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Numerical treatment of retarded boundary integral equations
by sparse panel clustering
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We consider the wave equation in a boundary integral formulation. The discretization in time is done
by using convolution quadrature techniques and a Galerkin boundary element method for the spatial
discretization. In a previous paper, we have introduced a sparse approximation of the system matrix by
cut-off, in order to reduce the storage costs. In this paper, we extend this approach by introducing a panel
clustering method to further reduce these costs.
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1. Introduction

When discretizing the wave equation, one has the choice of treating this partial differential equation
directly or to transform it into a boundary integral equation. In this paper, we consider the formula-
tion as a boundary integral equation with a retarded potential which goes back to the early 1960s (see
Friedman & Shaw, 1962). One advantage of this approach is seen when considering an exterior problem,
i.e. when the spatial domain is unbounded. The treatment of problems on unbounded domains using the
original formulation usually requires a restriction to an artificial finite domain, together with some addi-
tional non-reflecting boundary conditions. In contrast, the boundary integral equation is formulated on
the (lower dimensional) bounded surface of the domain. No artificial boundary conditions are necessary.
An additional advantage is the reduction of the dimension of the problem by one: if we consider a 3D
problem and denote byh a typical mesh size in the spatial discretization, the boundary integral equa-
tion leads to O(h−2) unknowns instead of O(h−3), and, correspondingly, much smaller linear systems
have to be solved. A drawback of the boundary integral formulation is the fact that the corresponding
matrices are densely populated. This leads to a (at least) quadratic complexity. For potential problems
of elliptic type, fast methods (panel clustering, wavelets, multipole,H -matrices) have been developed
which reduce such costs to almost linear (linear up to a logarithmic factor) complexity. In this paper,
we develop a panel clustering method for retarded boundary integral operators.

A way to discretize the wave equation in time is the convolution quadrature method (Lubich, 1988a,
1994). In Hackbuschet al. (2005, 2007), we have introduced two advanced versions of the method in
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order to reduce its complexity. InHackbuschet al. (2005), a sparse approximation technique has been
developed, where a simple cut off criterion allows to replace the original system matrices by sparse
approximations. By using a panel clustering technique, the storage consumptions can be further re-
duced. In order to analyse the panel clustering approximation, estimates for the derivatives of the kernel
functions in the boundary integral equation formulation are required. These estimates are developed in
the present paper.

The paper is organized as follows: In Sections2 and3, we formulate the boundary integral equa-
tion and its discretization by using convolution quadrature in time and a Galerkin boundary element
method in space. In Section4, we recall the sparse approximation of the Galerkin matrices introduced in
Hackbuschet al. (2005). In Section5, we consider a panel clustering approximation to further reduce
the storage and computational cost. To obtain error estimates, an analysis of the kernel functions and
their derivatives is required. The necessary bounds are derived in Section6.

There exist alternative numerical discretization methods which include collocation methods with
some stabilization techniques (cf.Birgissonet al., 1999; Bluck & Walker, 1996; Davies, 1994, 1997;
Davies & Duncan, 2004; Miller , 1987; Rynne & Smith, 1990) and Laplace–Fourier methods coupled
with Galerkin boundary elements in space (Bamberger & Ha-Duong, 1986; Costabel, 1994; Ding et al.,
1989; Ha-Duong, 2003). Numerical experiments can be found, e.g. inHa-Duonget al. (2003).

In Erginet al.(2000), a fast version of the ‘marching-on-in-time’ method is presented, which is based
on a suitable plane wave expansion of the arising potential which reduces the storage and computational
costs.

Our method is similar and shares some properties (the need to solve a series of elliptic problems) of
certain methods for parabolic equations; seeHohage & Sayas(2005) andSheenet al.(2003). A related,
interesting variation of the convolution quadrature for convolution kernels whose Laplace transform is
sectorial can be found inScḧadleet al. (2006).

Another method which is also based on the convolution quadrature is presented inBanjai & Sauter
(2007), where the major part of the solution process is carried out in the discrete Laplace image.

2. Boundary integral formulation

In this paper, we consider the numerical solution of the 3D wave equation. For this, letΩ ⊂ R3 be a
Lipschitz domain with boundaryΓ . We consider the homogeneous wave equation

∂2
t u(x, t) − Δu(x, t) = 0 for (x, t) ∈ Ω × (0, T),

with zero initial condition
u(x, 0) = ∂t u(x, 0) = 0 for x ∈ Ω

and Dirichlet boundary conditions

u(x, t) = g(x, t) onΓ × (0, T).

To formulate the problem as a boundary integral equation,u(x, t) can be written as a ‘single-layer
potential’:

u(x, t) =
∫ t

0

∫

Γ

δ(t) − τ − ‖x − y‖

4π‖x − y‖
φ(y, τ )dsy dτ,

δ(t) being the Dirac delta distribution. Taking the limitx → Γ , we obtain the following boundary
integral equation for the unknown densityφ:

∫ t

0

∫

Γ
k(‖x − y‖, t − τ)φ(y, τ )dsy dτ = g(x, t) ∀ (x, t) ∈ Γ × (0, T) (2.1)
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with the kernel function

k(d, t) =
δ(t − d)

4πd
.

3. Convolution quadrature method

A time discretization of (2.1) can be obtained by introducing a step sizeΔt and a maximal number of
time stepsN and replacing the time convolution in (2.1) at time steptn = nΔt by a discrete convolution:

n∑

j =0

∫

Γ
ωΔt

n− j (‖x − y‖)φ(y, t j )dsy = g(x, tn) ∀ x ∈ Γ, 16 n 6 N, (3.1)

with convolution weightsωΔt
n (d).

We use the convolution quadrature method (Lubich, 1988a, 1994) to obtain the suitable weights
ωΔt

n (d). This method is based on a linear multistep method and inherits its stability properties. For the
derivation of the convolution quadrature method, we refer toHackbuschet al. (2005, 2007) andLubich
(1994). Here, we only give the definition of the quadrature weights.

DEFINITION 3.1 Let
k∑

j =0

α j u
n+ j −k = Δt

k∑

j =0

β j f (un+ j −k) (3.2)

be a linear multistep method for an ordinary differential equationu′(t) = f (u(t)), whereun ≈ u(tn).
Define

γ (ζ ) :=

∑k
j =0 α j ζ

k− j

∑k
j =0 β j ζ k− j

as the quotient of its generating polynomials.

DEFINITION 3.2 Given a linear multistep method (3.2), the ‘convolution weights’ωΔt
n (d) of the con-

volution quadrature method are the expansion coefficients in the formal power series

k̂

(
d,

γ (ζ )

Δt

)
=

∞∑

n=0

ωΔt
n (d)ζ n,

wherek̂(d, s) := e−sd

4πd is the Laplace transform of the kernel functionk(d, t) = δ(t−d)
4πd in (2.1).

The convolution weights can be derived by the Taylor expansion:

ωΔt
n (d) =

1

n!
∂n
ζ k̂

(
d,

γ (ζ )

Δt

)∣∣
∣
∣
ζ=0

.

Throughout this paper, we consider the second-order accurate,A-stable BDF2 scheme, with

γ (ζ ) =
1

2
(ζ 2 − 4ζ + 3).
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In that case, using the formula for multiple differentiation of composite functions (see, e.g.Gradshteyn &
Ryzhik, 1965), we obtain the explicit representation

ωΔt
n (d) =

1

n!

1

4πd

(
d

2Δt

)n/2

e− 3d
2Δt Hn

(√
2d

Δt

)

,

whereHn are the Hermite polynomials.
The convergence rate and stability properties of the convolution quadrature method are inherited by

the linear multistep method, i.e. if (3.2) is A-stable and second-order accurate, then so is (3.1). Stability
and convergence results for the semi-discrete problem can be found inHackbuschet al. (2005) and
Lubich (1994).

For the space discretization, we employ a Galerkin boundary element method. For this, we consider a
boundary element space, e.g. of piecewise constant or piecewise linear functions, and a basis(bi (x))M

i =1.
For the Galerkin boundary element method, we replaceφ(y, t j ) in (3.1) by

φ
j
Δt,h(y) =

M∑

i =1

φφφ j,i bi (y)

and impose the integral equation in a weak form:

n∑

j =0

M∑

i =1

φ j,i

∫

Γ

∫

Γ
ωΔt

n− j (x − y)bi (y)bk(x)dsy dsx =
∫

Γ
g(x, tn)bk(x)dsx

for all 16 k 6 M andn = 1, . . . , N. This can be written as a linear system
n∑

j =0

An− j φ j = gn, n = 1, . . . , N, (3.3)

with

(An− j )k,i :=
∫

Γ

∫

Γ
ωΔt

n− j (x − y)bi (y)bk(x)dsy dsx

and

(gn)k =
∫

Γ
g(x, nΔt)bk(x)dsx.

The compact formulation as a block triangular system is given by
−→
A N

−→
φφφ N = −→g N, (3.4)

where the block matrix
−→
A N ∈ RN M × RN M and the vector−→g N ∈ RN M are defined by

−→
A N :=

















A0 0 ∙ ∙ ∙ 0

A1 A0
. . .

...

A2 A1
. . .

... A2
. . .

. . .

. . .
. . .

. . . 0
AN ∙ ∙ ∙ A2 A1 A0

















and −→g N :=









g0

g1

...

gN









. (3.5)
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The matricesA j have dimensionM × M and are fully populated. The following simple procedure is
the algorithmic formulation of (3.4):

procedure solve;
begin
for i := 0 to N do begin
s := gi ;
for j := 0 to i − 1 do

s := s− Ai − j φφφ j (3.6)

solve

A0φφφi = s; (3.7)

end; end;
The solution of the systemA0φi = s should be realized by means of an iterative solver.

4. Sparse approximation by cut-off

The matrices in (3.3) are densely populated. This is due to the fact that, although the basis functions have
local support, they are coupled by the non-local convolution coefficientsωΔt

n (d). In Hackbuschet al.
(2005), we have introduced a sparse approximation of the matricesAn to reduce the storage require-
ments. To find such an approximation, we investigate the convolution coefficientsωΔt

n (d). Although
they are non-local functions, they can be replaced by more localized functions. In Fig.1, ω1

100(d) and
ω1

200(d) are shown. The functionsωΔt
n (d) have their maximum at aboutd = nΔt and outside an interval

of width O(Δt
√

n), they are small enough to be replaced by 0. InHackbuschet al.(2005), the following
results are shown.

LEMMA 4.1 Let

I Δt
n,ε :=

{[
0, 2

3Δt | logε|
]
, n = 0,

[tn − 3Δt
√

n| logε|, tn + 3Δt
√

n| logε|] ∩ diam(Ω), n > 0.
(4.1)

FIG. 1. Convolution weightωΔt
n (d), n = 100,n = 200,Δt = 1.
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Then, there holds

|ωΔt
n (d)| 6

ε

4πd
∀ d /∈ I Δt

n,ε. (4.2)

ReplacingωΔt
n (d) by zero, outside the intervalI Δt

n,ε leads to the following sparse approximation.

DEFINITION 4.2 For a given error toleranceε, let

Pε,n := {(i, j ) | ∃ (x, y) ∈ supp(bi ) ∩ supp(bj ): ‖x − y‖ ∈ I Δt
n,ε}.

The sparse approximatioñAn is obtained by setting

(Ãn)i, j :=

{
(An)i, j , if (i, j ) ∈ Pε,n,

0, otherwise.

The solutions of the algebraic system

n∑

j =0

Ãn− j φ̃̃φ̃φ j = gn, n = 1, . . . , N, (4.3)

are the coefficient vectors of the approximate Galerkin solutions

φ̃n
Δt,h :=

M∑

i =1

φ̃̃φ̃φn,i bi .

The following theorem follows directly fromHackbuschet al.(2005, Theorem 4.7) by using1−e−σΔt

2cΔcσ
6

CΔt therein.

THEOREM 4.3 Assume that the exact solutionφ(∙, t) is in Hm+1(Γ ) for any t ∈ [0, T ]. There exists a
constantC > 0 such that for all 0< ε < ChΔt3, the approximate Galerkin solutionsφ̃n

Δt,h exist and
satisfy the error estimate

‖φ̃n
Δt,h − φ(∙, t)‖H−1/2(Γ ) 6 Cg(T)(εh−1Δt−5 + Δt2 + hm+3/2). (4.4)

REMARK 4.4 The choice

Δt2 ∼ hm+3/2 and ε ∼ (Δt)7h ∼ h7m/2+25/4 (4.5)

balances the three error terms in (4.4).

The storage cost for the matrix̃An is given by

O

(
M max

{
1, t

3
2
n

√
Δt M log M

})
(4.6)

and some cases are summarized in Table1, assuming thatΔt2 ∼ hm+ 3
2 . The total storage amount

follows by summing (4.6) for n = 0, 1, . . . , N. By using(NΔt)2 ∼ 1 andM > O(N), we obtain

the total storage amount for allÃn, 06 n 6 N : O(N1/2M2 log M).

This is a significant reduction of the storage cost by a factor of O(N1/2) compared to the original
Galerkin method where the storage cost is O(N M2).
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TABLE 1 Storage requirements for̃An

m = 0 m = 1

n = O(log M) C M1+ 1
4 log5/2 M C M

n = O(N) Ct3/2
n M1+ 13

16 log M Ct3/2
n M1+ 11

16 log M

REMARK 4.5 InHaireret al.(1985) andLubich(1988a,b, 1994), FFT techniques have been introduced
to solve the system (3.4). While the storage costs stay unchanged O(N M2), the computational com-
plexity is reduced from O(N2M2) to O(N log2 N M2). Our cut off strategy reduces the storage cost
to O(N1/2M2), while the computational complexity is reduced less significantly. However, the use of
panel clustering (cf. Section5) will further reduce the computational complexity of our approach, see
Remark5.10.

The subroutine ‘procedure solve’ (cf. Section3) can easily be modified to take into account the
sparse approximation by replacing step (3.6) by

for all 16 k 6 M : sk := sk −
∑

`:(k,`)∈Pε,i − j

(Ai − j )k,`φ j,`, (4.7)

while the iterative solution of (3.7) should take into account the sparsity ofÃ0 as well.

5. Panel clustering

The panel clustering method was developed inHackbusch & Nowak(1989) for the data-sparse ap-
proximation of boundary integral operators which are related to elliptic boundary-value problems.
Since then, the field of sparse approximation of non-local operators has grown rapidly and nowadays
advanced versions of the panel clustering method are available and a large variety of alternative meth-
ods such as wavelet discretizations, multipole expansions,H -matrices etc. exists. However, these fast
methods (with the exception ofH -matrices) are developed mostly for problems of elliptic type, while
the data-sparse approximation of retarded potentials is to our knowledge still in its infancies. In this
section, we develop the panel clustering method for retarded potentials.

5.1 The algorithm

If we employ the cut off strategy as in Section4, a matrix–vector multiplicatioñAnφφφ with a vector
φφφ = (φi )

M
i =1 ∈ RM can be written in the form

∀ 16 k 6 M : (Ãnφ)k =
∑

`:(k,`)∈Pε,n

φ`

∫

Γ

∫

Γ
ωΔt

n (‖x − y‖)b`(y)bk(x)dΓy dΓx. (5.1)

For the application of the panel clustering algorithm, the setPε,n is split into admissible blocks
which we are going to explain next. The panel clustering method will be applied as soon as

n > npc := C max
{
log2 M, Mm− 1

2 log4 M
}

(5.2)

for some constantC. For n < npc, it will turn out that, for the simple cut off strategy, the complexity
has the same asymptotic behaviour. (Note that for the first time steps, the simple cut off strategy reduces
the complexity much more significantly than for the later time steps, see Table1.)
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LetNM := {1, 2, . . . , M}.

DEFINITION 5.1 A ‘cluster’c is a subset ofNM . If c is a cluster, the corresponding subdomain ofΓ is
Γc := ∪i ∈tsupp(bi ). The ‘cluster box’Qc ⊂ R3 is the minimal axis-parallel cuboid which containsΓc

and the ‘cluster size’Lc is the maximal side length ofQc.

DEFINITION 5.2 Let ε > 0 andn > npc. Let η > 0 be some control parameter. A pair of clusters
(c, s) ⊂ NM × NM is ‘admissible’ at time steptn if

max{Lc, Ls} 6 η
Δtnb

| logε|
. (5.3)

The powerb in (5.3) is a fixed number. Some comments are given in Remark5.3.

REMARK 5.3 In Sections5.2 and 6, we will prove that the choiceb = 1/4 preserves the optimal
convergence order of the unperturbed discretization (without panel clustering and cut-off). However, a
larger value ofb would improve the complexity estimates because, then, more blocks are admissible for
panel clustering. Numerical experiments indicate that a slightly increased valueb ≈ 0.3 preserves the
optimal convergence rates as well. In this light, we assume for some technical estimates thatb in (5.3)
satisfies

0.256 b 6 0.3. (5.4)

The panel clustering method starts by constructing a setP
pc
ε,n which consists of admissible, pairwise

disjoint pairs of clusters such that

(c, s) ∩Pε,n 6= ∅

and

Pε,n ⊂
⋃

(c,s)∈Ppc
ε,n

(c, s).

We skip here the explicit formulation of the divide-and-conquer algorithm for the efficient construction
ofPpc

ε,n by introducing a tree structure for the clusters but refer, e.g. toSauter & Schwab(2004) for the
details.

Expression (5.1) becomes

(Ãnφ)k =
∑

(c,s)∈Ppc
ε,n

∑

`:(k,`)∈(c,s)

φ`

∫

Γc

∫

Γs

ωΔt
n (‖x − y‖)b`(y)bk(x)dΓy dΓx. (5.5)

The kernel functionωΔt
n is now approximated onΓc × Γs by a separable expansion as follows: since

ωΔt
n (‖x − y‖) is defined onQc × Qs, we may define an approximation byČeby̌sev interpolation:

ωΔt
n (‖x − y‖) ≈ ω̌Δt

n (‖x − y‖) =
∑

μ,ν∈(Nq)3

L (μ)
c (x)L (ν)

s (y)ωΔt
n (‖xμ − yν‖), (5.6)

whereL (μ)
c andL (ν)

s , respectively, are the tensorized versions of theqth-order Lagrange polynomials
(properly scaled and translated toQc and Qs, respectively) corresponding to the tensorizedČeby̌sev
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nodesxμ andyν for Qc andQs, respectively. Replacing the kernel functionsωΔt
n under the integral in

(5.5) allows to perform the integration with respect tox andy separately. This leads to

∑

`:(k,`)∈(c,s)

φ`

∫

Γc

∫

Γs

ωΔt
n (‖x − y‖)b`(y)bk(x)dΓy dΓx

≈
∑

`:(k,`)∈(c,s)

∑

μ,ν∈(Nq)3

V(μ,k)
c Sμ,ν

(c,s)V
(ν,`)
s φ`,

where

V(μ,k)
c :=

∫

Γc

L (μ)
c (x)bk(x)dΓx and Sμ,ν

(c,s) := ωΔt
n (‖xμ − yν‖). (5.7)

Hence, the panel clustering approximation of (3.6) is given by replacing step (3.6) by

sk := sk −
∑

(c,s)∈Ppc
ε,n

∑

`:(k,`)∈(c,s)

∑

μ,ν∈(Nq)3

V(μ,k)
c Sμ,ν

(c,s)V
(ν,`)
s φ`. (5.8)

Remember that for the first time steps, the matricesAn are approximated using the simple cut off
strategy.

REMARK 5.4 To guarantee the existence of admissible clusters, we need at least the smallest cluster
pairs consisting of the support of the basis functionsbi to be admissible.

Form = 0, we require (according to (4.5))

η
Δtnb

| logε|
= O

(

η
h3/4nb

| logh|

)

> O(h) = L{i }

which is always satisfied.
Form = 1, we get (withb = 1/4)

η
Δtnb

| logε|
= O

(

η
h5/4nb

| logh|

)

= O

(
η

h

| logh|
(hn)1/4

)
.

Hence, the condition

n > C M1/2 log4 M = O(h−1| logh|4)

ensuresη Δtnb

| logε| > Ch. Note that this is guaranteed by (5.2).

Although the admissibility criterion (5.3) differs from the standard criterion for elliptic boundary-
value problems, the algorithmic formulation of the panel clustering is as in the elliptic case and, hence,
is described in numerous papers; see, e.g.Sauter & Schwab(2004) and we do not recall the details here.

5.2 Error analysis

We proceed with the error analysis of the resulting perturbed Galerkin discretization which leads to ana
priori choice of the interpolation orderq such that the convergence rate of the unperturbed discretization
is preserved.
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Standard estimates for tensorizedČeby̌sev interpolation yield

sup
z∈Qc−Qs

|ωΔt
n (‖z‖) − ω̌Δt

n (‖z‖)| 6 C
Lq+1(1 + log5 q)

22q+1(q + 1)!
max

i ∈{1,2,3}
sup

z∈Qc−Qs

∣
∣
∣∂

q+1
zi ω(‖z‖)

∣
∣
∣ ,

whereC > 0 is some constant independent of all parameters,L denotes the maximal side length of the
boxesQc andQs andQc − Qs is the difference domain{x − y : (x, y) ∈ Qc × Qs}.

THEOREM 5.5 For(c, s) ∈ Ppc
ε,n, assume that the partial derivatives ofωΔt

n (‖x − y‖) satisfy

max
16i63

∣
∣∂q

zi ω
Δt
n (‖z‖)

∣
∣ 6 q!‖z‖−1

(
Cλ

Δtnb

)q

∀ z ∈ Qc − Qs. (5.3a)

Then,

|ω̌Δt
n (‖x − y‖) − ωΔt

n (‖x − y‖)| 6
C1

dist(Qc, Qs)

(
C2 max{Lc, Ls}λ

Δtnb

)q+1

. (5.3b)

The validity of assumption (5.3a) withb as in Definition5.2and

λ := 2η + 3| logε| (5.9)

will be derived in Theorem6.6.

REMARK 5.6 Note that the panel clustering is applied on blocks(c, s) ⊂ Pε,n which satisfy (5.3) and,
hence there exists an(x0, y0) ∈ Γc × Γs such that

|‖x0 − y0‖ − tn| 6 λ̃Δt
√

n with λ̃ := 3| logε|.

As a consequence, we have for any(x, y) ∈ Γc × Γs (recallb < 1/2),

|‖x − y‖ − tn| 6 |‖x − y‖ − ‖x0 − y0‖| + λ̃Δt
√

n 6 Lc + Ls + λ̃Δt
√

n

6 (2ηnb−1/2 + λ̃)Δt
√

n 6 λΔt
√

n

with λ as in (5.9).

THEOREM 5.7 Let 0< ε < 1
8 andn > 16| log2 ε|. Let the assumptions of Theorem5.5be satisfied and

the interpolation order be chosen according toq > | logε|/ log 2. Let(c, s) ∈ Ppc
ε,n be admissible for

some 0< η 6 η0 and sufficiently smallη0 = O(1). Then,

|ω̌Δt
n (‖x − y‖) − ωΔt

n (‖x − y‖)| 6 C
ε

‖x − y‖
∀ (x, y) ∈ Γc × Γs (5.10)

for someC independent ofn andΔt .

Proof. Assume that(c, s) ∈ Ppc
ε,n. As derived above,

|‖x − y‖ − tn| 6
λtn√

n
∀ (x, y) ∈ Γc × Γs.
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Thus, ifλ <
√

n, we have

tn 6
(

1 −
λ

√
n

)−1

‖x − y‖.

We also have

dist(Qc, Qs) > ‖x − y‖ −
√

3(Lc + Ls) > ‖x − y‖ − 2
√

3ηtnnb−1

> ‖x − y‖



1 −
2
√

3ηnb−1

1 − λ√
n



 .

Under the assumptions

n > 16| logε|2 (5.11)

and

η <
| logε|

4
,

we haveλ <
√

n and obtain

dist(Qc, Qs) > ‖x − y‖

(

1 −

√
3

2
| logε|−

1
2

)

.

Assuming thatε 6 1
8, we obtain

1

dist(Qc, Qs)
6

2

‖x − y‖
. (5.12)

Conditions (5.3) and (5.11) and the definition ofλ imply

C2 max{Lc, Ls}λ

Δtnb
6 C3η.

Hence, from Theorem5.5, we obtain the estimate

|ω̌Δt
n (‖x − y‖) − ωΔt

n (‖x − y‖)| 6
C1

dist(Qc, Qs)
(C3η)q+1.

Inserting (5.12) leads to

|ω̌Δt
n (‖x − y‖) − ωΔt

n (‖x − y‖)| 6
2C1

‖x − y‖
(C3η)q+1.

Finally, the conditionη0 6 (2C3)
−1 implies that the interpolation order

q >
| logε|

log 2

leads to an approximation which satisfies

|ω̌Δt
n (‖x − y‖) − ωΔt

n (‖x − y‖)| 6
2C1ε

‖x − y‖
.

�
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In Hackbuschet al. (2005), an analysis of the Galerkin method has been derived which takes into
account additional perturbations. Since it is only based on abstract approximations which satisfy an error
estimate of type (5.10), we directly obtain a similar convergence theorem also for the panel clustering
method. In the following, we denote bỹφn

Δt,k the solution at timetn of the Galerkin discretization with
cut off strategy and panel clustering.

THEOREM5.8 Let the assumption of Theorem5.7be satisfied. We assume that the exact solutionφ(∙, t)
is in Hm+1(Γ ) for any t ∈ [0, T ]. Then, there exists aC > 0 such that for all cut off parametersε in
(4.1), such that 0< ε < ChΔt3 and interpolation ordersq > | logε|/ log 2, the solutionφ̃n

Δt,h with
cut-off and panel clustering satisfies the error estimate

‖φ̃n
Δt,h − φ(∙, tn)‖H−1/2(Γ ) 6 Cg(T)(εh−1Δt−5 + Δt2 + hm+3/2).

COROLLARY 5.9 Let the assumptions of Theorem5.8 be satisfied. LetΔt ∼ hm+3/2 and choose
ε ∼ h7m/2+25/4. Then, the solutioñφΔt,h exists and converges with the optimal rate

‖φ̃n
Δt,h − φ(∙, tn)‖H−1/2(Γ ) 6 Cg(T)hm+3/2 ∼ Cg(T)Δt2.

5.3 Complexity estimates

In this subsection, we investigate the complexity of our sparse approximation of the wave discretization.
We always employ the theoretical value 1/4 for the exponentb in (5.3) (cf. Remark5.3).

5.3.1 Sparse approximation of the system matrixÃn. To simplify the complexity analysis, we assume
that only the simple cut off strategy and not the panel clustering method is applied for the first time steps:

06 n 6 npc. (5.13)

By using (4.5) and (4.6), the number of non-zero entries of allÃn in the case (5.13) is estimated from

above by O(N M
7
8 log6 M) and O(N M1+ 3

8 log11 M) for m = 0 andm = 1, respectively.

5.3.2 Panel clustering. The tree structure for the panel clustering algorithm has to be generated only
once and, hence, the computational and storage complexity is negligible compared to the other steps of
the algorithm. The entries of the matricesV (cf. (5.7)) are computed recursively by using the tree struc-
ture. The details can be found inHackbuschet al. (2007) andSauter & Schwab(2004). In Hackbusch
et al. (2007), it is shown that the computational and storage complexity is negligible compared to the
generation of the influence matricesS(c,s) (cf. (5.7)).

5.3.3 Computation of the influence matrices.First, we compute the cardinality ofPpc
ε,n. Note that

the maximal diameter of a clusterc satisfying condition (5.3) is bounded by

Lc 6 η
Δtnb

| logε|
. (5.14)

An assumption on the cluster tree and the geometric shape of the surface is that

|{(x, y) ∈ Γ × Γ | ‖x − y‖ ∈ I Δt
n,ε}| = O(

√
Δt t3/2

n | logε|),
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TABLE 2 Storage requirements for the panel clustering approximation and sparse approximation

Full-matrix
representation Cut off strategy Panel clustering + Cut off strategy

m = 0 O(N M2) O
(
N M1+ 13

16 log M
)

O
(
N M1− 1

16 |log M |11 )

m = 1 O(N M2) O
(
N M1+ 11

16 log M
)

O
(
N M1+ 9

16 |log M |11 )

where|ω| denotes the area measure of someω ⊂ Γ × Γ (cf. Hackbuschet al., 2007), and not only
inequality (5.14) but also the reverse inequality holds for some other constantη′. Hence, for sufficiently
smallΔt , the number of pairs of clusters satisfying (5.3) is bounded by

O




√

Δt t3/2
n | logε|

(
η′ Δtnb

| logε|

)4



 . (5.15)

The storage requirements per matrixS(c,s) are given byq6 ∼ | log6 ε| and this leads to a storage com-
plexity of

O

(
n3/2−4b| logε|11

η′4Δt2

)

. (5.16)

Using the relations as in Corollary5.9

Δt2 ∼ hm+3/2, ε ∼ h7m/2+25/4, M = O(h−2),

we see that (5.16) is equivalent to (we use here 4b = 1)

O(n1/2| log M |11Mm/2+3/4).

To compute the total storage cost, we sum over alln ∈ {npc, . . . , N} and obtain

N∑

n=npc

n
1
2 | logε|11M

m
2 + 3

4 6 C1N
3
2 | log M |11M

m
2 + 3

4 6 C2N M
5m
8 + 15

16 | log M |11

= C2






N M
15
16 | log M |11, m = 0,

N M1+ 9
16 | log M |11, m = 1.

The total storage requirements are summarized in Table2.
The table shows that the panel clustering method combined with the cut off strategy reduces the

complexity of the space–time discretization of retarded integral equations significantly. For piecewise
constant boundary elements, we get a storage complexity which behaves even better than linearly, i.e.
O(N M).

REMARK 5.10

a. The panel clustering method is based on a twofold hierarchical structure:1 The clusters are or-
ganized in a cluster tree and the expansion system on each cluster are polynomials. Hence, by

1In the context ofH -matrices, this twofold hierarchy is calledH 2-format.
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elementary properties of polynomials, the expansion system on a cluster can be build from the
expansion systems of the sons of the cluster. By employing this double hierarchy, the computa-
tional cost for a matrix–vector multiplication is proportional to the storage cost of the matrix (in
the sparse panel clustering format).

b. Note that in the panel clustering regime (n > npc), the integration of the highly oscillatory
kernel functions is no longer necessary (cf.5.8). Efficient quadrature methods for the integrals
for n < npc is a topic of further research and we skip this aspect from the investigation of the
computational costs here.

6. Estimate of the derivatives of the convolution coefficients

In Section5, to obtain suitable error estimates, bounds for the derivatives ofωΔt
n (‖x−y‖) were required.

In this section, we derive such bounds and estimates onb in Theorem5.5.
In Remark5.6, we have seen that the panel clustering algorithm is applied on pairs of clusters(c, s)

such that for all(x, y) ∈ Γc × Γs, we have

|d − n| 6 λ
√

n with d = ‖x − y‖/Δt and λ as in (5.9). (6.1)

Hence, we will investigate the functionωn(d) only for values ofd which satisfy (6.1).
The estimates are obtained in several steps. In the first step, we consider the auxiliary functions

ω̃n(d) := 4πdΔtωΔt
n (dΔt) =

1

n!

(
d

2

) n
2

e− 3d
2 Hn(

√
2d), (6.2)

which are independent ofΔt . We will determine bounds for the derivatives ofω̃n(d) with respect tod
in Theorem6.5.

Using the Leibniz rule, the derivatives of the original convolution coefficientsωΔt
n (d) with respect

to d are given by

∂
q
d ωΔt

n (d) =
1

4πd

q!

Δtq

q∑

l=0

1

l !

(
−

d

Δt

)l−q

ω̃(l )
n

(
d

Δt

)
,

whereω̃
(l )
n (∙) denotes thel th derivative. In the final step, estimates for∂

q
xi ω

Δt
n (‖x − y‖) are obtained in

Theorem6.6.
To find estimates for̃ω(l )

n (d), we first consider the functions and their first derivatives. For this, we
use an approximation for the Hermite polynomials given byOlver (1963). The proof of the following
lemma is given in the extended version of this paper (seeKress & Sauter, 2006, Appendix).

Note that in this paper,C denotes a generic constant independent ofn, Δt andh with, possibly,
different values for each inequality.

LEMMA 6.1 The following estimates are valid forx > 0 andn > 1:
∣
∣
∣
∣e

− x2
2 Hn(x)

∣
∣
∣
∣ 6 Cn! e

n
2

(
2

n

) n
2

n− 1
3 (6.3)

and
∣
∣
∣
∣∂x

(
e− x2

2 Hn(x)

)∣∣
∣
∣ 6 Cn! e

n
2

(
2

n

) n
2

n− 1
6 max

{
|x2 − (2n + 1)|

1
4 n− 1

12 , x
5
12n− 29

24 , 1
}

. (6.4)

With Lemma6.1, we obtain the following estimate for̃ωn(d) andω̃′
n(d).
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LEMMA 6.2 Forω̃n(d) as defined in (6.2), the following bound holds forn > 1:

|ω̃n(d)| 6 Cn− 1
3

(
d

n

) n
2

e− d−n
2 6 Cn− 1

3 . (6.5)

Forn > 2 and|d − n| 6 λ
√

n,

|ω̃′
n(d)| 6 Cλn− 5

8

(
d

n

) n
2−1

e
d−n

2 6 Cλn− 5
8 (6.6)

with λ as in (5.9).

Proof. Due to (6.3), we have

|ω̃n(d)| =
1

n!

(
d

2

) n
2

e− d
2 |e−d Hn(

√
2d)| 6 Cn− 1

3

(
d

n

) n
2

e− d−n
2 .

The last inequality in (6.5) follows from a straightforward analysis which shows that the maximum of
(d

n

) n
2 e− d−n

2 is taken atn = d and hence

(
d

n

) n
2

e− d−n
2 6 1. (6.7)

For the first derivative, we have

ω̃′
n(d) =

1

n!

((
d

2

) n
2

e− d
2 ∂d(e−d Hn(

√
2d)) + ∂d

((
d

2

) n
2

e− d
2

)

e−d Hn(
√

2d)

)

=
1

n!

(
d

2

) n
2

e− d
2 ∂x

(
e− x2

2 Hn(x)

) ∣∣
∣
∣
x=

√
2d

(2d)−
1
2 −

1

2

(
d

n

)−1(d

n
− 1

)
ω̃n(d).

With (6.4) and|d − n| 6 λ
√

n, we obtain

|ω̃′
n(d)| 6 C

(
d

n

) n
2− 1

2

e− d−n
2 n− 2

3 max

{∣
∣
∣
∣d −

(
n +

1

2

)∣∣
∣
∣

1
4

n− 1
12 , d

5
24n− 29

24 , 1

}

+ Cλn− 5
6

(
d

n

) n
2−1

e− d−n
2

6 Cλ1/4
(

d

n

) n
2− 1

2

e− d−n
2 n− 2

3 n
1
24 + Cλn− 5

6

(
d

n

) n
2−1

e− d−n
2 .

Finally, with (4.5),

(
d

n

) 1
2

6
(

1 +
|d − n|

n

) 1
2

6
(

1 +
λ

√
n

) 1
2

6
(

1 + C
1 + logn

√
n

) 1
2

6 C

and by using (6.7), we arrive at (6.6). �
To obtain estimates for the higher derivatives ofω̃n(d), we use the following two lemmas.
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LEMMA 6.3 Forn ∈ N0, the following relation holds:

ω̃′
n(d) = −

3

2
ω̃n(d) + 2ω̃n−1(d) −

1

2
ω̃n−2(d), (6.8)

where formallyω̃−1 := ω̃−2 := 0.

Proof. We recall

k̂

(
d,

γ (ζ )

Δt

)
=

e− γ (ζ )d
Δt

4πd
=

∞∑

n=0

ωΔt
n (d)ζ n.

Using the definition of̃ωn(d), we obtain

e−γ (ζ )d =
∞∑

n=0

ω̃n(d)ζ n. (6.9)

Differentiating both sides of (6.9) with respect tod, we obtain

−γ (ζ )e−γ (ζ )d = −
∞∑

n=0

ω̃n(d)γ (ζ )ζ n =
∞∑

n=0

ω̃′
n(d)ζ n.

The statement of the lemma now follows by equating the powers ofζ . �
The following lemma can be obtained from the recursion formula for the Hermite polynomials

defined byH0(x) = 1, H1(x) = 2x and forn > 1,

Hn+1(x) = 2x Hn(x) − 2nHn−1(x).

LEMMA 6.4 Forn ∈ N>1, the recursion

ω̃n(d) =
d

n
(2ω̃n−1(d) − ω̃n−2(d)) (6.10)

holds.

Now, we can prove a bound for the derivatives ofω̃n(d).

THEOREM 6.5 Let n
2 > q, n > 1, and|d − n| 6 λ

√
n with λ as in (5.9). Then,

|ω̃(q)
n (d)| 6 q!(Cλ)qn−aq

(
d

n

) n
2−q

e− d−n
2 6 q!(Cλ)qn−aq , (6.11)

with

a0 =
1

3
, a1 =

5

8
and aq =

{
a1 + q−1

4 , q odd,

a0 + q
4 , q even,

(6.12)

and a generic constantC.
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Proof. The proof is done by induction. Forq = 0 andq = 1, the statement follows from Lemma6.2.
Next, we show the statement forq = 2. For simplicity, we omit the argumentd in ω̃n(d) andω̃′

n(d).
When differentiating (6.8), we obtain (recall̃ω−1 = ω̃−2 = 0)

ω̃′′
n = −

3

2
(ω̃′

n − ω̃′
n−1) +

1

2
(ω̃′

n−1 − ω̃′
n−2). (6.13)

Using (6.8) and (6.10), we obtain (recalln > 1)

ω̃′
n = −

3

2
ω̃n + 2ω̃n−1 −

1

2
ω̃n−2

= −
3

2
ω̃n +

n − 1

2n
ω̃n−1 +

1

2n
ω̃n−1 +

3

2
ω̃n−1 −

1

2
ω̃n−2

=
d

n

(
−3ω̃n−1 +

5

2
ω̃n−2 −

1

2
ω̃n−3

)
+

1

2n
ω̃n−1 +

3

2
ω̃n−1 −

1

2
ω̃n−2

=
d

n

(
ω̃′

n−1 −
3

2
ω̃n−1 +

1

2
ω̃n−2

)
+

1

2n
ω̃n−1 +

3

2
ω̃n−1 −

1

2
ω̃n−2

=
d

n
ω̃′

n−1 −
3

2

(
d

n
− 1

)
ω̃n−1 +

1

2

(
d

n
− 1

)
ω̃n−2 +

1

2n
ω̃n−1.

Thus,

ω̃′
n − ω̃′

n−1 =
(

d

n
− 1

)(
ω̃′

n−1 −
3

2
ω̃n−1 +

1

2
ω̃n−2

)
+

1

2n
ω̃n−1

=
(

d

n
− 1

)(
−3ω̃n−1 +

5

2
ω̃n−2 −

1

2
ω̃n−3

)
+

1

2n
ω̃n−1. (6.14)

By using
∣
∣d

n − 1
∣
∣ 6 λn− 1

2 and Lemma6.2, we obtain

|ω̃′
n − ω̃′

n−1| 6 Cλn− 1
2 (|ω̃n−1| + |ω̃n−2| + |ω̃n−3|)

6 Cλn− 1
2− 1

3 e− d−n
2




min{n−1,3}∑

k=1

(
n − k

n

)
− 1

3

(
d

n

n

n − k

) n−k
2



 .

Note that, for anyα > 0,

max
k=1,2,3

sup
n>k+1

(
n − k

n

)−α

= 2α and max
k=1,2,3

sup
n>k+1

(
n

n − k

) n−k
2

= e3/2 (6.15)
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and, hence,

|ω̃′
n − ω̃′

n−1| 6 Cλn− 1
2− 1

3 e− d−n
2

(
d

n

) n−3
2

.

Using (6.13), (6.15) and Lemma6.2, we obtain

|ω̃′′
n| 6 Cλn−a2 e− d−n

2

(
d

n

) n
2−2

(6.16)

with

a2 = a0 +
1

2
.

For the induction stepq → q + 1, we assume that (6.11) holds forq. To show that (6.11) also holds for
q + 1, we first differentiate (6.8) q times to obtain

ω̃
(q+1)
n = −

3

2
(ω̃

(q)
n − ω̃

(q)
n−1) +

1

2
(ω̃

(q)
n−1 − ω̃

(q)
n−2). (6.17)

Furthermore, by differentiating (6.14), we get

ω̃
(q)
n − ω̃

(q)
n−1 =

q − 1

n

(
−3ω̃

(q−2)
n−1 +

5

2
ω̃

(q−2)
n−2 −

1

2
ω̃

(q−2)
n−3

)
+

1

2n
ω̃

(q−1)
n−1

+
(

d

n
− 1

)(
−3ω̃

(q−1)
n−1 +

5

2
ω̃

(q−1)
n−2 −

1

2
ω̃

(q−1)
n−3

)
. (6.18)

Taking into account (6.1) and the induction assumption, we get

|ω̃(q)
n − ω̃

(q)
n−1| 6 c1

{
q − 1

n
(|ω̃(q−2)

n−1 | + |ω̃(q−2)
n−2 | + |ω̃(q−2)

n−3 |)

+ λn− 1
2 (|ω̃(q−1)

n−1 | + |ω̃(q−1)
n−2 | + |ω̃(q−1)

n−3 |)
}

6 c1





(q − 1)!

n
(Cλ)q−2 e− d−n

2

min{n−1,3}∑

k=1

(n − k)−aq−2

(
d

n − k

) n−k
2 −q+2

+ λn− 1
2 (q − 1)!(Cλ)q−1 e− d−n

2

min{n−1,3}∑

k=1

(n − k)−aq−1

(
d

n − k

) n−k
2 −q+1






(6.15)
6 c1(q + 1)!(Cλ)q e− d−n

2

(
d

n

) n−3
2 −q+1 {

n−aq−2−1 + n−aq−1−
1
2

}
.

Combining the above equation with (6.17) yields

|ω̃(q+1)
n | 6 (q + 1)!(Cλ)q+1 e− d−n

2

(
d

n

) n
2−(q+1)

n−aq+1
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with

aq = min

{
aq−2 +

1

2
, aq−3 + 1

}
=

{
a1 + q−1

4 , q odd,

a0 + q
4 , q even.

�
We have computed the maximum of the derivatives in numerical experiments to verify the sharpness

of estimate (6.11). The results are shown in Table3. We compare the derivatives ofω̃400(d) andω̃600(d)

with respect tod and giveãq = − log
(

‖ω̃(q)
400(d)‖∞

‖ω̃(q)
600(d)‖∞

)/
log(2/3). It can be seen that̃aq ≈ 0.33+ 0.3q,

i.e.b ≈ 0.3 which compares well with the theoretical resultb > 0.25.
From the bounds on the derivatives ofω̃n(d), we now obtain estimates for

∣
∣∂q

xi ω
Δt
n (‖x − y‖)

∣
∣.

THEOREM 6.6 Forn
2 > q and

∣
∣ ‖x−y‖

Δt − n
∣
∣ 6 λ

√
n with λ as in (5.9), we have

∣
∣∂q

xi ω
Δt
n (‖x − y‖)

∣
∣ 6

(Cλ)qq!

4π‖x − y‖
Δt−qn−aq

(
‖x − y‖

nΔt

) n
2−q

e−
‖x−y‖

Δt −n
2

6
(Cλ)qq!

‖x − y‖
Δt−qn−aq ,

whereC > 0 is a generic constant independent of the discretization parameters.

For the proof of Theorem6.6, we need the following lemma.

LEMMA 6.7 Letd = d(x, y) =
√∑3

i =1(xi − yi )2. For a functionf (d), we have forq > 1,

∣
∣∂q

xi f (d)
∣
∣ 6 Cqq! max

16ν6q

1

ν!
| f (ν)(d)|

1

dq−ν
.

Proof. By induction, one can easily prove that

∂
q
xi f (d) =

q∑

ν=1

gν,q(x, y) f (ν)(d),

with g1,1(x, y) = xi −yi
d and forq > 2 and 16 ν 6 q,

gν,q(x, y) = ∂xi gν,q−1(x, y) + gν−1,q−1(x, y)
xi − yi

d
,

with g0,q = gq,q−1 = 0. In addition, we show by induction that

gν,q(x, y) =

min
{⌊

q
2

⌋
,q−ν

}
∑

μ=0

αq
μ,ν

(xi − yi )
q−2μ

d2q−ν−2μ
, 16 ν 6 q, (6.19)

TABLE 3 ãq for 06 q 6 6

q 0 1 2 3 4 5 6
0.33 0.63 0.92 1.24 1.50 1.82 2.13
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for some coefficientsαq
μ,ν . For q = 1, the statement follows from the definition ofg1,1(x, y) with

a1
0,1 = 1.

Assume that (6.19) holds for someq. Then,

gν,q+1(x, y) = ∂xi gν,q(x, y) + gν−1,q(x, y)
xi − yi

d

=

min
{⌊

q
2

⌋
,q−ν

}
∑

μ=0

(q − 2μ)αq
μ,ν

(xi − yi )
q−2μ−1

d2q−ν−2μ

−

min
{⌊

q
2

⌋
,q−ν

}
∑

μ=0

(2q − ν − 2μ)αq
μ,ν

(xi − yi )
q+1−2μ

d2q+2−ν−2μ

+

min
{⌊

q
2

⌋
,q−ν

}
∑

μ=0

α
q
μ,ν−1

(xi − yi )
q−2μ+1

d2q−ν+2−2μ

=

min
{⌊

q+1
2

⌋
,q+1−ν

}
∑

μ=0

αq+1
μν

(xi − yi )
(q+1)−2μ

d2(q+1)−ν−2μ

with

αq+1
μ,ν = (q − 2(μ − 1))α

q
μ−1,ν − (2q − ν − 2μ)αq

μ,ν + α
q
μ,ν−1, (6.20)

where we set all coefficientsαq
μ,ν not occurring in (6.19) to 0. Thus,

We show by induction that|αq
μ,ν | 6 cq

1
(q−1)!

ν! for some constantc1. First, for q = 1, we have
α1

0,1 = 1.

Let |αq
μ,ν | 6 cq

1
(q−1)!

ν! for someq. We use (6.20) andν 6 q + 1 to obtain

|αq+1
μ,ν | 6 3qcq

1
(q − 1)!

ν!
+ cq

1ν
(q − 1)!

ν!
6 cq+1

1
q!

ν!
,

when choosingc1 large enough. Combining the above equation with (6.19) results in

|gν,q(x, y)| 6 cq
1

q!

ν!

1

dq−ν
.

Usingq 6 2q, we obtain
∣
∣∂q

xi f (d)
∣
∣ 6 q max

16ν6q
|gν,q(x, y)|| f (ν)(d)|

6 (2c1)
qq! max

16ν6q

1

ν!
| f (ν)(d)|

1

dq−ν
.

�
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Proof of Theorem6.6. For simpler notation, we writed = ‖x − y‖. We have

ωΔt
n (d) =

1

4πd
ω̃n

(
d

Δt

)

and

∂
q
d ωΔt

n (d) =
1

4πd

1

Δtq

q∑

l=0

q!

l !

(
−

d

Δt

)l−q

ω̃(l )
n

(
d

Δt

)
(6.21)

Forq = 0, the statement of the theorem follows easily by combining (6.5) with (6.21). Forq > 1, from
Theorem6.5and Lemma6.7, we conclude that (recalln/2> q)

∣
∣∂q

xi ω
Δt
n (d)

∣
∣ 6 Cqq! max

16ν6q

1

ν!
|∂ν

dωΔt
n (d)|d−q+ν

6
Cqq!

4πd
max

16ν6q

1

Δtν

ν∑

l=0

1

l !

(
d

Δt

)l−ν

d−q+ν

∣
∣
∣
∣ω̃

(l )
n

(
d

Δt

)∣∣
∣
∣

6
Cqq!

4πd
max

16ν6q

ν∑

l=0

(Cλ)l dl−qn−al Δt−l
(

d

nΔt

) n
2−l

e−
d
Δt −n

2

=
Cqq!

4πd
Δt−q

(
d

nΔt

) n
2−q

e−
d
Δt −n

2 max
16ν6q

ν∑

l=0

(Cλ)l n−al −q+l .

From (6.12), it is easy to see

aq − al − q + l 6 0

and, hence,

∣
∣∂q

xi ω
Δt
n (d)

∣
∣ 6

Cqq!

4πd
Δt−q

(
d

nΔt

) n
2−q

e−
d
Δt −n

2 n−aq
(Cλ)q+1 − 1

Cλ − 1
,

where as beforeC denotes a generic constant. The last term is bounded by 2(Cλ)q providedCλ > 2.�

TABLE 4 Storage requirements for sparse approximation: n= 0 andΔt = 0.1

M Afull Asparse Relativeerror

8192 512 MB 4.4 MB 7.1 × 10−3

16.2 MB 7.3 × 10−4

34 MB 8.2 × 10−5

63.1 MB 5.0 × 10−6

91.5 MB 6.2 × 10−7

124 MB 7.7 × 10−8
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TABLE 5 Storage requirements for panel clustering approximation: n= 15
andΔt = 0.2

M Afull q Apc Relativeerror

32768 8192 MB 3 22.6 MB 2.0 × 10−3

4 139 MB 8.0 × 10−4

TABLE 6 Storage requirements for panel clustering approximation: n= 30
andΔt = 0.1

M Afull q Apc Relativeerror

32768 8192 MB 3 22.6 MB 5.0 × 10−2

4 139 MB 1.7 × 10−2

7. Outlook

In this paper, we have analysed a panel clustering approximation for the wave equation. We have derived
upper bounds for both storage requirements and computational complexity. From the theoretical point of
view, the cut off and panel clustering approximation results in a significant reduction of the complexity.
However, in a next step, it is important to perform numerical experiments to see at what problem size
the asymptotic gain of our method becomes dominant.

In Tables4–6, we show the results of some preliminary numerical tests to illustrate the storage gain.
In Table4, we have consideredn = 0 and the sparse approximation technique only. In Tables5 and6,
we have considered the panel clustering approach for two differentn andΔt .

Additional tests have shown that a recompression technique based on a singular value decomposition
of the blocks and possibly joining of several blocks (Grasedyck, 2004) leads to much reduced storage
requirements especially for increasingq.

We have not yet addressed the need of special quadrature techniques. One benefit of the panel clus-
tering technique is the fact that no integration of the kernel functions is necessary. The only integrals
required involve Lagrange polynomials and the basis functions of the boundary element space. For the
cut off approximation, we still need to integrate the kernel functionsωΔt

n . For the efficient computation
of these integrals, the choice of the quadrature method is important.
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