirchner and Thorpe 2006; Crouzet et al.

2010). The implication of such studies is that during this initial

feedforward sweep, category-related information is rapidly ex-

tracted from the visual percept, and this information is reflected
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in responses throughout ventral temporal and prefrontal

cortices (e.g., Liu et al. 2009).

Extracting a more detailed representation of an object—as

in the case of basic-level recognition, requires additional fine-

grained analyses supported by more anterior temporal regions

(Tyler et al. 2004; Moss, Rodd, et al. 2005) and recurrent

processing mechanisms (Schendan and Maher 2009; Clarke

et al. 2011). For example, evidence that recurrent processes

support the formation of more detailed semantic represen-

tations comes from Clarke et al. (2011), who showed that

recurrent activity increased between anterior and posterior

sites in the ventral temporal cortex from 150 to 250 ms as

a function of the need to form detailed semantic representa-

tions. This time frame, during which these fine-grained sem-

antic processes occurred, is consistent with observations by

Martinovic et al. (2007), who reported that neural activity

between 200 and 300 ms covaried with the time required to

determine the specific name of visual objects. Taken together,

these studies suggest that recurrent processes in the ventral

stream within the first 300 ms of stimulus presentation support

the rapid emergence of detailed semantic knowledge about

objects.

Beyond this coarse-to-fine trajectory underpinning such emer-

ging semantic representations, it remains unclear what kinds of

semantic information become available at different latencies, and

which neural regions support them. The investigation of these

questions requires a cognitive account of semantic knowledge

that incorporates various kinds of semantic information about

objects. Here, we focus on a feature-based account of semantic

knowledge that claims that the meaning of a concept is

composed of its constituent semantic features (e.g., <has ears>,
<is small >, and <is played>; e.g., McRae et al. 1997; Tyler and

Moss 2001; Moss et al. 2007). The statistical regularities derived

from such semantic features have been shown to predict

behavioral performance on conceptual tasks (McRae et al. 1997;

Randall et al. 2004; Cree et al. 2006; Taylor et al. 2008), while

recent research shows that statistical semantic feature data

correlate with brain activity (Chang et al. 2011). Here, we aim

to determine the extent to which the spatiotemporal neural

activity measured with MEG is related to the statistical

properties of semantic features, which capture different aspects

of object meaning.

Two key statistical measures that influence conceptual

processing are feature distinctiveness and the extent to which

features are correlated (McRae et al. 1997; Randall et al. 2004;

Moss et al. 2007; Taylor et al. 2011). Feature distinctiveness

measures the degree to which a specific semantic feature is

shared across concepts (e.g., has ears) or is more distinctive for

a particular concept (e.g., has a hump). Shared features tend

to be distributed across many different category or domain

members (e.g., many animals have ears) and so provide coarse

information about what type of thing the concept is likely to

be. Identifying an object (and so differentiating between similar

objects—such as a horse and a cow) requires access to more

fine-grained semantic information, which is provided by

distinctive features. Moreover, according to one feature-based

model of semantics—the conceptual structure account (Tyler

and Moss 2001; Moss et al. 2007; Taylor et al. 2007)—distinctive

features are ultimately only informative for basic-level identi-

fication in combination with shared features. Concepts, which

share many features, generate conceptual ambiguity in which

many concepts are activated. This ambiguity can be resolved by

information about the distinctive features of a concept, which

serve to disambiguate the concept from its semantic compet-

itors. For example, a distinctive feature of a camel is that it has

a hump. Knowledge of the feature has a hump in isolation may

not be informative about the identity of the concept; instead,

this information must be combined with the concept’s shared

features (e.g., has eyes, has ears, has 4 legs, etc.) in order to

identify the concept as a camel. Thus, identifying objects at the

basic-level requires the integration of distinctive and shared

information. Given that the coarse-grained or categorical

information emerges before fine-grained information, we

hypothesize that the effects of shared semantic information

will be apparent within the first 200 ms, while effects of

distinctive features will occur post-200 ms. Moreover, we

predict that the early processing of shared feature information

will be associated with more posterior ventral temporal regions

than the later processing of shared combined with distinctive

feature information, which will be associated with the anterior

temporal lobes.

In addition to feature distinctiveness, the extent to which

a concept’s features tend to co-occur, correlational strength, is

claimed to be a crucial factor in accessing conceptual meaning

(McRae et al. 1997; Taylor et al. 2008). Correlation between

a concept’s features is hypothesized to strengthen the links

between features, speeding their coactivation within a distrib-

uted semantic network, and thereby the integration of

semantic information (McRae et al. 1997; Randall et al. 2004).

This account predicts that the effects of highly correlated

features will occur rapidly, while effects associated with the

processing of weakly correlated features will occur during later

stages of conceptual processing (i.e., post-200 ms). Moreover,

concepts with weakly correlated features require more effort-

ful processing to activate and integrate those features, which

are weakly correlated and thus do not benefit from mutual

coactivation. This effect may be underpinned by the increased

involvement of inferior frontal lobe structures associated with

accessing conceptual information (Thompson-Schill et al. 1997;

Badre and Wagner 2002; Moss, Abdallah, et al. 2005). Therefore,

the measures of feature distinctiveness and correlational strength

capture how shared or distinctive the semantic features are, and

the relationship between features, respectively.

The aim of the current study was to directly investigate how

the meaning of an object emerges over time through charting

the temporal relationship between perceptual and conceptual

processes that underlie visual object recognition. As our

primary interest was to investigate the rapid emergence of

meaningful information from visual inputs, our analyses focus

on the first 300 ms. To provide an optimal analytical approach

to this issue, we related single-trial MEG responses to concept-

specific perceptual and semantic feature--based measures. An

increasing number of studies have used a regression approach

to analyze M/EEG data (Dien et al. 2003; Hauk et al. 2006;

Rousselet et al. 2008), which enables the characterization

of how multiple variables influence neural activity within

the same data set. In the current study, we apply the linear

regression approach of Hauk et al. (2006) to examine the

extent to which a variety of perceptual and semantic feature--

based statistical measures are reflected in neural activity during

the basic-level identification of objects before estimating the

cortical underpinnings of these effects (Fig. 1). Integrating

cognitive accounts of semantic knowledge and the neurobiol-

ogy of visual object processing, we predict that neural signals
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recorded with MEG will show a rapid progression from

perceptual stimulus--based information in the visual cortex to

more semantically based variables across time. We predict that

early semantic effects within the first 200 ms will be related to

shared semantic features and be associated with more posterior

occipitotemporal regions. Critically, these effects are predicted

to occur prior to those associated with the combined effects of

shared and distinctive features required for basic-level concept

identification, which we predict will engage more anterior

regions of the ventral stream. Finally, MEG responses to con-

cepts with strongly correlated features are predicted to occur

before responses to concepts with weakly correlated features,

whereby the latter concepts may additionally be associated

with more effortful semantic access processes involving the

inferior frontal lobe. To test these predictions, MEG signals

were recorded during the basic-level naming of pictures

depicting concepts in the McRae et al. (2005) feature

production norms.

Materials and Methods

Participants
Eleven healthy participants (9 males, 2 females) took part in the study.

All were right handed and had normal or corrected-to-normal vision.

The average age was 23.2 years (range 19--31 years). All participants

gave informed consent, and the study was approved by the Cambridge

Psychology Research Ethics Committee.

Stimuli
The study used images of meaningful objects that represented concepts

taken from a large property generation study conducted by McRae et al.

(2005). Since these norms were collected from North American English

speakers, the concept and semantic feature data were modified for use

with native British English speakers, resulting in an anglicized version

of the norms (Taylor et al. 2011). We selected colored images for

350 concepts, which could be represented as single objects

independent of context, and 50 meaningless sculpture images as filler

items that were not analyzed. All images (from various sources

including internet searches) were presented in isolation on a white

background. For each concept, we obtained 13 measures that captured

visual attributes of the picture, general conceptual properties (such as

familiarity and exemplarity) as well as feature-based statistical measures

derived from the anglicized property norms.

Perceptual and Conceptual Variables
As objective measures of image complexity, the number of nonwhite

pixels in the image and the jpg file size (Székely and Bates 2000) were

calculated from the pictures used in the study. Before calculating these

measures, all images were saved at a resolution of 72 pixels per inch

and were copied onto a plain white background of equal size. Concept

familiarity and picture exemplarity ratings (7-point scale) reflecting

how good an example the picture is of the intended concept and how

familiar the concept is, respectively, were collected from an in-

dependent group of 17 healthy participants who did not participate in

the MEG study.

Semantic feature--based variables were calculated from the anglicized

version of the McRae norms (Taylor et al. 2011). We obtained the

number of features (NoF) associated with each concept, which indexes

how much semantic information is associated with the concept. The

proportion of visual features was calculated as [the number of visual

features]/[the total number of features] where features were classified as

‘‘visual’’ if they related to visual information in the feature norms (Cree

and McRae 2003; McRae et al. 2005). As mentioned in the Introduction,

semantic features vary in the extent to which they are shared by many

concepts or are distinctive to a particular concept. Feature distinctiveness

was estimated as [1/number of concepts the feature occurs in], and 3

concept-specific measures captured how much shared or distinctive

information was associated with each concept: the relative proportion of

shared to distinctive features (where shared features occur in 3 or more

concepts and distinctive features occur in 1 or 2 concepts; Randall et al.

2004), themeandistinctivenessofall featureswithinaconcept, andtheskew

of the distribution of the feature distinctiveness values within a concept,

where apositive skew indicates relativelymore shared todistinctive features

and a negative skew more distinctive than shared features.

Correlational strength measures the regularity with which 2 features

co-occur (for details, see Randall et al. 2004; Taylor et al. 2008) and is

calculated between each feature and all other features. The mean

correlational strength value for a concept was calculated as the mean of

all feature correlational strength values for all features in that concept.

Four correlational strength variables were calculated. First, the mean

correlational strength of all the shared features within the concept (mean

correlational strength – shared features/within concept) provides a mea-

sure of how correlated the concept’s shared features are, and only includes

correlations between features associated with that concept. Second, the

mean correlational strength of all the distinctive features within the

concept (mean correlational strength – D features/within concept)

reflects how correlated the concept’s distinctive features are. Since it is

assumed that semantic knowledge is represented in a distributed semantic

system and that a given feature will strongly activate all associated features

(regardless of whether they occur in the same concept or not),

corresponding correlational strength measures were also calculated using

all features (i.e., mean correlational strength – S features/across concept

and mean correlational strength – D features/across concept).

Since many of these 13 variables are highly correlated, we performed

a principle components analysis (PCA) to orthogonalize the variables

while reducing the number of variables to an analytically manageable set.

Principle Components Analysis
A PCA was performed using data from 412 concepts in the anglicized

norms. The PCA was conducted on a larger range of items than

presented to participants (350) so that the resulting components

would be representative of the structure given by the largest data set

possible. The PCA used varimax rotation and resulted in 6 orthogonal

components accounting for 85.8% of the overall variance (Supplemen-

tary Table S1). The resulting components were interpreted as follows.

The first component, relative distinctiveness, incorporated variables

reflecting how much distinctive information was associated with the

Figure 1. Multiple linear regression approach. Multiple regression analyses were
performed between MEG signals for each concept and each concept’s value on the
6 principle components (only one shown for simplicity). The regression coefficient for
each component is calculated at each time point creating an ERRC waveform before
being repeated across all sensors. Statistically significant ERRC sensor effects were
calculated across the group and time windows of effects determined. The neural
underpinnings of these effects were then estimated through source reconstruction
giving the most prominent source underpinning the ERRC effects.
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concept, the relative amount of shared and distinctive information, and

the correlational strength of the distinctive features. Therefore, it

primarily captured whether a concept has relatively more shared or

more distinctive features. The second component, image complexity,

incorporated visual complexity (objectively measured by the jpg file

size) and the number of nonwhite pixels in the image. The correlational

strength component reflected the correlational strength of shared

features both within and across all concepts. Therefore, it captured

how correlated (likely to co-occur) a concept’s shared features were.

The component termed familiarity largely weighted for concept

familiarity and picture exemplarity, while the visual features compo-

nent reflected the proportion of the concept’s features that could be

visually depicted. Finally, the NoF component encompassed the number

of features associated with a concept (Table 1).

Procedure
Each trial consisted of a centrally presented black fixation cross on

a white background for 600 ms, followed by a picture lasting 500 ms,

then a blank white screen lasting between 2400 and 2700 ms. The

participants’ task was to overtly name each object at the basic-level

(e.g., ‘‘tiger’’) and to respond with ‘‘object’’ if they were unsure of the

identity. Basic-level naming was used because it requires access to

detailed conceptual representations. Participants were instructed to

name the object as accurately as possible, while keeping movements

to a minimum to prevent excessive muscular artifacts appearing in the

MEG recordings. The order of stimuli was fixed such that consecutive

stimuli were neither semantically nor phonologically related. Semantic

relatedness was defined as membership in the same object category

(e.g., animals), while phonological relatedness referred to object names

sharing an initial phoneme. The stimuli were presented in 5 blocks,

counterbalanced across subjects, with a short rest period between each

block. Each block contained 80 items and lasted approximately 5 min.

The presentation and timing of stimuli was controlled using Eprime

version 1 (Psychology Software Tools, Pittsburgh, PA). Naming accuracy

was recorded by the experimenter during data acquisition.

MEG/Magnetic Resonance Imaging Recording
Continuous MEG data were recorded using a whole-head 306-channel

(102 magnetometers, 204 planar gradiometers) Vector-view system

(Elekta Neuromag, Helsinki, Finland) located at the MRC Cognition and

Brain Sciences Unit, Cambridge, UK. Eye movements and blinks were

monitored with electrooculogram (EOG) electrodes placed around the

eyes, and 4 head-position indicator (HPI) coils were used to record the

head position (every 200 ms) within the MEG helmet. The participants’

head shape was digitally recorded using a 3D digitizer (Fastrak Polhemus

Inc., Colchester, VA), along with the positions of the EOG electrodes, HPI

coils, and fiducial points (nasion, left, and right periaricular). MEG signals

were recorded at a sampling rate of 1000 Hz, with a band-pass filter from

0.03 to 125 Hz. To facilitate source reconstruction, high-resolution (i.e.,

1 3 1 3 1 mm) T1-weighted magnetization prepared rapid gradient echo

scans were acquired during a separate session with a Siemens 3-T Tim

Trio scanner (Siemens Medical Solutions, Camberley, UK) located at the

MRC Cognition and Brain Sciences Unit, Cambridge, UK.

MEG Preprocessing
Initial processing of the raw data used MaxFilter (Elektra-Neuromag)

to detect static bad channels that were subsequently reconstructed

by interpolating neighboring channels. The data were also visually

inspected to identify bad channels containing long periods of high

amplitude or noisy signals that were reconstructed through interpo-

lation. Head movement compensation (using data from the HPI coils)

was performed, and head position was transformed into a common

head position to facilitate group sensor analyses. The temporal

extension of the signal-space separation technique (Taulu et al. 2005)

was applied to the data every 4 s in order to segregate the signals

originating from within the participants’ head from those generated by

external sources of noise. The cleaned MEG data were low-pass filtered

at 40 Hz and epoched from –100 to 300 ms with respect to picture

onset. Baseline correction was applied using the 100-ms prestimulus

interval.

Naming responses were considered incorrect if the name given by

the participant did not exactly match the name in the anglicized

version of the McRae norms. In addition, pictures with less than 70%

name agreement, as determined by an independent group of 20 healthy

individuals, were excluded as were trials that were incorrectly named

by more than 50% of participants (213 items remained). These criteria

were employed to ensure that the objects were maximally related to

the intended concepts and therefore the conceptual variables. Finally,

trials were excluded if they elicited an EOG amplitude exceeding 200 lV
or if the value on any gradiometer channel exceeded 2000 fT/cm. All

further analyses were conducted on the remaining items (mean: 177

items, range: 154--192 items).

MEG Analysis
In a departure from conventional MEG analyses, we used a multiple

linear regression approach following methods described by Hauk et al.

(2006). The multiple linear regression approach constructs an evoked

waveform based on correlation coefficients rather than an averaged

data point and reflects the extent to which each variable of interest

modulates the MEG signal over time and space.

At each MEG sensor, and for each time point (s,t), multiple linear

regressions were performed using a robust regression approach where

the recorded MEG signals for all items were the outcome vectors (Y )

and the component scores (from the PCA) for those items on each

component (n components) were entered as predictor vectors (X ),

with associated coefficients (b), as in

Ys;t =Cs;t +

�
+
n

c=1

bcXc

�
+ es;t :

The length of each vector (Y and X) is equal to the number of items

entered into the regression, while e is the error term and C is the

constant (in this case, the constant equals the mean, as the component

scores have a mean of zero and unit standard deviation). The regression

coefficient for each component (bc) can be considered a summary

value that captures the relationship between a particular variable and

the recorded MEG signal across items. Positive coefficients indicate a

positive relationship between the values recorded at that sensor/time

point and the component scores, while negative coefficients indicate a

negative relationship between the values recorded at that sensor/time

point and the component scores. Coefficients near zero indicate no

consistent relationship between the MEG signals and the component

scores. The regression coefficients (b) were calculated at each time

point between –100 and 300 ms and at each of the 102 magnetometer

sensors. The resulting coefficients, termed event-related regression

coefficients (ERRCs), are summary values and can be treated in the

same way as evoked data in typical MEG analyses including source

localization (Hauk et al. 2006).

MEG Sensor Analysis
Only the magnetometers were used for the ERRC analysis. To test

whether any of the ERRCs (one for each component) show consistent

Table 1
Perceptual and conceptual components correlated with the MEG data

Component name

Image complexity
Complexity and size of the image

Relative distinctiveness
Captures the relative degree of shared and distinctive features associated with the concept
and the correlation of the distinctive features

Correlational strength
Correlational strength of a concepts shared features
NoF

Total number of semantic features for a concept
Visual features

Proportion of concept’s features that were visual features (e.g., is round)
Familiarity

Concept familiarity and picture exemplarity
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effects across participants, a 3D (topography 3 time) sensor SPM mass-

univariate analysis was conducted using SPM5 (Wellcome Institute of

Cognitive Neurology, London, UK) across space and time. The topo-

graphic distribution of the magnetometer sensor data was transformed

into a 2D space by linear interpolation to a 32 3 32 pixel grid, which

extended through time. The 3D space-time data were written out as an

image, entered into a one-way analysis of variance and tested against

zero (zero signifying no effect of a variable) using a one-sample t-test.

The resulting t-statistic images were thresholded at a ‘‘pixelwise’’ level

of P < 0.005 and a cluster extent of P < 0.05, using random field theory.

This procedure reveals significant effects of each component on the

magnetometer data.

To interpret the directionality of significant effects, the ERRC

topographies were visually compared with the topography of the

grand-mean data (Hauk et al. 2009). For example, if significant positive

ERRC values spatially coincide with a positive peak in the grand-mean

topography, then the ERRC effect can be interpreted as showing that

increasing values of the variable are associated with an increasing

magnitude of the peak response in the grand-mean (positive relation-

ship; therefore, this interpretation also holds when the ERRC values and

the grand-mean peak both have negative signs). Alternately, if the

significant positive ERRC values coincide with a negative peak in the

grand-mean topography, then the ERRC effect can be interpreted as

showing that increasing values of the variable are associated with

a decreasing magnitude of peak responses in the grand-mean (negative

relationship; therefore, this interpretation also holds when the ERRC

values are negative and the grand-mean peak is positive). However, this

approach assumes that the same underlying neural sources produce

both the topographic distributions of the grand-mean and ERRC effects.

Therefore, the relationship between the mean activity underlying

the MEG responses and the variable can only be inferred when there

is a spatial correspondence between the ERRC and grand-mean

topographies.

MEG Source Analysis
Source localization of the ERRCs was performed using data from the

magnetometer sensors. Magnetic resonance imaging (MRI) images were

segmented and spatially normalized to a Montreal Neurological Institute

(MNI) template brain in Talairach space using SPM5. A template cortical

mesh with 7004 vertices was inverse normalized to the individual’s

specific MRI space (Mattout et al. 2007). Each vertex location cor-

responded to a dipole with a fixed orientation perpendicular to the

surface, with a mean intervertex spacing of ~5 mm. MEG sensor locations

were coregistered to the subject-specific MRI space using the digitized

head points and aligning the fiducial points obtained during acquisition.

Brainstorm was used to fit a boundary element model (Mosher et al.

1999) to the inner-skull mesh and to calculate the lead fields for the

sources. The data were inverted to estimate activity at each cortical

source using a multiple sparse priors approach (Friston et al. 2008) and

the default options in SPM5 (with the exception that a Hanning window

was not used). The estimated cortical activity was averaged across a time

window (statistically identified using the sensor SPM analysis approach as

described above) and written out as an intensity image in MNI space.

Images were smoothed with a 12 mm FWHM Gaussian smoothing

kernel, before averaging the resulting ERRC source images across

participants. The resulting maps therefore show the location of the

greatest activity associated with the ERRC and therefore the location of

the neural sources contributing to the effects. Results are displayed on an

inflated cortical surface created with FreeSurfer (Dale and Sereno 1993;

Dale et al. 1999; Fischl et al. 1999).

Results

The current study tested 4 central predictions concerning the

time course and location of perceptual and semantic effects

during object processing. First, that neural signals will show

a rapid progression from perceptual information in the visual

cortex to more semantically based variables across time. Second,

early semantic effects will relate to shared semantic features and

be associated with more posterior ventral temporal regions.

Third, that effects of shared features will occur prior to those

associated with the combined effects of shared and distinctive

features required for basic-level concept identification, which

we predict will engage more anterior regions of the ventral

stream. Finally, we predicted effects of weakly correlated

features will engage inferior frontal regions to aid the mutual

coactivation and integration of features that benefit less from

mutual coactivation. To test these predictions, an ERRC (Hauk

et al. 2006) analysis was performed at the sensor level to

determine whether neural processing is significantly modu-

lated by the perceptual and semantic factors, and when

different types of information are expressed in the MEG signals

(Table 2 and Fig. 2). Significant sensor-level effects were then

localized in the cortex (Fig. 3).

Image Complexity

The earliest significant effects of image complexity were

between 74 and 116 ms. Furthermore, the tight correspondence

between the ERRC topography for the image complexity effects

and the topography of the grand-mean data indicates that

inferences about the directional covariation of image complexity

and the mean data can be made. As shown in Figure 2, the peak

magnetometer effect after 74 ms displays a positive covariation

between MEG signals indexed by the grand-mean and increasing

values of image complexity shown by the ERRC. Therefore,

increasing values of image complexity were associated with

an increasing magnitude of MEG signals (for both positive and

negative polarities), revealing a positive relationship between

image complexity and the magnitude of magnetometer signals

beginning after 74 ms. Source localization shows these initial

effects of image complexity were localized in bilateral occipital

cortex (Fig. 3).

Later effects of image complexity were found after 180 and

234 ms that were also localized primarily to bilateral occipital

cortex. Significant positive ERRCs were observed after 180 ms

over right posterior sensors; however, the significant ERRC

effect did not spatially correspond to a discernable peak in the

grand-mean data. The lack of correspondence between the

ERRC topography and the grand-mean suggests that different

neural sources produced the 2 topographic distributions and

thus that the mean data cannot be used to infer the direction of

the current ERRC effect. A third effect of image complexity

after 234 ms showed negative ERRCs located over a negative

peak in the grand-mean data, such that images with greater

image complexity values led to more negative values in the

Table 2
Significant ERRC results for each component showing the time window during which the effect

was observed, the corrected cluster P value (P \ 0.05 in bold) and peak time of the effect

Time window P (corrected) Peak time

Image complexity
74--114 0.002 94
74--116 0.001 96
180--220 0.015 204
234--300 0.018 244

Relative distinctiveness
84--120 0.069 104
170--210 0.015 186
244--270 0.047 256
240--300 0.011 268

Correlational strength
224--260 0.045 240
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grand mean (i.e., larger magnitudes). Together, these findings

show the recurring influence of image complexity on neural

activity generated within early visual regions, and a general

pattern whereby increasingly complex visual images give rise

to an increased magnitude of responses recorded by MEG.

Relative Distinctiveness

We saw rapid semantic effects captured by the relative

distinctiveness measure that primarily captures whether a

concept has relatively more shared or distinctive features.

Significant negative ERRC values from 84 to 120 ms coincided

with a positive peak in the grand-mean data, indicating that

decreasing values on the relative distinctiveness measure—

more shared relative to distinctive information, resulted in

increasing MEG signals. The neural underpinning of this rapid

semantic effect was localized along the extent of the left

ventral temporal cortex extending into the anterior temporal

lobe. This effect shows that general shared semantic in-

formation is rapidly extracted from the visual input with an

onset shortly after the initial visual effects. Furthermore, this

early effect of relative distinctiveness is underpinned by

cortical regions at higher levels of the visual hierarchy than

the initial visual effects located in more posterior regions. As

such, the rapidly evoked representations generated prior to

150 ms by the initial feedforward pass of activity along ventral

temporal cortex reflects both perceptual and shared semantic

information that together provide coarse information sufficient

for category (e.g., animals and vehicles) and domain (i.e., living

or nonliving) level decisions. These effects are consistent with

our first 2 predictions that initial effects are associated with

visual processing in occipital regions and that shared feature

information becomes available early, rapidly after the onset of

perceptual analyses.

Two subsequent effects of relative distinctiveness between

170--210 and 240--300 ms also reflected increasing MEG signals

associated with concepts with relatively more shared in-

formation, as indicated by significant negative ERRC values

coinciding with positive peaks in the grand-mean data that

were localized within the left ventral stream. Importantly,

a further effect of relative distinctiveness was found between

240 and 300 ms in which negative ERRC values coincided with

a negative peak in the grand-mean data (see Fig. 2), indicating

that concepts with more distinctive relative to shared in-

formation were associated with increasing MEG responses.

Figure 2. ERRC and grand-mean topographies together with p maps of significant effects. Dashed black circles show approximate sensor location of peak effects that are also
indicated with dashed blue lines on each p map. Topographic maps show responses at the time of peak effect (see Table 2), with the time window noted in brackets.

Figure 3. Source reconstruction of ERRC effects. Group average source maps showing regions of most prominent activity underlying ERRC effects and their interpretations.
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Thus, after 240 ms, neural activity distributed along the extent

of the left ventral temporal cortex was sensitive to both the

shared and the distinctive aspects of a concept’s meaning.

These effects of shared and distinctive semantic information,

whose integration enables basic-level identification, further

show that more fine-grained semantic processes occur

between 200 and 300 ms and supports our third prediction

that combined effects of shared and distinctive features will

occur after the initial effects of shared features.

Correlational Strength

The final measure to show an effect was correlational strength that

measures whether a concept’s features co-occur with other

features. After 224 ms, positive ERRC values coincided with

a negative peak in the grand-mean data. The opposing signs of the

topographic distribution across the posterior sensors in the ERRC

and grand-mean data indicate that increasing correlational strength

leads to decreasedMEG responses. Therefore, concepts withmore

weakly correlated features were associated with increasing MEG

responses that were localized to the right ventral and anterior

temporal regions as well as in bilateral prefrontal cortex.

These results suggest that activity increases in ventral and

anterior temporal as well as bilateral prefrontal cortices when

the semantic information to be integrated does not benefit

frommutual coactivation (conferred through strongly correlated

features), and additional processing is required to mutually

activate and integrate features. This effect partly supports our

fourth prediction, that effects relating to strongly correlated

features occur before effects of weakly correlated features, as

we find effects of weakly correlated features but not the

preceding effects of strongly correlated features. In addition, the

effect of weakly correlated features reported here was localized

within ventral temporal, anterior temporal, and prefrontal

cortices, again consistent with our prediction. There were no

significant effects of the proportion of visual features, familiarity,

or NoF measures.

Discussion

The current study aimed to determine the time course of

perceptual and semantic effects associated with the rapid

formation of detailed meaningful visual object representations.

Using a linear regression approach to analyze MEG data (Hauk

et al. 2006), we determined the extent to which selected

perceptual and semantic feature--based statistical variables

modulated neural activity during the early stages of object

recognition. We predicted that neural signals will show a rapid

progression from the initial perceptual stimulus--based effects

to responses reflecting more semantically based information

across time. We also predicted that early semantic information

will be related to measures associated with shared semantic

features and that these will be reflected primarily by responses

within the ventral stream. Critically, these effects were predicted

to occur prior to those associated with fine-grained semantic

processes that require information about both shared and

distinctive features. Finally, we predicted that the effects of

weakly correlated features may occur later and additionally

engage inferior frontal regions to aid the mutual coactivation and

integration of features that benefit less from mutual coactivation.

Early Effects (pre-200 ms)

The first cortical signatures of visual processing are known to

arise from early visual cortex before neural activity propagates

through the ventral temporal cortex (Lamme and Roelfsema

2000; Bullier 2001). Accordingly, our results showed that the

initial effects, starting at 74 ms, were driven by the complexity of

the images and were localized to bilateral occipital cortex. While

corroborating the known neural dynamics during visual object

processing, this result further replicates previous findings that

initial activity over the occipital lobe is highly correlated with

purely visual measures (Tarkiainen et al. 2002; Martinovic et al.

2008).

We observed rapid semantic effects between 84 and 120 ms

along the extent of the left ventral temporal cortex into the

anterior temporal lobes. Analyses of the sensor data revealed

that the magnitude of MEG signals increased as a function of an

increasing proportion of shared relative to distinctive features

reflecting more general, shared, information about the concept

(e.g., has eyes, has ears, has 4 legs are shared, general features

associated with many animals). This rapid effect of semantics

occurred within the time frame of the initial feedforward sweep

and along the entire ventral temporal cortex and involved in-

creasingly anterior regions compared with the initial perceptual

effects. These results show that the initial transition from per-

ceptual to semantic processing occurs very rapidly and emerges

as neural activity propagates along the ventral temporal cortex

into the anterior temporal lobes. Furthermore, we show that

early semantic processing reflects more shared semantic pro-

perties suggesting that the representation established during this

initial feedforward sweep is informed by both perceptual and

shared semantic factors sufficient to support coarse-grained or

categorical dissociations but not a more differentiated repre-

sentation of the object.

The notion that object representations established within

the initial feedforward sweep are based upon both perceptual

and semantic information suggests that effects reported in

ultrarapid visual categorization tasks are based on more than

just stimulus-based visual information. Ultrarapid visual catego-

rization tasks consistently report that coarse or categorical

distinctions can be made within the first 100--150 ms of neural

activity and are presumably underpinned by predominantly

feedforward activity (Thorpe et al. 1996; VanRullen and Thorpe

2001; Kirchner and Thorpe 2006; Liu et al. 2009; Crouzet et al.

2010). The results of the current study are consistent with the

conjecture of VanRullen and Thorpe (2001) that such rapid

distinctions are based on more than low-level visual properties

of the stimulus, and highlight that the nature of this additional

information consists of more abstract, semantic measures

capturing the type of thing the object is. Here, the presence

of such representations was unveiled using feature-based

statistical measures capturing information about shared seman-

tic features.

The rapid effect of shared semantic features was prominent

throughout the left ventral temporal cortex extending into the

anterior temporal lobes. The anterior temporal lobes are hy-

pothesized to integrate more complex semantic information

(Tyler et al. 2004; Moss, Rodd, et al. 2005; Taylor et al. 2006;

Barense et al. 2007). Thus, this rapid effect of shared features in

the anterior temporal lobe may reflect the engagement of more

complex processing required for concepts whose many shared

features render them more semantically confusable or ambig-

uous. However, the fast responses in the anterior temporal

lobes may also be a consequence of the automatic initial feedfor-

ward sweep of neural responses through occipital and ventral

temporal cortices into the anterior temporal lobes (Felleman and
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Van Essen 1991), as opposed to heightened semantic integration

demands per se. Neural representations accumulated through

the automatic predominantly feedforward processing mecha-

nism may reflect nonspecific semantic information that is true of

many similar exemplars. For example, Liu et al. (2009) reported

that neural responses during the initial feedforward sweep (i.e.,

after ca. 100 ms) in both the posterior and the anterior temporal

lobes were equally reflective of object category, indicating that

coarse information was coded throughout the stream at this

time point. In any case, the current results demonstrate that

during the initial feedforward sweep through occipital and

ventral temporal cortices, neural responses appear to become

increasingly abstracted from a perceptual to a perceptual--

semantic representation suited to supporting coarse categorical

distinctions.

Such coarse, rapidly formed representations are unable to

support more differentiated representations that require

additional processing (Fei-Fei et al. 2007; Mace et al. 2009;

Clarke et al. 2011). Beyond 150 ms, dynamic long-range re-

current processing mechanisms are claimed to support more

complex visual object processing (Lamme and Roelfsema 2000;

Hochstein and Ahissar 2002; Bar et al. 2006; Schendan and

Maher 2009; Clarke et al. 2011). In the current study, we found

recurring effects of image complexity and increased shared-

ness of semantic features between 150 and 200 ms post-

stimulus onset, which appear to reflect an additional phase of

processing for objects which are more visually complex and are

more semantically ambiguous, that is, have a greater proportion

of shared semantic features. That is, basic-level identification of

concepts with more shared relative to distinctive features was

associated with greater posterior and middle ventral stream

activity than the basic-level identification of concepts with

more distinctive relative to shared features. This increased pro-

cessing may be required to disambiguate concepts with many

overlapping (i.e., shared) features. The progression from coarse

semantic processing during the initial feedforward sweep to

recurrent processing of more visually complex and semanti-

cally ambiguous objects is consistent with the notion that

feedforward processing along ventral temporal cortex supports

vision at a glance, while feedback in the reverse direction

supports vision with scrutiny (Hochstein and Ahissar 2002) and

is also consistent with more iterative, recurrent accounts

which claim that recurrent processing supports the formation

of increasingly complex semantic representations (Schendan

and Maher 2009; Clarke et al. 2011).

Fine-grained effects (200--300 ms)

The 200--300 ms time frame is claimed to be critical for the

formation of higher level meaningful object representations

(Bar et al. 2006; Martinovic et al. 2007). In agreement with such

claims, we find temporally and spatially overlapping effects of

semantic feature--based effects between 200 and 300 ms con-

cerning the correlation of semantic features, shared semantic

features, and distinctive semantic features, whose combined

information is essential for more fine-grained differentiation

and identification.

Effects of the feature-based statistical measure of correla-

tional strength were observed beginning after 200 ms, over-

lapping with effects for both the sharedness and the

distinctiveness of concepts’ features. Specifically, MEG signals

showed greater responses for concepts whose features were

less highly correlated, and these were localized along the

extent of the ventral temporal lobe into the anterior temporal

cortex and in bilateral prefrontal cortices. These results show

increased activity in ventral and anterior temporal as well as

bilateral prefrontal cortices when the semantic information to

be integrated does not benefit from mutual coactivation

(conferred through strongly correlated features), and so the

integration of weakly correlated features into an emerging

conceptual representation will require increased processing

by virtue of the decreased correlation between features. The

association of this effect with bilateral prefrontal cortices is

consistent with previous studies showing that activity in

inferior frontal structures is sensitive to semantic retrieval

and selection demands. Increases in left prefrontal cortex

activity are observed during semantic decisions about associ-

ated items (Thompson-Schill et al. 1997; Badre and Wagner

2002; Moss, Abdallah, et al. 2005), and prefrontal activity

becomes increasingly bilateral when retrieval demands in-

crease (Wagner et al. 2001). Similarly, we suggest that the

selection and retrieval of weakly correlated semantic informa-

tion places greater demands on the conceptual system, driving

the bilateral prefrontal cortex responses between 224 and 260

ms. This suggests that increased activity in prefrontal cortex for

concepts with more weakly correlated semantic features may

reflect the increased involvement of controlled semantic

retrieval mechanisms that may only be weakly engaged by

concepts with strong intrinsic feature correlations.

Within the same time frame, the MEG signals were also

sensitive to the relative distinctiveness measure reflecting dual

effects of both increased responses for concepts with a greater

degree of shared feature information and a separate increase in

responses for concepts with a greater degree of distinctive

feature information. Source localization estimated that the

effects of relative distinctiveness were generated in the left

ventral temporal cortex. Taken together, these results show

that beginning after 200 ms, processing increases for weakly

correlated semantic features, and that both shared and

distinctive semantic feature information was processed in

parallel, information which together supports the fine-grained

recognition of an object as a meaningful thing. These results

highlight a transition from early processing of primarily shared

information, to later effects of weakly correlated features along

with shared-general and distinctive object--specific informa-

tion. The assimilation of distinctive and shared features into the

emerging representation, initially based on shared features,

allows for conceptual differentiation supporting basic-level

identification.

During this time frame, continuing recurrent processing

mechanisms support the processing of the fine-grained details

required for basic-level recognition. Schendan and Maher

(2009) propose that recurrent processes after 200 ms support

more fine-grained object-specific knowledge, while recurrent

activity has also been shown to be modulated according to the

degree of semantic integration that is required for recognition

(Clarke et al. 2011). Recurrent interactions between the

anterior temporal and more posterior fusiform may underpin

this semantic integration, supporting fine-grained differentia-

tions (Clarke et al. 2011). The anterior temporal lobes,

specifically the perirhinal cortex, is hypothesized to support

visual object processing of confusable and ambiguous objects,

that is, those with many shared features and has been shown to

support the fine-grained semantic processing of visual objects,

especially those which share many features with one another
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(Tyler et al. 2004; Moss, Rodd, et al. 2005; Taylor et al. 2006).

Here, we find semantic feature effects pertaining to the

processing of weakly correlated features as well as shared

and distinctive features in the anterior and more posterior

temporal lobes. These findings support the notion that ongoing

recurrent processes support semantic differentiation and that

recurrence increases when the demands to integrate semantic

information increase.

Our results showed effects of relative distinctiveness

lateralized to the left ventral stream and effects of correlational

strength lateralized to the right ventral stream. These

lateralized effects are consistent with a model of object

recognition that posits that the left hemisphere is better suited

for processing feature information and the right hemisphere

for processing feature configurations (Marsolek 1999; Dien

2009). The relative distinctiveness measure employed here

captures the degree to which a concept’s features are more

shared or more distinctive, and as such is a semantic measure

reflecting the characteristics of individual features. In contrast,

correlational strength captures the degree to which a concept’s

features are likely to co-occur and thus captures the relation-

ship between features (i.e., a property of their configuration).

Specifically, our results show increased right hemisphere

ventral temporal responses when a concept’s features are

more weakly correlated, that is, concepts that require

additional processing of feature relationships because the

automatic coactivation of their features is reduced compared

with concepts with strongly correlated features. This further

suggests that highly correlated features may in fact be coded as

unitary features by virtue of their high co-occurrence and

therefore require less configural processing of feature relation-

ships supported by the right hemisphere. The parallel, but

lateralized, effects we find between 200 and 300 ms may

therefore reflect processing in the 2 hemispheres that is

differentially sensitive to different aspects of conceptual

representations, although it is also likely that both hemispheres

are able to support these aspects of conceptual processing.

One final note concerns the degree to which our observed

effects of relative distinctiveness and correlational strength

truly reflect semantic processes or simply reflect visual

characteristics of the objects. Our feature-based statistical

measures were calculated using both visual and nonvisual

semantic feature information on the assumption that both

types of semantic information are rapidly activated by

perceptual information. This position is consistent with the

hierarchical interactive theory (Humphreys and Forde 2001) of

visual object processing that predicts a cascade-like sequence

of effects, where perceptual processing rapidly activates the

associated (semantic) information related to the object. In this

manner, some degree of semantic information about the object,

including nonvisual information, is rapidly accessed and in turn

interacts with ongoing perceptual processes. Additional exper-

imental evidence for the rapid activation of semantic in-

formation comes from an EEG study employing a picture-word

interference paradigm. Dell’Acqua et al. (2010) compared EEG

signals with semantically related words written on object

images with semantically unrelated words written on object

images and found an early effect of semantic relatedness

peaking at 106 ms. Since this semantic relatedness effect

depends on the semantic processing of both the picture and

the word, this result indicates that more abstract, semantic

aspects of objects are processed rapidly. The present findings

are consistent with both views above but importantly provide

a more elaborate account of the earliest stages of meaningful

object recognition by identifying the underlying nature of the

rapidly accessed semantic information.

Our analysis captures the evoked phase-locked aspects of

meaningful visual object recognition but not the induced

effects. It may be that some aspects of recurrent processing are

not phase locked, however, previous MEG studies highlighting

early top-down and recurrent processes show such effects can

be captured with evoked analyses (Bar et al. 2006; Clarke et al.

2011). However, although our analyses may capture many

aspects of recurrent activity, it is possible that there are

additional high frequency and nonphased-locked aspects of the

MEG signals that may not have been captured.

Our results show that the statistical regularities of our

semantic knowledge are reflected in neural processes un-

derlying the basic-level identification of visual objects. More-

over, we have been able to go beyond previous accounts by

identifying the nature of the semantic information that is

rapidly accessed (for similar findings using visual words, see

Hauk et al. 2006), while incorporating the findings with the

known neurobiological mechanisms that support visual object

processing. Critically, we have shown that dynamic neural

responses underpinning visual object recognition are related to

various forms of semantic knowledge and are accomplished

within the context of feature-based statistics, which provide

a framework within which to operationalize and quantify

different forms of semantic knowledge. However, our results

do show that feature-based statistical measures incorporating

the sharedness and distinctiveness of features, and the

correlation between features, are crucial factors underpinning

the conceptual processing of objects.

Conclusion

The current study is one of a growing number of studies that

highlight the advantage of regression approaches to analyzing

M/EEG data, enabling the characterization of how multiple

variables influence neural activity within the same data set.

The results reported here show a rapid transition from

perceptual to conceptual processing as activity spreads along

the ventral temporal lobe. The rapid semantic effects related

to shared semantic features that are informative about what

type of thing the object is. In contrast, responses beginning

after 200 ms throughout the ventral stream into inferior

frontal regions were associated with weakly correlated

features and both shared and distinctive features, suggesting

that the emerging representation is becoming more fine-

grained incorporating the more distinctive semantic attrib-

utes of the object for basic-level recognition. Incorporating

the current findings with neurobiological processing mecha-

nisms suggests that initial coarse representations based on

perceptual and shared semantic information are predomi-

nantly underpinned by the initial feedforward processing,

while recurrent activity largely involving the anterior and

posterior temporal lobes was associated with integrating the

concept’s more distinctive features. These findings support

a feature-based account of meaningful object representations

as well as an account whereby there is a continued interplay

of perceptual and conceptual processes, while the emerging

conceptual knowledge evolves from a coarse-to-fine--grained

representation.
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