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We discuss the adaptive behaviour of a collection of heterogeneous dynamical systems interacting via
a weighted network. At each vertex, the network is endowed with a dynamical system with individ-
ual (initially different) control parameters governing the local dynamics. We then implement a class of
network interactions which generates a self-adaptive behaviour, driving all local dynamics to adopt a
set of consensual values for their local parameters. While for ordinary synchronization each individual
dynamical system is restored to its original dynamics once network interactions are removed, here the
consensual values of control parameters are definitively acquired—even if interactions are removed. For
a wide class of dynamical systems, we show analytically how such a plastic and self-adaptive training
of control parameters can be realized. We base our study on local dynamics characterized by dissipa-
tive ortho-gradient vector fields encompassing a vast class of attractors (in particular limit cycles). The
forces generated by the coupling network are derived from a generalized potential. A set of numerical
experiments enables us to observe the transient dynamics and corroborate the analytical results obtained.

Keywords: ortho-gradient dynamics; mixed canonical-dissipative systems; limit cycle oscillators; self-
adaptive mechanisms; networks’ adjacency and Laplacian matrices; Lyapunov method.

‘Tu dépasses sans te perdre
Les frontières de ton corps’
Paul Eluard

1. Introduction

Bio-mechanical systems (e.g. the leg or arm of a robot) are often modelled by damped vibrating systems

ẋv = −λ̄yv − fxv + xo(t),

ẏv = −λ̄xv − fyv + yo(t),

c© The authors 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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where xo(t) and yo(t) are the output signals of the locomotion controller given by a limit cycle oscillator,
one of the simplest forms being

ẋo = −λyo − (x2
o + y2

o − 1)xo,

ẏo = −λxo − (x2
o + y2

o − 1)yo.

The limit cycle oscillator (i.e. locomotion controller) excites the damped vibrating system in order to
produce locomotion. To ensure the maximum amplitude response of xv(t) (e.g. the maximum leg stride),
the locomotion controller’s frequency must be set at the vibrating systems’ resonant frequency (here
λ̄ = λ). However, due to changing characteristics of the bio-mechanical system (e.g. mass changes—
added load, length changes—growth), detuning occurs and the locomotion controller will no longer
excite the vibrating system at the resonant frequency. Hence, as suggested in Buchli & Ijspeert (2004)
and Righetti et al. (2006), the locomotion controller must automatically adapt λ̄ to ensure resonance—
that is, λ itself becomes time-dependent (i.e. λ� λ(t)) and has its own dynamics. Building on the
example presented in Righetti et al. (2006), we propose an adaptive frequency oscillator as

ẋo = −λyo − (x2
o + y2

o − 1)xo,

ẏo = −λxo − (x2
o + y2

o − 1)yo,

λ̇ = −(yvxo − xvyo),

for which we have limt→∞ λ(t) = λ̄, as numerous numerical investigations do indeed confirm.
Based on this motivation, here we implement adaptive mechanisms in a network of N � 2 coupled

individual dynamical systems where all individual systems are allowed to self-adapt to each other.
We first start by considering an N-vertex network where each vertex is equipped with an individual
dynamical system. The N local systems are additively coupled via time- and state-variable dependent
edges. The global dynamical system reads

Ẋk = Lk(Xk; Λk)︸ ︷︷ ︸
local dynamics

+ Ck(X , Δ)︸ ︷︷ ︸
coupling dynamics

Δ̇ = B(X , Δ)︸ ︷︷ ︸
binding dynamics

k = 1, . . . , N , (1.1)

where Xk ∈ R
pk are the state variables of the kth node, Lk is a local vector field governing the local

dynamics and Λk ∈ R
qk are local control parameters.1 The coupling dynamics Ck(X ; Δ) ∈ R

pk

describe how the local dynamics interact. The notation is X := (X1, . . . , XN ), and Δ stands for
the variables influencing the environment (e.g. coupling weights, edges between vertices of the net-
work, etc.). The set Δ evolves according to the binding dynamics B. Note that Equations (1.1) is
encompassed in the general framework exposed in Blekhman (1988).

Even for the simpler case involving functionally homogeneous dynamics Lk ≡ L but heterogeneous
control parameters Λk |= Λj for j |= k, it is generally unknown when synchronized collective dynami-
cal states may emerge from Equations (1.1). This question still motivates a wealth of papers, a field
recently revived by the seminal contribution of Pecora & Carroll (1998) who explicitly studied the net-
work, induced synchronization capability. For diffusively coupled homogeneous dynamics Lk ≡ L with

1 We use the following notation: we use; to separate the variables from the parameters in the arguments of a function.
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Λk = Λj, the master stability equation proposed in Pecora & Carroll (1998) allows to investigate the
local stability of synchronized orbits characterized by Xk(t) = Xc(t) for all k. For slight heterogeneity
(i.e. small Λk mismatches), the master stability equation still allows one to approximately characterize
the emergence of synchronized motion—as corroborated by numerical probing in Hramov et al. (2008).

A common feature of all papers describing synchronization of systems with Lk ≡ L but different
Λk is that the synchronized dynamical state is maintained by the permanent action of the network con-
nections. Hence, if network interactions are switched off, synchronization is destroyed and each local
system is restored to its individual and distinct evolution. In our present approach, we study an alter-
native class of dynamics for which the network interactions confer persistent features in the local
dynamics, i.e. interactions induce ‘plastic’ deformations. As a result, if after a given time the inter-
actions are removed, the local dynamics does not recover its original behaviour, but exhibits a
permanent alteration. In our present models, this is realized via a self-adaptive learning rule which
allows the Λk parameters to evolve (i.e. adapt with time). The study of adaptation phenomena is an
established research axis with wide interdisciplinary relevance. Among the wealth of available papers,
the seminal work of Ermentrout (1991) and Acebrón & Spigler’s (1998) article are closely related to
our present interest. Recently, Taylor et al. (2010) considered all-to-all coupled phase oscillators with
an adaptive frequency mechanism. Our present models generalize (Taylor et al., 2010) with respect to
both the local dynamics and the coupling networks (the all-to-all assumption is relaxed).

Technically, the implementation of a learning rule effectively enlarges the dimensionality of the
global system by introducing additional parametric dynamics in Equations (1.1). This drives us
to consider dynamical systems of the form

Ẋk = Lk(Xk , Λk)︸ ︷︷ ︸
local dynamics

+ Ck(X , Δ)︸ ︷︷ ︸
coupling dynamics

Δ̇ = B(X , Δ)︸ ︷︷ ︸
binding dynamics

Λ̇k = Pk(X , Δ)︸ ︷︷ ︸
parametric dynamics

k = 1, . . . , N , (1.2)

We thus confer to Λk the status of new variables which we call parametric variables from now on. Note
that by suitably renaming the variables, Equations (1.2) can be encompassed by Equations (1.1). Nev-
ertheless, we insist on presenting the network dynamics in the form of Equations (1.2) as this explicitly
isolates the self-adaptive mechanism that, via the network environment, plastically deforms the local
parameters.

As initiated in Rodriguez & Hongler (2009b) and in the case of homogeneous dynamics Lk ≡ L
(i.e. |Λk| = q ∀k), we focus on Pk-dynamics that ultimately drive the Λk towards a set of common and
constant consensual valued parameters Λc

lim
t→∞ Λk(t) = Λc k = 1, . . . , N . (1.3)

By allowing local systems to ultimately acquire identical parameters, we are able to discuss analyti-
cally both the existence and the stability of the resulting ‘ordered’ consensual states. Apart from the
analytical tractability of existence and stability, adapting local parameters is likely to enhance network
synchronization. To this aim, adaptive mechanisms have been recently considered in De Lellis et al.
(2010), Liu et al. (2010) and De Lellis et al. (2008). These authors focus on adaptive coupling
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dynamics alone (i.e. thus assuming Pk ≡ 0) which therefore offers an alternative possibility. As far
as network topology is considered, synchronization enhancement can, for example, be achieved either
via a discrete optimization problem as in Liu et al. (2009) or by considering simulated annealing-based
algorithms with performance measures such as the eigenratio of the Laplacian (‘entangled’ networks
as in Donetti et al. (2005)) or an order parameter that considers the simulated output of a dynamical
network as in Gorochowski et al. (2010).

Dynamical systems belonging to Equations (1.2) have been studied in Rodriguez & Hongler
(2009a) with Hopf oscillators as local dynamics and commutative evolution as their binding
dynamics (cf. Boccaletti et al., 2006). Building on our introductory example, the paradigmatic illus-
tration of the class of dynamics to be discussed is

ẋk = λkyk − (x2
k + y2

k − 1)xk −
N∑

j=1

lk,jxj

ẏk = −λkxk − (x2
k + y2

k − 1)yk︸ ︷︷ ︸
local dynamics

−
N∑

j=1

lk,jyj

︸ ︷︷ ︸
coupling dynamics

λ̇k = −
N∑

j=1

lk,j(xjyk − yjxk)

︸ ︷︷ ︸
parametric dynamics

k = 1, . . . , N , (1.4)

where lk,j are the entries of the Laplacian matrix associated with the underlying network. For Equa-
tions (1.4), the set Λk reduces to a single parameter λk controlling the frequency of the kth oscillator.
The resulting dynamics ‘plastically’ modifies the values λk and induces convergence towards a com-
mon and constant value λc while, simultaneously, the coupling dynamics synchronizes the entire
network. For our class of models, the convergence will be established by explicitly constructing ad hoc
Lyapunov functions. The consensual frequency λc is analytically calculated. It will be observed that
for our dynamics λc only depends on the initial values (i.e. λk(0)), and not on the topology of the net-
work. The network connectivity does, however, strongly control the convergence rate (i.e. the adaptive
velocity).

Inspired by Equations (1.4), we introduce first in Section 2.1, ortho-gradient (O-G) local vector
fields. This enables us to generate attractors that generalize the simple limit cycles. A non-Liouvillian
dissipative mechanism is obtained via the gradient of a generalized local potential. This dissipative
part is itself orthogonal to a ‘driving’ part which, when solenoidal, generates a canonical evolution.
The distinction between a gradient and Hamiltonian vector field is discussed in Hirsch et al. (2004,
Chapter 9). Our local systems include both dynamics simultaneously. The well-known mixed-canonical
systems introduced in Hongler & Ryter (1978), Schweitzer et al. (2001) and Schweitzer (2003) arising
when the solenoidal part is a symplectic form is an example of our class. In this case p is even to allow
canonical conjugated variables. Suitable choices of the local potential (i.e. dissipative mechanisms)
drive the solutions towards orbits solving the orthogonal part of the dynamics. Limit cycles and gener-
ally more complex attracting manifolds are asymptotically reached. The O-G system ensures that once
on an attractor, the dissipative character of the dynamics vanishes. Note that the generalized Hamilto-
nian dynamical systems discussed in Nambu (1973) offer an alternative way to classify our dynamics by
following the lines recently exposed in Frank (2010). Examples of O-G systems are given in Section 2.2.
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In Section 2.3, we introduce interactions between local systems by coupling dynamics that can
also be derived from the gradient of a connection potential. Obviously, this potential intimately depends
on the entries of an adjacency matrix characterizing the network connectivity. In Section 2.4, we distin-
guish between two types of control parameters according to their propensity to adapt. For parameters
with a high propensity to adapt, we construct an adaptive mechanism (i.e. parametric dynamics)
that enables us to analytically determine the ultimate consensual parameter state. In Section 3, we
present sufficient conditions for the adaptive mechanism to drive the global system towards a con-
sensual state. All stages of our constructions are illustrated by a collection of examples. Finally, in
Section 5, numerical simulations illustrate the theoretical assertions. In addition, numerical experiments
show the generic behaviour of our self-adaptive mechanisms when some of the specific hypothesis of
our dynamics are relaxed.

2. Networks of O-G systems with parametric adaptivity

In its general form, our global dynamical system is

Ẋk = Dk(Xk , Λk) − ∇Ek(Xk)︸ ︷︷ ︸
local dynamics

− ck
∂V
∂Xk

(X )︸ ︷︷ ︸
coupling dynamics

k = 1, . . . , N , (2.1a)

Λ̇k = Pk(X )︸ ︷︷ ︸
parametric dynamics

. (2.1b)

(1) Local dynamics: local systems are of dimension p and belong to the class of O-G systems
(refer to Section 2.1).

(2) Coupling dynamics: the gradient of a given positive function characterizes the interactions
(refer to Section 2.3).

(3) Parametric dynamics: through adaptive mechanisms, parameters are influenced by state
variable interactions (refer to Section 2.4).

We now detail the constituent parts that compose our global dynamics.

2.1 Local dynamics: Lk

All local dynamics belong to the class of O-G systems. This class of dynamical systems is split
into two p-dimensional vector fields Dk and ∇Ek and are defined as

Lk(Xk; Λk) := Dk(Xk; Λk)︸ ︷︷ ︸
orthogonal evolution

− ∇Ek(Xk)︸ ︷︷ ︸
gradient evolution

k = 1, . . . , N ,

where Xk ∈ R
p are the state variables and Λk is, for the time being, a set of qk fixed and constant parame-

ters. Dissipation is due to the gradient evolution derived from a potential ∇Ek , the gradient of a potential
Ek(Xk) := 1

2

∑
j∈Ik

Gj(Xk)
2 and Ik ⊆ {0, . . . , p − 1}. The real-valued functions Gj are sufficiently contin-

uously differentiable and are defined such that the set

Lk := {X ∈ R
p | Gj(X ) = 0 j ∈ Ik}
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is an mk-dimensional compact submanifold2 with mk := p − |Ik| (p minus the cardinality of the set of
indices Ik).

On the orthogonal evolution Dk , we impose the following orthogonality condition

〈Dk(Xk; Λk) | ∇Ek(Xk)〉 = 0 ∀Xk and ∀Λk .

This implies that one can arbitrarily fix the values for Λk without destroying the orthogonality between
Dk and ∇Ek . This orthogonality condition leads us to distinguish between two types of parameters.

(1) Parameters determining the time evolution on Lk are called flow parameters. They are explicitly
written as Λk . They do not affect the geometric shape of Lk (i.e. they effectively define the time
scale of the orbits on Lk). They are characterized by the fact that they do not affect the orthog-
onality between the vector fields Dk and ∇Ek . Any O-G system has always at least one flow
parameter (i.e. Λk is not empty) since Dk can always be multiplied by a scalar that fixes a time
scale of the dynamics.

(2) Parameters determining the geometry of Lk are called geometric parameters. They simultane-
ously affect the potential Ek and Dk , since the orthogonality of Dk with ∇Ek must be maintained.
In this contribution, geometric parameters will be held fixed and hence they are not
explicitly written.

The following lemma characterizes the stability of the local dynamics. For simplicity’s sake, we
omit the index k for the rest of this section.

Lemma 2.1 There exists a set U ⊃L such that all orbits solving

Ẋ = L(X ; Λ) = D(X ; Λ) − ∇E(X ) (2.2)

with initial conditions in U converge towards L.

Proof. In this proof, we will not explicitly write the parameters Λ. Since L is a submanifold, for all
X ∗ ∈L, there exists a neighbourhood UX ∗ of X ∗. Let U be the union of all these neighbourhoods (i.e.
U =⋃X ∗∈L UX ∗ ). The convergence towards L follows from Lyapunov’s second method with Lyapunov
function

E(X ) = 1

2

∑
j∈I

Gj(X )2.

By construction, we have L= {X ∈ R
p | E(X ) = 0}. Computing the time derivative

〈∇E(X ) | Ẋ 〉 = 〈∇E(X ) | D(X ) − ∇E(X )〉
= 〈∇E(X ) | D(X )〉︸ ︷︷ ︸

=0

−‖∇E(X )‖2 � 0.

2 By definition, Lk is not empty, and for all X ∗ ∈Lk there exists a neighbourhood UX∗ ⊂ R
p of X ∗ such that for all X ∈UX∗ the

(p − mk) × p Jacobian D�Gk(X ) has rank p − mk (D stands for the derivative operator and �Gk ≡ (Gj1 , . . . , Gjp−mk
) with js ∈ Ik ,

s = 1, . . . , p − mk and p − mk = |Ik |). Since Lk is the preimage of the closed set 0 ∈ R
p−mk by a continuous function �Gk , it is

closed. We assume it is bounded (there exists b > 0 such that ‖X‖ �b for all X ∈Lk), and thus Lk is compact.
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We then have

‖∇E(X )‖2 = 0 ⇐⇒
p∑

s=1

⎛
⎝∑

j∈I

Gj(X )
∂Gj

∂xs
(X )

⎞
⎠2

= 0 ⇐⇒
∑
j∈I

Gj(X )∇Gj(X ) = 0,

where 0 is a p-dimensional zero vector. We note G ≡ (Gj1 , . . . , Gjp−m) with js ∈ I, s = 1, . . . , p − m and
p − m = |I|. Since DG(X ) has full rank p − m for X ∈ U , its row vectors are linearly independent
(D stands for the derivative operator). Therefore

∑
j∈I Gj(X )∇Gj(X ) = 0 if and only if the scalars

Gj(X ) = 0 for all j ∈ I. This is equivalent to the fact that X ∈L. Therefore, strict inequality
〈∇E(X ) | Ẋ 〉 < 0 holds for X ∈ U \ L and hence the compact set L is asymptotically stable (see
Appendix A for details). �

2.2 Explicit illustrations

Example 2.2 (Mixed canonical modulated-dissipative dynamics (MCMD)) Here, p = 2, m = 1 and
G1(x, y) := H(x, y) − r, where H(x, y) is a Hamiltonian function on R

2 into R�0. Assume that the set
L := {(x, y) ∈ R

2 | H(x, y) − r = 0} is a smooth, simple, closed curve in R
2. For a given strictly positive

(or negative) function O(x, y; Λ), we define (without explicitly writing the parameters Λ)

D(x, y) = O(x, y)

⎛
⎜⎜⎝

−∂H
∂y

(x, y)

−∂H
∂x

(x, y)

⎞
⎟⎟⎠ .

An MCMD is given as

ẋ = −O(x, y)
∂H
∂y

(x, y) − (H(x, y) − r)
∂H
∂x

(x, y),

ẏ = −O(x, y)
∂H
∂x

(x, y) − (H(x, y) − r)
∂H
∂y

(x, y).

This is a limit cycle oscillator with function O playing the role of a clock with a local time scale
on L. As an illustration, consider H(x, y) = −d log(x) + ex − a log(y) + by and O(x, y; Λ) = λxy, both
defined on the strictly positive quadrant R

2
>0. Here, there is a single flow parameter Λ = {λ}, and the

strictly positive geometric parameters are {a, b, d, e, r}. The resulting dynamics on the limit cycle L is
described by the Lotka–Volterra equations

ẋ = −λ(ax − bxy),

ẏ = −λ(dy − exy).

Example 2.3 (Mixed Canonical-Dissipative Dynamics (MCD)) The class of MCMD systems for
which O ≡ λ (a constant) are known as mixed MCD. These dynamical systems have been consid-
ered for applications in Schweitzer et al. (2001) and Schweitzer (2003). As an illustration, consider the
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Fig. 1. Two spheres G1(x, y, z) := x2 + y2 + z2 − 1 (dark gray) and G2(x, y, z) := (x − 2
3 )2 + (y − 2

3 )2 + (z − 2
3 )2 − 1

(light gray).

Mathews–Lakshmanan oscillator presented in Mathews & Lakshmanan (1974).3 The Hamiltonian is
H(x, y) = log(cosh(y)) + 1

2 log(a + x2) with geometric parameter a > 0, and its dynamics reads as

ẋ = −λ tanh(y) − (H(x, y) − r)
x

a + x2
,

ẏ = −λ
x

a + x2
− (H(x, y) − r) tanh(y).

An orbit of the canonical dynamics (i.e. on L) is explicitly given by

x(t) =√exp(2r) − a sin

(
λ

exp(r)
t + φ

)
,

y(t) = tanh−1

(√
exp(2r) − a

exp(r)
cos

(
λ

exp(r)
t + φ

))
.

Note that the solution exhibits an amplitude-dependent frequency, which is a characteristic of nonlinear
oscillators.

Example 2.4 (Dynamics on S
2) Here, p = 3, m = 2 and G1(x, y, z) := x2 + y2 + z2 − 1. Hence, the

attracting submanifold is S
2. Due to the dimensionality of the attracting submanifold, several possi-

bilities exist for D. For instance, with flow parameters Λ := {λ1, λ2, λ3}, we may have

Euler equations

D(X ; Λ) =
⎛
⎝(λ2 − λ3)yz

(λ3 − λ1)xz
(λ1 − λ2)xy

⎞
⎠

Linear solenoidal vector field

D(X ; Λ) =
⎛
⎝ 0 λ1 λ2

−λ1 0 λ3

−λ2 −λ3 0

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ .

3 With λ
√

bs := x and
√

bz =: tanh(y), then ṡ = z and the canonical dynamics become

(1 + fs2)s̈ + (α − fṡ2)s = 0

with f := b(λ2/a) and α := λ2/a. The oscillator is presented in this from in Mathews & Lakshmanan (1974).
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Fig. 2. Sphere G1(x, y, z) := x2 + y2 + z2 − 1 (dark gray) and plane G2(x, y, z) := x + y + z − 1 (light striped gray).

Fig. 3. Torus G1(x, y, z) := (x2 + y2 + z2 + 3
4 )2 − 4(x2 + y2) (dark gray) and sphere G2(x, y, z) := (x − 2)2 + y2 + z2 − 1 (light

gray) with r1 = 1, r2 = 1
2 and a = 2 values of the geometric parameters.

Example 2.5 (Dynamics on one-dimensional submanifold) Here, p = 3 and m = 1, and to create an
attractor of dimension 1 we need two functions: G1 and G2. Let us exhibit three illustrations. For all
cases, the vector D is uniquely determined, up to a constant and orientation.

(i) Sphere–Sphere
G1(x, y, z) := x2 + y2 + z2 − 1 and G2(x, y, z) := (x − 2

3 )2 + (y − 2
3 )2 + (z − 2

3 )2 − 1 (c.f. Fig. 1)

⎛
⎝ẋ

ẏ
ż

⎞
⎠= λ

⎛
⎝y − z

z − x
x − y

⎞
⎠− 2G1(x, y, z)

⎛
⎝x

y
z

⎞
⎠− 2G2(x, y, z)

⎛
⎜⎝x − 2

3

y − 2
3

z − 2
3

⎞
⎟⎠ .
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(ii) Sphere–Plane
G1(x, y, z) := x2 + y2 + z2 − 1 and G2(x, y, z) := x + y + z − 1 (c.f. Fig. 2)⎛

⎝ẋ
ẏ
ż

⎞
⎠= λ

⎛
⎝y − z

z − x
x − y

⎞
⎠− 2G1(x, y, z)

⎛
⎝x

y
z

⎞
⎠− G2(x, y, z)

⎛
⎝1

1
1

⎞
⎠ .

For both cases (i) and (ii), all orbits converge towards a circle lying on the plane G2(x, y, z) := x +
y + z − 1 with radius

√
2
3 and centre ( 1

3 , 1
3 , 1

3 ). The orbit circulation on this attracting submanifold is

identical for both examples. However, the transient dynamics (i.e. the convergence rate towards the
attractor) explicitly depends on the choice of the Gj functions.

(iii) Torus–Sphere
G1(x, y, z) := (x2 + y2 + z2 + r2

1 − r2
2)

2 − 4r2
1(x

2 + y2) (a torus centered at the origin) and
G2(x, y, z) := (x − a)2 + y2 + z2 − 1 (c.f. Fig. 3). The geometric parameters r1, r2 and a are chosen
such that the intersection between the torus and the sphere forms a closed curve.⎛

⎝ẋ
ẏ
ż

⎞
⎠= λ

⎛
⎝ −2yzr2

1
z(gm(x − a) − gpx)

aygp

⎞
⎠− 4G1(x, y, z)

⎛
⎝gpx

gpy
gmz

⎞
⎠− 2G2(x, y, z)

⎛
⎝x − a

y
z

⎞
⎠

with gp = x2 + y2 + z2 − (r2
2 + r2

1) and with gm = x2 + y2 + z2 − (r2
2 − r2

1).

2.3 Coupling dynamics: Ck

Local dynamics are coupled via the gradient of a continuously differentiable positive semi-definite
potential V(X )� 0. Specifically, coupling dynamics are defined as

Ck(X ) := −ck
∂V
∂Xk

(X )

with X = (X1, . . . , XN ) ∈ R
pN and coupling strengths ck > 0. The function V depends on the entries ak,j

of an N × N weighted adjacency matrix A associated with a given connected and undirected network—
note that additional parameters can also be introduced. To ensure the consistency of V with respect to
the entries ak,j of A, we impose that if ak,j = 0 (and hence aj,k = 0, since the network is undirected), then
the p × p dimensional matrix (∂2V/∂Xj∂Xk)(X ) = 0. This ensures that only adjacent vertices interact.4

We further suppose that
V(X ) = 0 ⇐⇒ Xk = Xj ∀k, j (2.3)

with local state variables Xk = (xk,1, . . . , xk,p) ∈ R
p. Any X ∈ R

pN satisfying Equations (2.3) is a mini-
mum of V, and therefore ∇V(X ) = 0 (i.e. local systems with equal dynamical states do not interact).

For technical reasons, we will always suppose that V satisfies

∀X ∗ ∈M, 〈X |D2V(X ∗)X 〉 = 0 ⇐⇒ Xk = Xj ∀k, j, (2.4)

where D2V(X ∗) is the second total derivative (i.e. the Hessian) of V evaluated at X ∗, and M is the
consensual submanifold that is defined below.

4 Since V is twice continuously differentiable, it follows that interchanging the order of differentiation gives the same second
partial derivatives and so (∂2V/∂Xk∂Xj)(X ) = 0.
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Consensual Submanifold M
Local attractors Lk only differ according to the choice of the functions Gj. We will suppose that

L :=
N⋂

k=1

Lk = {X ∈ R
p|G(X ) := (Gj1(X ), . . . , Gjm(X )) = 0 ∈ R

p−m} (2.5)

is an m-dimensional compact submanifold with js ∈⋃N
k=1 Ik , s = 1, . . . , m and m := |⋃N

k=1 Ik|.
The set L is a local attractor shared by all local dynamics. This, together with Equations (2.3),
enables us to define

M := {X ∈ R
pN |X1 ∈L and Xk = Xj ∀k, j}, (2.6)

which is a m-dimensional compact submanifold of R
pN (see Appendix C for details), here called con-

sensual submanifold. For any element X ∈M, Xk = Xj for all k, j and so, in particular, Xk = X1. Hence,
by the condition X1 ∈L, all local dynamics are to be found on L.

Example 2.6 (Laplacian potential) Let L be a N × N Laplacian matrix5 associated to a connected
and undirected network with positive adjacency entries (i.e. ak,j = aj,k � 0 for all j, k). The Laplacian
potential is defined as

V(X ) = 1

2

p∑
j=1

aj〈xj|Lxj〉

with 0 < aj and xj := (x1,j, . . . , xN ,j), j = 1, . . . , p, and where xk,j is the jth state variable of the kth
local dynamics. One can verify that V is positive semi-definite for which the equivalences in
Equations (2.3) and (2.4) hold.

2.4 Parametric dynamics: Pk

In this contribution, self-adaptivity is realized by allowing the flow parameters Λk to have their own
dynamics (i.e. letting the parameters be time-dependent: Λk�Λk(t)). Their rate of change Λ̇k(t) is
determined by the parametric dynamics Pk for k = 1, . . . , N . Hence Λk(t) acquire the status of
variables of the global dynamical system. Later, they will be called flow parametric variables (f-PV). In
the rest of this section, we consider homogeneous dynamics Lk ≡ L (i.e. |Λk| = q∀k). The heterogeneous
case that we focus on is straightforwardly generalized (refer to Section 3.4).

By suitably constructing the parametric dynamics Pk , the Λk(t) will ultimately converge
towards a common and constant set Λc (i.e. limt→∞ Λk(t) = Λc for k = 1, . . . , N). We now discuss the
convergence issues and the resulting limits.

Convergence—The goal is to find control functions Pk(X ) for which orbits of Equations (2.1) satisfy

lim
t→∞ Λk(t) = lim

t→∞ Λc + εk(t) = Λc k = 1, . . . , N . (2.7)

The mismatches εk play the role of perturbations around the consensual parameter set Λc.
Limit values—While the value of the limit set Λc is generally unknown, our class of dynamics

allows an explicit calculation of Λc. Consider orbits (Λ1(t), . . . , ΛN (t)) solving Equations (2.1b), and

5 A Laplacian matrix L is defined as L := D − A where D is the diagonal matrix with entries dk,k :=∑N
j=1 ak,j and ak,j are the

entries of the adjacency matrix A.
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let us construct functions Pk for which (i) Equations (2.7) hold and (ii) there exists an R
q-valued function

J(Λ1, . . . , ΛN ) such that

d[J(Λ1(t), . . . , ΛN (t))]

dt
= 0 ∀t� 0 ⇐⇒ J(Λ1(t), . . . , ΛN (t)) = C ∀t� 0,

where C is a q-dimensional constant vector determined by the initial values (Λ1(0), . . . , ΛN (0)). In
other words, J is a constant of motion of the dynamics and we therefore have

lim
t→∞ J(Λ1(t), . . . , ΛN (t)) = J(Λc, . . . , Λc) = C. (2.8)

Equation (2.8) is a system of q unknowns with q equations, which can now be solved.

2.4.1 Dynamics of flow parametric variables. To get insights into the role played by the flow para-
metric variables, we first focus on systems of dimension 2 (i.e. MCD oscillators), all having the same
potential (i.e. Ek ≡ 1

2 G2 for all k). In this case, for a given G, Dk ≡ λkK is uniquely determined up to a
multiplicative factor (here, a constant λk)

D(Xk; λk) = λkK(Xk) := λk

⎛
⎜⎜⎝

−∂G
∂y

(Xk)

−∂G
∂x

(Xk)

⎞
⎟⎟⎠=

(
0 λk

−λk 0

)⎛⎜⎜⎝
∂G
∂x

(Xk)

∂G
∂y

(Xk)

⎞
⎟⎟⎠ , (2.9)

with Xk = (xk , yk). Here, λk controls the angular velocity of the kth local dynamics on its attractor
(i.e. closed curve in R

2). We now assign to λk the role of a parametric variable (i.e. λk� λk(t)) with
dynamics defined as

λ̇k = −sk

〈⎛⎜⎜⎝
∂V
∂xk

(X )

∂V
∂yk

(X )

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G
∂y

(Xk)

−∂G
∂x

(Xk)

⎞
⎟⎟⎠
〉

= −sk

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
, (2.10)

where 0 < sk are given susceptibility constants. For sk � 1, the kth oscillator is strongly influenced by
its neighbour, whereas sk � 1 reflects its ‘stubbornness’ to adapt. If, in the extreme case, sk = 0, λk(t)
becomes a constant and thus recovers its original status of a fixed and constant parameter.

If we suppose that
∑N

k=1〈(∂V/∂Xk)(X )|K(Xk)〉 = 0 for all X , we have the following constant of
motion

J(λ1, . . . , λN ) :=
N∑

k=1

λk

sk
. (2.11)

Indeed, for λk(t) (k = 1, . . . , N) orbits of Equations (2.10), we have

d[J(λ1(t), . . . , λN (t))]

dt
=

N∑
k=1

λ̇k(t)

sk
=

N∑
k=1

−sk

sk

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
= 0.

It is worth emphasizing that the constant of motion J only depends on the f-PV λk and on the suscep-
tibility constants sk , but not on the adjacency matrix A. Therefore, if a consensual and common λc is
reached (i.e. convergence in (2.7) holds), its value does not depend on the topology of the network.

As an example, consider the case where G(X ) = x2 + y2 − r and the coupling dynamics is
given by a Laplacian potential defined as V(X ) = 〈x | Lx〉 + 〈y | Ly〉 with x = (x1, . . . , xN ) (idem for y).
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In this case, we obtain

N∑
j=1

lk,j
∂G
∂x

(Xj) = ∂V
∂xk

(X ) and
N∑

j=1

lk,j
∂G
∂y

(Xj) = ∂V
∂yk

(X )

and hence

N∑
k=1

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
=

N∑
k=1

N∑
j=1

lk,j

(
∂G
∂x

(Xj)
∂G
∂y

(Xk) − ∂G
∂y

(Xj)
∂G
∂x

(Xk)

)
= 0

since, by Lemma B.1 in Appendix B, the last equality is zero.

Generalization for higher dimensions and multi f -PV. In Equations (2.9), the first equality
(vector representation) naturally extends to higher dimensions in the case involving single adapting
parameters. The matrix representation (second equality) in Equations (2.9) enables generalizations to
the multiparametric cases. Let us detail these two situations for homogeneous O-G systems (i.e. Dk ≡ D
for all k).

Single adapting flow parameter. By construction of the local dynamics, D can always be writ-
ten as D(Xk , λk) := λkK(Xk) and so, for this case, the set of f-PV is reduced to a singleton λk . For
arbitrary dimension p, a natural generalization for the parametric dynamics will be

λ̇k = −sk

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
.

If we suppose that
N∑

k=1

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
= 0 ∀X , (2.12)

we then have the constant of motion as in Equation (2.11). Hence, a single constant of motion J depend-
ing on λk and sk determines the asymptotic value λc (i.e. the consensual value is independent of the
network topology). Note that (∂V/∂Xk)(X ) and K(Xk) can be seen as generalized forces and, respec-
tively, displacements. Hence the orthogonality in Equation (2.12) expresses the fact that no mechanical
work due to the network forces is produced.

Multi-adapting flow parameters. Here we focus on cases where D can be written as D(Xk , Λk) :=
TkK(Xk) with Tk being a p × p anti-symmetric matrix. The upper diagonal elements of Tk are given6 by
the f-PV Λk ∈ R

p(p−1)/2. This is compatible with O-G dynamics, provided the orthogonality between Tk

6 From Λk = (λk,1,2, . . . , λk,1,p, λk,2,3, . . . , λk,2,p, . . . , λk,p−1,p) ∈ R
p(p−1)/2, we define Tk as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 λk,1,2 · · · · · · λk,1,p

−λk,1,2 0 λk,2,3 · · · λk,2,p

... −λk,2,3
. . .

...
...

...
. . . λk,p−1,p

−λk,1,p −λk,2,p · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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and K is ensured, namely

〈D(Xk , Λk) | ∇Ek(X )〉 =
〈

TkK(Xk)

∣∣∣∣∣∣
∑
j∈Ik

Gj(Xk)∇Gj(Xk)

〉
= 0.

In particular, when Ik := {1} for all k (refer to Section 2.1), this holds for K(Xk) := ∇G1(Xk) and Tk any
anti-symmetric matrix (see Lemma B.2 in Appendix B for details). Inspired by the matrix representation
in Equations (2.9), a generalized multi parametric dynamics can be constructed as

λ̇k,l,s = −sk,l,s

〈⎛⎜⎜⎜⎝
∂V
∂xk,l

(X )

∂V
∂xk,s

(X )

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G1

∂xs
(Xk)

−∂G1

∂xl
(Xk)

⎞
⎟⎟⎠
〉

k = 1, . . . , N , l, s = 1, . . . , p, s > l,

where λk,l,s are the lth row, sth column entries of the kth matrix Tk .
As far as constants of motion are concerned, the assumption that for all s and l (l, s = 1 . . . , p, and

s > l), we have

N∑
k=1

〈⎛⎜⎜⎜⎝
∂V
∂xk,l

(X )

∂V
∂xk,s

(X )

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G1

∂xs
(Xk)

−∂G1

∂xl
(Xk)

⎞
⎟⎟⎠
〉

= 0 ∀X , (2.13)

ensures that p(p − 1)/2 constants of motion exist. These are given by Jl,s(λ1,l,s, . . . , λN ,l,s) :=∑N
k=1(λk,l,s/sk,l,s). Again, if a consensual and common λc,l,s is reached, its value does not depend on

the topology of the network (since the function Jl,s only depends on λk,l,s and sk,l,s).

Remark For both cases (single- and multi-adapting flow parameters), Equation (2.12), respectively,
Equation (2.13), imply that

〈∇V(X ) | �D(X )〉 = 0 ∀X , (2.14)

with �D(X ) := (λK(X1), . . . , λK(XN )) (constant scalar λ), respectively, �D(X ) :=
(T∇G1(X1), . . . , T∇G1(XN )) (constant anti-symmetric matrix T). With the orthogonality prop-
erty in Equation (2.14), the global dynamical system is itself an O-G system. This expresses once again
a non-working characteristic of the network forces.

3. Network dynamics

In this section, we first discuss the dynamics of interacting homogeneous local dynamics (i.e.
Dk ≡ D for all k)7 with constant (i.e trivial parametric dynamics Pk ≡ 0 in Equations (2.1b))
and identical parameters (i.e. Λk = Λc for all k) (we refer the reader to Section 3.1). We then consider
a network of homogeneous local dynamics with single (we refer the reader to Section 3.2) and
multi (refer to Section 3.3) adapting parameters. Finally, we focus on heterogeneous dynamical systems
with parametric dynamics (we refer the reader to Section 3.4).

7 For compatibility with O-G systems, it is implicitly supposed that 〈D | ∇Ek〉 = 0 for all k.
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3.1 Network of homogeneous local dynamics with constant identical parameters

Consider the dynamical System (2.1a) where all vertices are endowed with homogeneous local
dynamics (i.e. Dk ≡ D for all k). Here we suppose that Pk ≡ 0 in Equations (2.1b). Therefore, local
dynamics have a constant set of parameters which we suppose to be common to all local systems (i.e.
Λk = Λc for all k). Let us discuss the existence of a consensual state and the convergence towards it.

Existence of a consensual state. The existence of a consensual state for System (2.1a) (Pk ≡ 0 in
Equations (2.1b)) is guaranteed if initial conditions are in M (cf. (2.6)).

Convergence towards a consensual state. The convergence towards a consensual state is established
by Lemma 3.1. For ease of notation, we remove the explicit dependence of Λc.

Lemma 3.1 Suppose that
N∑

k=1

〈
∂V
∂Xk

(X )

∣∣∣∣D(Xk)

〉
� 0 ∀X .

Then there exists a set U ⊃M such that all orbits solving System (2.1a)8 with initial conditions in U
converge towards M.

Proof. The convergence towards M follows from Lyapunov’s second method with Lyapunov function

F(X ) =
N∑

k=1

1

ck
Ek(Xk) + V(X )� 0.

By construction, we have M= {X ∈ R
pN | F(X ) = 0}. Computing the time derivative

〈∇F(X ) | Ẋ 〉 =
N∑

k=1

〈
1

ck
∇Ek(Xk) + ∂V

∂Xk
(X )

∣∣∣∣D(Xk) − ∇Ek(Xk) − ck
∂V
∂Xk

(X )

〉

=
N∑

k=1

1

ck
〈∇Ek(Xk) | D(Xk)〉︸ ︷︷ ︸

=0 ∀k

+
N∑

k=1

〈
∂V
∂Xk

(X )

∣∣∣∣D(Xk)

〉
︸ ︷︷ ︸

�0

−
N∑

k=1

ck

∥∥∥∥ 1

ck
∇Ek(Xk) + ∂V

∂Xk
(X )

∥∥∥∥2

︸ ︷︷ ︸
�0

.

We now need to show that there exists U ⊃M such that the strict negativity 〈∇F(X ) | Ẋ 〉 < 0 holds
for all X ∈ U \ M. For this, we show that there exists U ⊃M such that −∑N

k=1 ck‖(1/ck)∇Ek(Xk) +
(∂V/∂Xk)(X )‖2 < 0 for all X ∈ U \ M. Remark that

N∑
k=1

ck

∥∥∥∥ 1

ck
∇Ek(Xk) + ∂V

∂Xk
(X )

∥∥∥∥2

= 0 ⇐⇒ ∇F(X ) = 0.

8 Here, Pk ≡ 0 in Equations (2.1b) and Λk := Λc for all k.
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Therefore, we have to show that there exists U ⊃M such that ∇F(X ) |= 0 for all X ∈ U \ M. For this,
we invoke Corollary E.2 in Appendix E. To apply Corollary E.2, we need to verify that, for all X ∗ ∈M,
the kernel ker(D2F(X ∗)) of the pN × pN Hessian D2F(X ∗) is equal to the kernel ker(DM(X ∗)) of the
submanifold M. This is done in Appendix D and concludes the proof. �

3.2 Network of homogeneous local dynamics with single adapting flow parameters

Let the set of f-PV be reduced to a single element: λk . Define the local dynamics of the network as

D(Xk , λk) := λkK(Xk) and Ek(Xk) := 1

2

∑
j∈Ik

Gj(Xk)
2.

The dynamical system is

Ẋk = λkK(Xk) −
∑
j∈Ik

Gj(Xk)∇Gj(Xk)

︸ ︷︷ ︸
local dynamics

− ck
∂V
∂Xk

(X )︸ ︷︷ ︸
coupling dynamics

λ̇k = −sk

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
︸ ︷︷ ︸
parametric dynamics

k = 1, . . . , N . (3.1)

Let us discuss the existence of a consensual state and the convergence towards it.
Existence of a consensual state. The existence of a consensual state for System (3.1) is guaranteed

if initial conditions are in M (cf. (2.6)) and λk := λc for all k with λc a given constant.
Convergence towards a consensual state. The convergence towards a consensual state as well as the

explicit value of λc are established by Proposition 3.2.

Proposition 3.2 Suppose that

N∑
k=1

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
= 0 ∀X .

Then there exists a set U ⊃ Cλc such that all orbits solving System (3.1) with initial conditions in U
converge towards Cλc with

Cλc := {(X , Λ) ∈ R
Np × R

N | X ∈M and Λ = λc1} and λc :=
∑N

k=1(λk(0)/sk)∑N
k=1(1/sk)

,

where 1 is an N-dimensional vector of 1.

Proof. We refer the reader to Appendix F for the proof. �



NETWORKS OF SELF-ADAPTIVE DYNAMICAL SYSTEMS 217

Example 3.3 Take p = 3 and the attracting submanifold to be a closed curve in R
3 (i.e. m = 1). Select

G1 and G2 functions as

G1(Xk) := ax2
k + by2

k + dz2
k − 1 and G2(Xk) := axk + byk + dzk − 1

with Xk = (xk , yk , zk) and geometric parameters {a, b, d}. The potentials are all identical: Ek ≡ 1
2 (G2

1 +
G2

2). The vector product between ∇G1 and ∇G2 determines D, which reads

D(Xk , λk) = λkK(Xk) := λk

⎛
⎝bd(yk − zk)

ad(zk − xk)

ab(xk − yk)

⎞
⎠ ,

where the f-PV is λk and a, b and d are geometric parameters. The coupling dynamics here is
given by the Laplacian potential (refer to Example 2.6)

V(X ) := 1
2 (a〈x | Lx〉 + b〈y | Ly〉 + d〈z | Lz〉)

with x = (x1, . . . , xN ) (idem for y and z). The orthogonality condition of Proposition 3.2 is satisfied as

N∑
k=1

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
=

N∑
k=1

〈⎛⎜⎜⎝
∑N

j=1 lk,jaxj∑N
j=1 lk,jbyj∑N
j=1 lk,jdzj

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
⎛
⎝bd(yk − zk)

ad(zk − xk)

ab(xk − yk)

⎞
⎠〉

= d
N∑

k=1

N∑
j=1

lk,j(axjbyk − byjaxk) + b
N∑

k=1

N∑
j=1

lk,j(dzjaxk − axjdzk)

+ a
N∑

k=1

N∑
j=1

lk,j(byjdzk − dzjbyk) = 0,

since, by Lemma B.1 in Appendix B, the three terms in the last equality are zero, respectively.
For k = 1, . . . , N , the resulting dynamical system is

⎛
⎝ẋk

ẏk

żk

⎞
⎠= λk

⎛
⎝bd(yk − zk)

ad(zk − xk)

ab(xk − yk)

⎞
⎠− 2G1(Xk)

⎛
⎝axk

byk

dzk

⎞
⎠− G2(Xk)

⎛
⎝a

b
d

⎞
⎠

︸ ︷︷ ︸
local dynamics

− ck

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

lk,jaxj

N∑
j=1

lk,jbyj

N∑
j=1

lk,jdzj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

︸ ︷︷ ︸
coupling dynamics
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λ̇k = −sk

〈
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

lk,jaxj

N∑
j=1

lk,jbyj

N∑
j=1

lk,jdzj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎝bd(yk − zk)

ad(zk − xk)

ab(xk − yk)

⎞
⎠〉

︸ ︷︷ ︸
parametric dynamics

.

Although A is symmetric, the heterogeneous coupling strengths ck confer a weighted character to the
(undirected) network (see Motter et al., 2005 and Chavez et al., 2005 for similar situations). As this also
holds for the susceptibility constants sk , the resulting dynamics effectively involves two networks: one
for the state variable interactions (ck mediated) and the other for the adaptive mechanisms themselves
(sk mediated).

3.3 Network of homogeneous local dynamics with multi-adapting flow parameters

We now present a class of network dynamics for the second type of generalization discussed in
Section 2.4.1. Let the set Λk ∈ R

p(p−1)/2 of f-PV define a p × p anti-symmetric matrix Tk . Define the
local dynamics of the network as

D(Xk , Λk) := Tk∇G1(Xk) and E(Xk) := 1
2 G1(Xk)

2,

where we drop the index k from the potentials E since they are all identical. Note that D is orthogonal
to ∇E (see Lemma B.2 in Appendix B for details). The dynamical system is

Ẋk = Tk∇G1(Xk) − G1(Xk)∇G1(Xk)︸ ︷︷ ︸
local dynamics

− ck
∂V
∂Xk

(X )︸ ︷︷ ︸
coupling dynamics

λ̇k,l,s = −sk,l,s

〈⎛⎜⎜⎜⎝
∂V
∂xk,l

(X )

∂V
∂xk,s

(X )

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G
∂xs

(Xk)

−∂G
∂xl

(Xk)

⎞
⎟⎟⎠
〉

︸ ︷︷ ︸
parametric dynamics

k = 1, . . . , N
l, s = 1, . . . , p
s > l

. (3.2)

Let us discuss the existence of a consensual state and the convergence towards it.
Existence of a consensual state. The existence of a consensual state for System (3.2) is guaranteed

if initial conditions are in M (cf. (2.6)) and Λk := Λc for all k with Λc a given constant vector.
Convergence towards a consensual state. The convergence towards a consensual state as well as the

explicit value of the coefficients of Λc are established by Proposition 3.4.
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Proposition 3.4 Suppose that, for all s and l (l, s = 1 . . . , p, and s > l),

N∑
k=1

〈⎛⎜⎜⎜⎝
∂V
∂xk,l

(X )

∂V
∂xk,s

(X )

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G1

∂xs
(Xk)

−∂G1

∂xl
(Xk)

⎞
⎟⎟⎠
〉

= 0 ∀X .

Then there exists a set U ⊃ CΛc such that all orbits solving System (3.1) with initial conditions in U con-
verge towards CΛc with CΛc := {(X , Λ) ∈ R

Np × R
N(p(p−1)/2) | X ∈M and Λ = 1 ⊗ Λc} and the coeffi-

cients of Λc are

λc,l,s :=
∑N

k=1(λk,l,s(0)/sk,l,s)∑N
k=1(1/sk,l,s)

l, s = 1 . . . , p, s > l,

where 1 is a p(p − 1)/2-dimensional vector of 1 and ⊗ is the Kronecker product.

Proof. We refer the reader to Appendix F for the proof. �

Example 3.5 Let p� 2 be an arbitrary positive integer and the attracting submanifold be a hyper-
ellipsoid in R

p of dimension m = p − 1, defined by

G1(Xk) :=
p∑

j=1

ajx
2
k,j − 1

with Xk = (xk,1, . . . , xk,p) and the aj are geometric parameters. The orthogonal part of the local
dynamics is given by

D(Xk , Λk) := Tk∇G1(Xk),

where the elements of Λk ∈ R
p(p−1)/2 define the p × p anti-symmetric matrix Tk . The coupling

dynamics here is given by the Laplacian potential (we refer the reader to Example 2.6)

V(X ) := 1

2

p∑
j=1

aj〈xj | Lxj〉

with xj := (x1,j, . . . , xN ,j) ∈ R
N . The condition of Proposition 3.4 is satisfied because, for all s and l

(l, s = 1 . . . , p, and s > l),

N∑
k=1

〈⎛⎜⎜⎜⎝
∂V
∂xk,l

(X )

∂V
∂xk,s

(X )

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G
∂xs

(Xk)

−∂G
∂xl

(Xk)

⎞
⎟⎟⎠
〉

=
N∑

k=1

N∑
j=1

lk,j(alxj,lasxk,s − asxj,salxk,l) = 0,
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since, by Lemma B.1 in Appendix B, the last equality is zero. Note that, for p� 3, the orbit’s geometry
of the consensual state is not fully characterized: we only know that the orthogonal part of the local
dynamics (i.e. D) has its orbits lying on the hyper-ellipsoid.

3.4 Network of heterogeneous local dynamics with single- and multi-adapting flow parameters

We now consider a network composed of both single- and multi-adapting parameters, as presented in
Sections 3.2 and 3.3, respectively. For a fixed integer 0 < v < N , define the local dynamics as

for k = 1, . . . , v : Lk(Xk , Λk) := λkK(Xk) −
∑
j∈Ik

Gj(Xk)∇Gj(Xk),

for k = v + 1, . . . , N : Lk(Xk , Λk) := Tk∇G1(Xk) − G1(Xk)∇G1(Xk),

where the f-PV are Λk = λk for k = 1, . . . , v and Λk = Φk ∈ R
p(p−1)/2 for k = v + 1, . . . , N , which

defines a p × p anti-symmetric matrix Tk . If all the elements in Φk are equal to λc, then Tk = λcT(1)

for all k, where T(1) is an anti-symmetric matrix with 1 on its upper diagonal. The dynamical system is

Ẋk = Lk(Xk; Λk)︸ ︷︷ ︸
local dynamics

− ck
∂V
∂Xk

(X )︸ ︷︷ ︸
coupling dynamics

k = 1, . . . , N ,

λ̇k = −sk

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
k = 1, . . . , v,

λ̇k,l,s = −sk,l,s

〈⎛⎜⎜⎜⎝
∂V
∂xk,l

(X )

∂V
∂xk,s

(X )

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G1

∂xs
(Xk)

−∂G1

∂xl
(Xk)

⎞
⎟⎟⎠
〉

︸ ︷︷ ︸
parametric dynamics

k = v + 1, . . . , N
l, s = 1, . . . , p
s > l

.

(3.3)

Let us discuss the existence of a consensual state and the convergence towards it.
Existence of a consensual state. The existence of a consensual state for System (3.3) is guaranteed

if initial conditions are in M (cf. (2.6)) and we suppose that λcT(1)∇G1 ≡ λcK with λc a given constant.
Convergence towards a consensual state. The convergence towards a consensual state as well as the

explicit value of λc and all coefficients of Λc are established by Proposition 3.6.

Proposition 3.6 Suppose that

v∑
k=1

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
+

p∑
s,l=1
s<l

N∑
k=v+1

〈⎛⎜⎜⎜⎝
∂V
∂xk,l

(X )

∂V
∂xk,s

(X )

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

−∂G1

∂xs
(Xk)

−∂G1

∂xl
(Xk)

⎞
⎟⎟⎠
〉

= 0 ∀X .

Then there exists a set U ⊃ Cλc×Λc such that all orbits solving System (3.1) with initial conditions in U
converge towards Cλc×Λc with Cλc×Λc := {(X , Λ) ∈ R

Np × R
v+(N−v)(p(p−1)/2) | X ∈M and Λ = λc1} and
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λc and all coefficients of Λc are

λc :=
∑v

k=1(λk(0)/sk) +∑p
s,l=1
s<l

∑N
k=v+1(λk,l,s(0)/sk,l,s)∑v

k=1(1/sk) +∑p
s,l=1
s<l

∑N
k=v+1(1/sk,l,s)

,

where 1 is a v + (N − v)(p(p − 1)/2)-dimensional vector of 1.

Proof. We refer the reader to Appendix F for the proof. �

Example 3.7 Take p = 3. For k = 1, . . . , v, define the local dynamics as the local dynamics
in Example (3.3) with here a = b = d = 1 and with G2(x, y, z) := (x − 2

3 )2 + (y − 2
3 )2 + (z − 2

3 )2 −
1 and gradient ∇G2(x, y, z) = 2(x − 2

3 , y − 2
3 , z − 2

3 ). For k = v + 1, . . . , N , define the local
dynamics as the local dynamics in Example (3.5) with here aj = 1, j = 1, 2, 3. The coupling
dynamics is as in Example (3.3) (with here a = b = d = 1).

For k = 1, . . . , v, the resulting dynamical system is

⎛
⎝ẋk

ẏk

żk

⎞
⎠= λk

⎛
⎝yk − zk

zk − xk

xk − yk

⎞
⎠ − 2G1(xk , yk , zk)

⎛
⎝xk

yk

zk

⎞
⎠ − 2G2(xk , yk , zk)

⎛
⎜⎜⎜⎜⎜⎜⎝

xk − 2

3

yk − 2

3

zk − 2

3

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
local dynamics

− ck

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

lk,jxj

N∑
j=1

lk,jyj

N∑
j=1

lk,jzj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
coupling dynamics

,

λ̇k = −sk

⎛
⎝ N∑

j=1

lk,jxj(yk − zk) +
N∑

j=1

lk,jyj(zk − xk) +
N∑

j=1

lk,jzj(xk − yk)

⎞
⎠

︸ ︷︷ ︸
parametric dynamics

.

For k = v + 1, . . . , N , the resulting dynamical system is

⎛
⎝ẋk

ẏk

żk

⎞
⎠=

⎛
⎝ 0 λk,1,2 −λk,1,3

−λk,1,2 0 λk,2,3

λk,1,3 −λk,2,3 0

⎞
⎠
⎛
⎝xk

yk

zk

⎞
⎠− 2G1(Xk)

⎛
⎝xk

yk

zk

⎞
⎠

︸ ︷︷ ︸
local dynamics

− ck

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

lk,jxj

N∑
j=1

lk,jyj

N∑
j=1

lk,jzj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
coupling dynamics

,

λ̇k,1,2 = −sk,1,2

⎛
⎝ N∑

j=1

lk,jxjyk −
N∑

j=1

lk,jyjxk

⎞
⎠ ,
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λ̇k,1,3 = −sk,1,3

⎛
⎝ N∑

j=1

lk,jzjxk −
N∑

j=1

lk,jxjzk

⎞
⎠ ,

λ̇k,2,3 = −sk,2,3

⎛
⎝ N∑

j=1

lk,jyjzk −
N∑

j=1

lk,jzjyk

⎞
⎠

︸ ︷︷ ︸
parametric dynamics

.

4. Applications

One field to which our results can readily be applied is ‘soft control’ (cf. Han et al. (2006)). The basic
idea is to control the collective behaviour of the network while keeping the agents’ local rule. This is
done by introducing a ‘shill’ into the network. A ‘shill’ is an agent that is perceived by the whole com-
munity as an ordinary agent, but whose characteristics can be externally controlled. Similarly to an ordi-
nary agent, a shill has—in general—limited power (i.e. it is not usually connected to all local systems).
It interacts according to the same rules as any other local system. However, its local behaviour may be
controlled externally and thus the collective dynamics may be influenced—or softly controlled—from
the outside.

In our dynamical systems, a ‘shill’ may be perceived in two different ways.

(1) By determining the number of Gj functions in the local potential Ek , one can control the shape
of L (cf. 2.5) and hence where all local systems will converge. Consider Example 3.7 where
here local dynamics do not have function G2 (for k = 1, . . . , v). In this case, the network
will synchronize and all local systems will converge towards S

2, but the orbit’s geometry on the
local attractor is not fully characterized. However, if the first system (i.e. k = 1) is equipped with
functions G2, then, asymptotically, the whole network evolves on a particular circle of S

2 (the
intersection of the two spheres in Fig. 1). Hence, regarding the consensual manifold, local
dynamics k = 1 is a shill and softly controls the global dynamical system.

(2) By determining the values of the susceptibility constants, one can control the consensual val-
ues of the f-PV. Indeed, all constants of motion presented in this contribution are of the form
J(λ1, . . . , λu) =∑u

k=1(λk/sk) with sk > 0 and hence the respective consensual value reads

λc =
∑u

k=1(λk(0)/sk)∑u
k=1(1/sk)

,

where u is equal to N for all constants of motion in Sections 3.2 and 3.3 and equal to
v + (N − v)(p(p − 1)/2) in Section 3.4. Consensual values for the local parameters are hence
weighted averages and therefore local systems with small-valued susceptibility constants (i.e.
‘stubborn’ agents) have more influence on the resulting consensual values. Hence, concerning
the consensual values, a ‘stubborn’ local dynamics is a shill and softly controls the asymp-
totic values of the f-PV.

An actual realization of a shill is given in Faria et al. (2010), where a ‘robot fish’ is introduced
into a tank with other living fish of the same species. The ‘robot fish’ is controlled by the experimenter
and thus different types of interactions (e.g. leading the collection of fish into a certain region) can
be thoroughly studied. In our case, we may introduce a shill robot (controllable robot) into a swarm
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of autonomous interacting robots. This way, one would be able to softly control the consensual state
emerging from self-organizing entities.

This type of control arises in robot formation modelling, a research field that tackles the problem of
making a robot community converge towards a specific curve in space. Once the required formation is
attained, it has to be maintained as long as necessary. Collective evolutions of robot teams are presently
receiving attention for a wide range of applications. For example, platoons of robots may be used for
(1) travelling over areas of high risks of floods or natural fires for close observation and data gathering,
(2) exploring new environments such as caves or ocean floors or (3) patrolling around minefields or
cordoning the perimeter of accidents or environmental catastrophes.

Specifically, such a type of robot dynamics is explicitly considered in Hsieh et al. (2007) and it
exhibits close similarities with our dynamics. The authors study the following dynamical system

Ẋk = −R(X )∇E(Xk) + S(X )D(Xk),

where Xk = (xk , yk) denotes the position of the kth robot, X := (X1, . . . , XN ), and E and D form an
O-G system. The authors call the positive semi-definite function E the shape navigation function. The
gradient ∇E informs each robot where to go, and the vector D describes how each robot must circulate
on the specific curve. The positive scalar functions R and S modulate the gradient and orthogonal parts
of the local systems in order to avoid collisions. Since these two functions are to be seen as coupling
dynamics, the system is of a multiplicative coupling nature.

In Hsieh et al. (2007), robots are assumed to be programmed with identical behaviour(i.e.
homogeneous local dynamics with identical valued parameters). However, because of the
omnipresence of noise in nature, it is realistic to presume that every robot receives the same D, but
with different valued flow parameters. For small mismatches in the local flow parameters, the overall
effect of the dynamics is not significantly modified: robots do converge without collisions towards a
specific curve. However, the mismatches impose that local systems must constantly communicate with
their neighbours to maintain the dynamical pattern. The robots have different information regarding
their flow parameters and thus a steady amount of information is mandatory to regulate all individual
systems.

To maintain a robot formation with as little communication and human supervision as possible
(as stated in Hsieh et al., 2007), a potential solution would be to rely on parametric adaptive mechanisms
that enable the robots to minimize central coupling (i.e. be less dependent on communications).

5. Numerical illustrations

We first display numerical simulations of two-dimensional O-G systems to clearly present how the
consensual value λc is influenced by the constant of motion (we refer the reader to Section 5.1). We
then show the adaptive mechanisms at work in networks of three-dimensional O-G systems (refer to
Section 5.2). In addition, we numerically show that the orthogonality property on the adaptive mecha-
nism (implying Equation (2.14)) can be relaxed and the oscillators still adapt to reach a common angular
velocity (refer to Section 5.3).

5.1 Two-dimensional O-G systems

Consider a network of five local dynamics as in Equations (1.4) (i.e. Hopf oscillators) with two
different topologies: ‘Crystal’ (cf. Fig. 4(c)) and ‘All-to-One’ (cf. Fig. 4(d)). The coupling strengths are
chosen as ck = 1 for all k and the susceptibility constants as s1 = 4, s2 = 5

4 , s3 = 0.1, s4 = 4
3 , s5 = 5.
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Fig. 4. Time evolution of the parametric variables λk (a and b) for five Hopf oscillators interacting through a ‘Crystal’ network
(c) (AC = 3) and an ‘All-to-One’ network (d) (AC = 1), respectively.

The initial conditions for the state variables are xk(0) = 1 and yk(0) = 0 for all k and for the parametric
variables λ1(0) = 4, λ2(0) = 5

4 , λ3(0) = 1.9, λ4(0) = 8
3 , λ5(0) = 5 (i.e. they are identical to their sus-

ceptibility constants except for k = 3 and k = 4). The transient dynamics of the adaptive mechanism is
shown in Fig. 4.

In Fig. 4(a,b), the green trajectory (corresponding to vertex 3) barley changes values, while all other
trajectories converge towards it. The local system at vertex 3 has a susceptibility constant close to zero
and therefore acts as a shill to softly control the asymptotic values of the f-PV. Indeed, computing the
constant of motion with the given values, one obtains

λc =
∑5

k=1 λk(0)/sk∑5
k=1 1/sk

= 5 + λ3(0)10

12
= 2

with λ3(0) = 1.9. Both Fig. 4(a,b) have the same time scale. This shows that the convergence rate
manifestly depends on the algebraic connectivity (AC): the larger the AC, the faster the convergence.
Linearization around the consensual state explicitly shows the interplay between the AC and the
convergence rate (see Rodriguez & Hongler, 2009a,b). Thus, the convergence rate explicitly depends
on the topology of the network, but not on the consensual value λc.

5.2 Three-dimensional O-G systems

We perform numerical simulations with 30 homogeneous local dynamics (we refer the reader to
Section 5.2.1) and with 10 heterogeneous local dynamics (we refer the reader to Section 5.2.2).
For each case, three different types of network topology are considered: (i) ‘Randomly Distributed’
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Fig. 5. Two ellipsoids G1(X ) := 2x2 + 3y2 + 5z2 − 1 (dark gray) and G2(X ) := 2(x − 1
2 )2 + 3(y − 1

2 )2 + 5(z − 1
2 )2 − 1

(light gray).

Fig. 6. Time evolution of the state variables xk (a) and parametric variables λk (b) for 30 homogeneous local dynamics with
ellipsoidal attractor as in Fig. 5 interacting through a ‘Randomly Distributed’ network (AC = 4.6049). Coupling dynamics
and parametric dynamics are switched on at t = 2 (black solid line).

networks, (ii) ‘All-to-All’ networks and (iii) ‘All-to-One’ networks (i.e. interactions are only through
the N th local dynamics). For the case (i), the edges al,s (i.e the entries of the symmetric adjacency
A) of the ‘Randomly Distributed’ network are determined as follows:

– the N th node is connected to all other nodes (in order to guarantee that the network is connected)
with intensity one: aN ,s = 1 for s = 1, . . . , N − 1;

– all other edges are the product of two random variables: al,s = ZI for l, s = 1, . . . , N − 1 and l < s.
Z is a Bernoulli random variable taking 0 or 1 as a value with probability 1

2 , and I is uniformly
distributed on the interval [0, 1];

– no loops are allowed: al,l = 0 for l = 1, . . . , N .

We choose the coupling strengths ck and susceptibility constants sk as

ck+1 := c1 + k
0.75

N − 1
sk+1 := s1 − k

2.5

N − 1
for k = 1, . . . , N − 1

with c1 := 0.25 and s1 := 3.5 (and therefore cN = sN = 1). For the network of heterogeneous local
dynamics, we choose sk,1,2 = sk,1,3 = sk,2,3 = sk for k = v + 1, . . . , N .
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Fig. 7. Time evolution of the state variables xk (a) and parametric variables λk (b) for 30 homogeneous local dynamics
with ellipsoidal attractor as in Fig. 5 interacting through a ‘All-to-All’ network (AC = 30). Coupling dynamics and
parametric dynamics are switched on at t = 2 (black solid line).

5.2.1 Homogeneous local dynamics. For the 30 homogeneous local dynamics, D is defined as
in Example (3.3) and we choose G1(Xk) := ax2

k + by2
k + cz2

k − 1 and G2(Xk) := a(xk − 1
2 )2 + b(yk −

1
2 )2 + c(zk − 1

2 )2 − 1 with Xk = (xk , yk , zk) and a = 2, b = 3 and c = 5. These are two identical ellip-
soids, with G1 centred at the origin and G2 centred at ( 1

2 , 1
2 , 1

2 ), as shown in Fig. 5. The potentials are
defined as: Ek ≡ 1

2 G2
1 if k is odd and Ek ≡ 1

2 G2
2 if k is even. For each network topology, initial conditions

xk(0) are randomly uniformly distributed on the following intervals: [−1/
√

a − 0.2, −1/
√

a + 0.2]
if k is odd and on [ 1

2 + 1/
√

a − 0.2, 1
2 + 1/

√
a + 0.2] if k is even. The same applies for yk(0) and

zk(0) with, respectively, b and c instead of a. The initial conditions λk(0) of the f-PV are ran-
domly (uniform distribution) drawn from the interval [0.8, 1.2] and are rescaled so that the constant of
motion is one.

Figures 6–8 show, respectively, the resulting dynamics for the state variables xk and the adaptive
mechanism (i.e. parametric variables λk) with the three types of network: ‘Randomly Distributed’, ‘All-
to-All’ and ‘All-to-One’. The AC for each network is reported. To better perceive the convergence,
Fig. 8 runs on a longer time scale.

For t ∈ [0, 2], the coupling dynamics and the parametric dynamics are switched off
(i.e. Ck ≡ Pk ≡ 0 for all k)—local dynamics are governed by their local parameters and attractors.
At t = 2, interactions are switched on (see black solid line). Switching on is done with a smooth function
that changes from 0 to 1 on a unit time interval (see Appendix B in Rodriguez & Hongler (2009a) for
details). In all simulations, one can observe that during the decoupled phase (i.e. for t ∈ [0, 2]) local
systems converge towards their attractor (either one of the ellipsoids in Fig. 5). Once coupling
dynamics and parametric dynamics are switched on, all local systems converge towards the
common attractor, here the intersection of the two ellipsoids.

5.2.2 Heterogeneous local dynamics. For the 10 local dynamics defined in Example (3.7), we
choose v = 3. For each network topology, initial conditions (xk(0), yk(0), zk(0)) are randomly uniformly
distributed on [−0.25, 0.25]3 for k = 1, . . . , N . The initial conditions of the f-PV are randomly (uniform
distribution) drawn from the interval [−1, 1] for λk(0) (for k = 1, 2, 3) and from the intervals [0.8, 1.3]
for αk(0), [−1, 1] for βk(0) and [1.8, 2.5] for λk,2,3(0) (for k = 4, . . . , 10). They are rescaled so that the
constant of motion is 1.

Figures 9–11 show, respectively, the resulting dynamics for the state variables zk and the adaptive
mechanism (i.e. parametric variables λk , λk,1,3 and λk,2,3) with the three types of network: ‘Randomly
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Fig. 8. Time evolution of the state variables xk (a) and parametric variables λk (b) for 30 homogeneous local dynamics
with ellipsoidal attractor as in Fig. 5 interacting through a ‘All-to-One’ network (AC = 1). Coupling dynamics and
parametric dynamics are switched on at t = 2 (black solid line).

Fig. 9. Time evolution of the state variables zk (a) and parametric variables λk , λk,1,3 and λk,2,3 (b–d) for 10 heterogeneous
local dynamics defined in Example (3.7) interacting through a ‘Randomly Distributed’ network (AC = 1.3825). Coupling
dynamics are switched on at t = 13 (black solid line) and parametric dynamics at t = 37 (black dashed line).

Distributed’, ‘All-to-All’ and ‘All-to-One’. The AC for each network is reported. To better perceive the
convergence, Fig. 11 runs on a longer time scale.

For t ∈ [0, 13], neither the coupling dynamics nor the parametric dynamics are
switched on (i.e. Ck ≡ Pk ≡ 0 for all k)—local dynamics are governed by their local parame-
ters and attractors. At t = 13, only coupling dynamics are switched on (see the black solid line)
and finally, at t = 37, parametric dynamics are switched on (see the black dashed line). Note
that, for the ‘All-to-All’ network, the ‘ordered’ state reached between t = 13 and t = 37 (i.e. when there
is no adaptive mechanism in effect—Pk ≡ 0 for all k) is a trivial dynamics (fixed point), whereas for
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Fig. 10. Time evolution of the state variables zk (a) and parametric variables λk , λk,1,3 and λk,2,3 (b–d) for 10 heterogeneous
local dynamics defined in Example (3.7) interacting through a ‘All-to-All’ network (AC = 10). Coupling dynamics
are switched on at t = 13 (black solid line) and parametric dynamics at t = 37 (black dashed line).

Fig. 11. Time evolution of the state variables zk (a) and parametric variables λk , λk,1,3 and λk,2,3 (b–d) for 10 heterogeneous
local dynamics defined in Example (3.7) interacting through a ‘All-to-One’ network (AC = 1). Coupling dynamics
are switched on at t = 13 (black solid line) and parametric dynamics at t = 37 (black dashed line).
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the ‘Randomly Distributed’ and ‘All-to-One’ network cyclo-stationary states seem to be attained. We
observe this phenomenon in numerical experiments where the time interval on which the coupling
dynamics act has been enlarged.

5.3 Non-orthogonal adaptive mechanisms

To investigate the network’s dynamics when the hypothesis in Equation (2.12) is relaxed (i.e. non-
orthogonal adaptive mechanism), we perform two numerical investigations, each having five limit cycle
oscillators interacting through a ‘Crystal’ type network (cf. Fig. 4(c)). The first numerical experiment
concerns Hopf oscillators (we refer the reader to Section 5.3.1), whereas the second one deals with
Van der Pol oscillators (i.e. non-O-G systems) (we refer the reader to Section 5.3.2). In both cases, the
initial conditions for the state variables (xk(0), yk(0)) are randomly uniformly distributed on [−1, 1]2

and the initial conditions of the f-PV λk(0) are randomly (uniform distribution) drawn from the interval
[0.5, 1.5]. These are rescaled so that the average value is 1.

5.3.1 Hopf oscillators. The system is given as in Equations (1.4), with all coupling strengths and
susceptibility constants set to 1. Here, the parametric dynamics for the λk is given by

λ̇k = −
5∑

j=1

lk,jxjyk k = 1, . . . , 5.

Figure 12 displays the resulting dynamics for the state variables yk and the adaptive mechanism
(i.e. parametric variables λk) with a ‘Crystal’ type network. For t ∈ [0, 15], neither the coupling
dynamics nor the parametric dynamics are switched on. After the coupling and the adaptive
mechanisms are switched on, all λk converge towards a common and constant value which is not equal
to 1-1 being the rescaled average value of the initial λk distribution and the value of the consensual
frequency λc if Equation (2.12) is satisfied.

5.3.2 Van der Pol oscillators. The dynamical system of the network consists of five diffusively cou-
pled Van der Pol oscillators (i.e. non-O-G systems). Each oscillator’s parametric variable λk multiplies
the whole local vector field and thus controls the angular velocity on its limit cycle (i.e. λk plays the

Fig. 12. Time evolution of the state variables yk (a) and parametric variables λk (b) for five Hopf oscillators interacting through a
‘Crystal’ type network. Coupling dynamics and parametric dynamics are switched on at t = 15 (black solid line).
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Fig. 13. Time evolution of the state variables yk (a) and parametric variables λk (b) for five Hopf oscillators interacting through a
‘Crystal’ type network. Coupling dynamics and parametric dynamics are switched on at t = 15 (black solid line).

role of a flow parameter). A parametric dynamics not satisfying the orthogonality property in
the adaptive mechanism is introduced. The dynamical system is

ẋk = λkyk −
N∑

j=1

lk,jxk

ẏk = λk((1 − x2
k)yk − xk)︸ ︷︷ ︸

local dynamics

−
N∑

j=1

lk,jyk

︸ ︷︷ ︸
coupling dynamics

λ̇k = −
N∑

j=1

lk,j(xjyk + yj((1 − x2
k)yk − xk))

︸ ︷︷ ︸
parametric dynamics

k = 1, . . . , N . (5.1)

Figure 13 shows the resulting dynamics for the state variables yk and the adaptive mechanism
(i.e. parametric variables λk) with a ‘Crystal’ type network. As in Section 5.3.1, the coupling
dynamics and the parametric dynamics are switched on at t = 15. Equally as in Section 5.3.1,
observe that all λk converge towards a common and constant value, which is, however, not equal to 1.

6. Conclusion and perspectives

The interactions between agents enable synchronization and/or learning mechanisms from which col-
lective dynamic patterns emerge. The synchronization mechanisms, first exposed in the seminal con-
tribution of Christiaan Huygens, paved the way for a century-long and still ongoing multidisciplinary
research. Recently, growing attention is being paid to dynamic learning and adaptive issues arising in
networks of interacting dynamical systems. Synchronization and adaptation can be viewed as somehow
complementary mechanisms. Indeed, while synchronization expresses an ‘elastic capability’ enabling
dynamical systems to produce ephemeral common dynamical patterns, adaptive systems exhibit a ‘plas-
tic capability’ enabling the formation of permanent common dynamical patterns. The word associations
elastic-ephemeral versus plastic-permanence emphasize that classical synchronization patterns are pro-
duced owing to the steady action of mutual interactions—remove interactions and all local evolutions
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return to their original eigen-dynamics (i.e. chasser le naturel et il revient au galop).9 Conversely, adap-
tive dynamics permanently alter the local dynamics—even after interactions are removed, local
evolutions do not return to their original eigen-dynamics.

To analytically discuss adaptation along the lines just exposed, we introduced a class of stylized
models which are based on the following assumptions

(1) Local dynamics on each network vertex is characterized by O-G Systems. This ensures the
existence of stable local attractors.

(2) Mutual interactions are derived from the gradient of a coupling potential. Hence, the underlying
network is undirected.

(3) Orthogonality in the adaptive mechanism (i.e. implying Equation (2.14)) allows for the existence
of constants of motion for the parametric variables, enabling the full determination of consensus.

The orthogonality property in the adaptive mechanism is rather restrictive. Numerical experiments,
however, show that this property can be relaxed, and that a consensual angular velocity is still reached.
On the other hand, determining the exact value of the angular velocity remains an open problem.

Among the vast range of situations leading to dynamical adaptation, we focused on a simple and ide-
alized class for which permanent self-tuning of individual control parameters is analytically tractable.
As usual, what is gained for the simplicity of solvable models has to be paid for by limiting the gener-
ality. We still think that the insights offered by our models do raise several relevant questions for future
investigations.

While our models offer the possibility to explicitly calculate the consensual evolution, further ana-
lytical results for more general situations remain to be developed. In particular, ongoing research is
devoted to consider more general interactions for which the network connectivity affects the consensual
dynamics. Such interactions can be observed in the adaptive behaviour of societies of interacting agents
like platoons of birds, schools of fish, gregarious grasshoppers, etc. Here the agents’ density and their
interconnectivity ultimately determines their dynamical behaviour (cf. Cucker & Smale, 2007). Also,
the restriction to time-independent networks has to be relaxed to cover other applications, involving
non-stationary and noisy environments—which arise in the real world. Recent studies show how time-
dependent connectivity may either stabilize or destabilize the dynamics via parametric and/or stochastic
resonance (cf. Rodriguez & Hongler, 2010). The nature of the interactions together with the network
connectivity could alternatively be studied in the context of optimal control theory, provided a set of rel-
evant objective functions are defined. Finally, allowing a distinction between physical and information-
directed networks (i.e. breaking the symmetry of the adjacency matrix) opens new and unexplored
questions for the resulting adaptation capabilities.
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Appendix A. Asymptotic stability of a compact set

For a non-empty set M⊂ R
p and x ∈ R

p, define the distance between M and x by N(M, x) :=
inf{‖x − z‖ | z ∈M} (‖ · ‖ the euclidean norm). For t ∈ R�0, let ϕt(x) be the flow of a dynamical sys-
tem given by the ordinary differential equation ẏ = L(y) (i.e. ϕt(x) = y(t) such that ẏ(t) = L(y(t)) and
ϕ0(x) = y(0) = x).

Definition A.1 A set M is asymptotically stable if it is stable and it is an attractor,
that is

(1) Stable—if every neighbourhood U of M contains a set V that is a neighbourhood of M and
V is positively invariant (i.e. ϕt(x) ∈ V ∀x ∈ V , ∀t� 0).

(2) Attractor—if the set AM := {x ∈ R
p | limt→∞ N(M, ϕt(x)) = 0} is a neighbourhood of M.

The well-known asymptotic stability result that is applied is (see Bhatia & Szegö, 1970, Chap-
ter VIII, Theorem 1.6) the following theorem.

Theorem A.2 Let M⊂ R
p be a non-empty compact set. If there exists a continuously differentiable

real-valued function F(x) defined on a neighbourhood U of M such that

(1) F(x) = 0 if x ∈M and F(x) > 0 if x /∈M;

(2) 〈∇F(x) | L(x)〉 < 0 for x /∈M;

then M is asymptotically stable.

http://www.eccs2010.eu/publications
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Appendix B. Lemmas for symmetric and anti-symmetric matrices

Lemma B.1 Let L be an N × N symmetric matrix. Let Rx and Ry be two functions on R
n onto R

N .
Then

N∑
k=1

N∑
j=1

lk,j(Rxj(X )Ryk (X ) − Ryj(X )Rxk (X )) = 0 ∀X .

Proof. By direct calculation, we obtain

N∑
k=1

N∑
j=1

lk,j(Rxj(X )Ryk (X ) − Ryj(X )Rxk (X ))

=
N∑

k=1

⎛
⎝
⎛
⎝ N∑

j=1

lk,jRxj(X )

⎞
⎠Ryk (X ) −

⎛
⎝ N∑

j=1

lk,jRyj(X )

⎞
⎠Rxk (X )

⎞
⎠

= 〈LRx(X ) | Ry(X )〉 − 〈LRy(X ) | Rx(X )〉 =︸︷︷︸
L is symmetric

〈LRx(X ) | Ry(X )〉 − 〈Ry(X ) | LRx(X )〉 = 0.

�

Lemma B.2 Let T denote a p × p anti-symmetric matrix, x, y ∈ R
p. Then

p∑
s,l=1
s<l

tl,s(ylxs − ysxl) = 〈y | Tx〉

and therefore 〈x | Tx〉 = 0.

Proof. Developing the left-hand side,

p∑
s,l=1
s<l

tl,s(ylxs − ysxl) =
p∑

s,l=1
s<l

tl,sylxs +
p∑

s,l=1
s<l

−tl,s︸︷︷︸
ts,l

ysxl =
p−1∑
l=1

yl

(
p∑

s=l+1

tl,sxs

)
+

p∑
s=2

ys

(
s−1∑
l=1

ts,lxl

)

= 〈y | T�x〉 + 〈y | T�x〉,

where T� and T� are, respectively, upper and lower triangular matrices with the entries of T implying
that T� + T� = T , which concludes the proof. �

Appendix C. M is an m-dimensional compact submanifold of R
pN

Let G be defined as in (2.5) and denote X ∈ R
pN as X := (X1, . . . , XN ) with Xk := (xk,1, . . . , xk,p) and

define xk := (x1,k , . . . , xp,k). Let L be an N × N Laplacian matrix associated to a connected network
(L := D − A where entries of the adjacency matrix A are symmetric and positive ak,j = aj,k � 0 for all
j, k and D is a diagonal matrix with entries dk,k :=∑N

j=1 ak,j). Finally, L̂ is L without its last line (i.e. an
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(N − 1) × N matrix). We have to show that

M := {X ∈ R
pN | M(X ) := (G(X1), L̂x1, . . . , L̂xp) = 0 ∈ R

pN−m}

is not empty, and that, for all X ∗ ∈M, there exists a neighbourhood UX ∗ ⊂ R
pN of X ∗ such that DM(X )

has rank pN − m for all X ∈ UX ∗ .
[M |= ∅] The equations

L̂x1 = · · · = L̂xp = 0 ∈ R
N−1 (C.1)

are equivalent to

x1,1 = · · · = xN ,1, x1,2 = · · · = xN ,2, . . . , x1,p = · · · = xN ,p ⇐⇒ Lx1 = · · · = Lxp = 0 ∈ R
N . (C.2)

Obviously, Equations (C.2) imply Equations (C.1). It is also true the other way around since, for any
z ∈ R

p such that L̂z = 0, it follows that

0 =
N−1∑
k=1

⎛
⎝ N∑

j=1

lk,jzj

⎞
⎠=

N∑
j=1

zj

(
N−1∑
k=1

lk,j

)
= zN

N−1∑
k=1

lk,N︸ ︷︷ ︸
−lN ,N

+
N−1∑
j=1

zj

(
N−1∑
k=1

lk,j

)

because ls,s = −∑N
j |= s ls,j and lk,j = lj,k (lk , j entries of L). Since, for j = 1, . . . , N − 1,

∑N−1
k=1 lk,j = lj,j +∑N−1

k |= j lk,j = −∑N
j |= s lj,s +∑N−1

k |= j lk,j︸︷︷︸
j,k

= −lj,N , then

0 = −lN ,N zN +
N−1∑
j=1

zj(−lj,N ) = −
N∑

j=1

lN ,jzj

and therefore L̂z = 0 implies Lz = 0. Hence, an element X in M must satisfy Xk = Xc for k = 1, . . . , N
and G(Xc) = 0. Since by hypothesis L := {X ∈ R

p | G(X ) = 0 ∈ R
p−m} is a submanifold, it is not

empty and therefore M is not empty as well.
[DM(X ) has rank pN − m] For X ∗ = (X ∗

1 , . . . , X ∗
1 ) ∈M, consider a neighbourhood UX ∗

1
⊂ R

p of
X ∗

1 ∈ R
p such that DG(X1) has rank p − m for all X1 ∈ UX ∗

1
(such a neighbourhood exists since L is a

submanifold of R
p). Define UX ∗ := UX ∗

1
× · · · × UX ∗

1
(p times the Cartesian product of UX ∗

1
). Computing

the derivative of M(X ) and evaluating it on X ∈ UX ∗ gives

DM(X ) =
(

DG(X1) 0
Q

)
,

where DG(X1) is the (p − m) × p Jacobian of G, 0 is a (p − m) × (N − 1)p matrix with all entries 0
and Q is a matrix with p × N blocks, each of size N − 1 × p (i.e. Q has p(N − 1) rows and Np columns).
Bloc l, s has the sth column of matrix L̂ in its lth column and the rest of the entries are zero. We have to
verify that the Np − m lines of this Jacobian are linearly independent. Let βj (j = 1, . . . , p − m) and αj,k
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(j = 1, . . . , p, k = 1, . . . , N − 1) be real numbers and we verify that they are all zeros if and only if

N−1∑
j=1

lj,1αs,j +
p−m∑
j=1

βj
∂Gj

∂xs
(X1) = 0 s = 1, . . . , p, (C.3a)

N−1∑
j=1

lj,rαk,j = 0 k = 1, . . . , p, r = 2, . . . , N . (C.3b)

Since L is symmetric (lk,j = lj,k), Equations (C.3b) are equivalent to L̄αk = 0 ∈ R
N−1 for k = 1, . . . , p,

where L̄ is L without its first line and without its last column and αk := (αk,1, . . . , αk,N−1). Since the rank
of L is N − 1 (Laplacian matrix associated to a connected network), the minor of L̄ is non-zero, and
therefore L̄αk = 0 if and only if αk = 0 for k = 1, . . . , p. By hypothesis X1 ∈ UX ∗

1
and DG(X1) has rank

p − m, therefore βj = 0 j = 1, . . . , p − m. Hence, for X ∈ UX 1 , DM(X ) has rank pN − m and, thus, M
has a dimension of m.

Appendix D. Equality between kernels

We have to see that, for all X ∗ ∈M (cf. (2.6)), ker(D2F(X ∗)) = ker(DM(X ∗)) with

F(X ) := K(X ) + V(X )

and where we define K(X ) :=∑N
k=1(1/ck)Ek(Xk) with Ek(Xk) := 1

2

∑
j∈Ik

Gj(Xk)
2. According to our

definition of M, any X ∗ ∈M has the following property: X1 ∈L (and therefore in any Lk) and Xk = Xc

for all k.
Let X ∗ ∈M; then D2F(X ∗) is positive semi-definite (since X ∗ is a minimum) and symmetric. There-

fore ker(D2F(X ∗)) := {X ∈ R
pN | 〈X | D2F(X ∗)X 〉 = 0} and 〈X | D2F(X ∗)X 〉 = 〈X | D2K(X ∗)X 〉 +

〈X | D2V(X ∗)X 〉, with both terms being positive semi-definite (since X ∗ is a minimum for both terms).
Hence

X ∈ ker(D2F(X ∗)) ⇐⇒ 〈X | D2K(X ∗)X 〉 = 0 and 〈X | D2V(X ∗)X 〉 = 0,

where D2K(X ) is an N × N block matrix with blocks of dimension p × p (i.e. pN × pN square matrix).
The kth diagonal block is the p × p symmetric matrix 1

ck
D2Ek(Xk) and reads as

1

ck

∑
j∈Ik

(
∂Gj

∂xk,s
(Xk)

∂Gj

∂xk,r
(Xk) + Gj(Xk)

∂2Gj

∂xk,s∂xr,k
(Xk)

)
r, s = 1, . . . , p,

while all other entries are 0. Evaluating D2K(X ) at X ∗ ∈M gives

1

ck

∑
j∈Ik

(
∂Gj

∂xk,s
(X ∗

k )
∂Gj

∂xk,r
(X ∗

k )

)
.

We drop the k index in the sum since it is no longer relevant (i.e. X ∗
k = X ∗

c for all k) and use the
notation ∂Gj/∂x∗

s := (∂Gj/∂xk,s)(X ∗
c ), so that the entries of the p × p symmetric matrix D2Ek(X ∗

c ) are∑
j∈Ik

(∂Gj/∂x∗
r )(∂Gj/∂x∗

s ). Since D2Ek(X ∗
c ) is positive semi-definite (since X ∗

c is a minimum) for all k,
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we have

〈X | D2K(X ∗)X 〉 = 0 ⇐⇒
〈

Xk

∣∣∣∣ 1

ck
D2Ek(X

∗
c )Xk

〉
= 0 for all k.

As we obtain〈
Xk

∣∣∣∣ 1

ck
D2Ek(X

∗
c )Xk

〉
= 1

ck

∑
l∈Ik

(
p∑

r=1

p∑
s=1

∂Gl

∂x∗
r

∂Gl

∂x∗
s

xk,sxk,r

)

= 1

ck

∑
l∈Ik

⎛
⎜⎜⎝

p∑
j=1

(
∂Gl

∂x∗
j

xk,j)
2 + 2

p∑
r,j=1
r<j

∂Gl

∂x∗
r

xk,r
∂Gl

∂x∗
j

xk,j

⎞
⎟⎟⎠

= 1

ck

∑
l∈Ik

⎛
⎝ p∑

j=1

∂Gl

∂x∗
j

xk,j

⎞
⎠2

,

it follows that

〈X | D2K(X ∗)X 〉 = 0 ⇐⇒ 〈∇Gl(X
∗
c ) | Xk〉 = 0 l ∈ Ik ∀k ⇐⇒ Xk ∈ ker(DG(X ∗)) ∀k.

By hypothesis (2.4), we have that 〈X | D2V(X ∗)X 〉 = 0 ⇐⇒ Xk = Xc for all k, and so

X ∈ ker(D2F(X ∗)) ⇐⇒ Xk = Xc∀k and Xc ∈ ker(DG(X ∗)) ⇐⇒ X ∈ ker(DM(X ∗)).

Appendix E. Existence of set U
To prove Corollary E.2, we first need to consider the following Lemma. In words, it states that, for the
gradient of a real-valued function F not to vanish in a neighbourhood of a manifold M, the kernel of
F’s Hessian must be the same as the kernel of M.

Lemma E.1 Let M be a submanifold given by M : R
m → R

m−k (i.e. M has a dimension of k). Here F
is a real-valued function on R

m such that F(x)� 0 for all x and F(x) = 0 if and only if x ∈M. Suppose
that there exists x∗ ∈M such that ker(D2F(x∗)) = ker(DM(x∗)). Then there exists an open set Ux∗ � x∗
such that ∇F(x) |= 0 for all x ∈ Ux∗ \ M.

Proof. By hypothesis there exists x∗ ∈M such that ker(D2F(x∗)) = ker(DM(x∗)). Without loss of
generality, we can chose a basis of R

m such that the first k basis vectors span the kernel of DM(x∗),
and we use the following notation: x = (x̄, x̂). In this basis, (∂M/∂ x̂)(x∗)−1 exists and, since M(x∗) = 0,
the implicit function theorem guarantees the existence of rM, RM > 0 and a unique continuous map
IM : B(x̄∗, rM) −→B(x̂∗, RM) such that

M(x̄, x̂) = 0 ⇐⇒ IM(x̄) = x̂ ∀(x̄, x̂) ∈B(x̄∗, rM) × B(x̂∗, RM),

where B(x∗, r) is the open ball centred at a point x∗ and of radius r > 0. Define

S : R
k × R

m−k −→ R
m−k

(x̄, x̂) �−→ π(∇F(x)),
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with projection π(x1, . . . , xm) = (xk+1, . . . , xm). By hypothesis ker(D2F(x∗)) = ker(DM(x∗)) and so
(∂S/∂ x̂)(x∗)−1 exists. Since M is the minimum of F, we have M⊆ ∇F−1(0) ⊆ S−1(0) and so
S(x∗) = 0. Therefore, applying the implicit function theorem, there exists rS, RS > 0 and a unique con-
tinuous map IS : B(x̄∗, rS) −→B(x̂∗, RS) such that

S(x̄, x̂) = 0 ⇐⇒ IS(x̄) = x̂ ∀(x̄, x̂) ∈B(x̄∗, rS) × B(x̂∗, RS).

Define B :=B(x̄∗, r) × B(x̂∗, R) with r := min{rM, rS} and R := min{RM, RS} and let

Graph(IM) := {(x̄, IM(x̄)) ∈ R
m | x̄ ∈B(x̄∗, r)}

and

Graph(IS) := {(x̄, IS(x̄)) ∈ R
m | x̄ ∈B(x̄∗, r)}.

By the implicit function theorem, Graph(IM) :=M ∩ B and Graph(IS) := S−1(0) ∩ B. Since M⊆
∇F−1(0) ⊆ S−1(0), it follows that M ∩ B ⊆ ∇F−1(0) ∩ B ⊆ S−1(0) ∩ B and so

Graph(IM) ⊆ Graph(IS). (E.4)

In fact, these two sets are equal. To see this, suppose that there exists z = (z̄, ẑ) ∈B such that z ∈
Graph(IS) but z /∈ Graph(IM). Since z ∈ Graph(IS), then IS(z̄) = ẑ and since z /∈ Graph(IM), it follows
that IM(z̄) |= ẑ. However, since (E.4), it follows that (z̄, IM(z̄)) ∈ Graph(Ih), which implies (because IS is
a map) that

IS(z̄) = IM(z̄) |= ẑ,

which is a contradiction. Therefore Graph(IM) = Graph(IS), so M ∩ B = S−1(0) ∩ B and hence
M ∩ B = ∇F−1(0) ∩ B. Thus, there exists an open set Ux∗ � x∗ which is B such that, for all x ∈
Ux∗ \ M, ∇F(x) |= 0. �

Corollary E.2 With the same hypothesis as in Lemma (E.1) and supposing additionally that for
all x∗ ∈M, we have ker(D∇F(x∗)) = ker(DM(x∗)). Then, there exists an open set U ⊃M such that
∇F(x) |= 0 for all x ∈ U \ M.

Proof. By Lemma (E.1), there exists an open set Ux∗ � x∗ such that ∇F(x) |= 0 for all x ∈ Ux∗ \ M. Then
U is given by

U :=
⋃

x∗∈M
Ux∗ .

�

Appendix F. Proofs of Propositions 3.2, 3.4 and 3.6

Proof of Proposition 3.2. The convergence towards Cλc follows from Lyapunov’s second method with
Lyapunov function

Fλc(X , Λ) := F(X ) + 1

2

N∑
k=1

(λk − λc)
2

sk
� 0,
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where F(X ) is defined in Lemma 3.1. By construction, we have Cλc = {(X , Λ) ∈ R
Np × R

N | F(X , Λ) =
0}. Computing the time derivative,

〈∇Fλc(X , Λ) | (Ẋ , Λ̇)〉 =
N∑

k=1

〈
1

ck
∇Ek(Xk) + ∂V

∂Xk
(X )

∣∣∣∣ Ẋk

〉
+

N∑
k=1

(λk − λc)

sk
λ̇k

=
N∑

k=1

〈
1

ck
∇Ek(Xk) + ∂V

∂Xk
(X )

∣∣∣∣ λkK(Xk) − ∇Ek(Xk) − ck
∂V
∂Xk

(X )

〉

−
N∑

k=1

λk

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
+ λc

N∑
k=1

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
︸ ︷︷ ︸

=0

=
N∑

k=1

1

ck
〈∇Ek(Xk) | λkK(Xk)〉︸ ︷︷ ︸

=0

+
N∑

k=1

〈
∂V
∂Xk

(X )

∣∣∣∣ λkK(Xk)

〉

−
N∑

k=1

ck

∥∥∥∥ 1

ck
∇Ek(Xk) + ∂V

∂Xk
(X )

∥∥∥∥2

︸ ︷︷ ︸
�0

−
N∑

k=1

〈
∂V
∂Xk

(X )

∣∣∣∣ λkK(Xk)

〉
.

Let Uλc be a neighbourhood of λc1 included in the hyperplane

{
Λ ∈ R

N

∣∣∣∣∣
N∑

k=1

λk

sk
= λc

N∑
k=1

1

sk

}
.

Therefore, by taking the open set U ⊃M whose existence we have proved in Lemma 3.1, strict nega-
tivity of 〈∇Fλc(X , Λ) | (Ẋ , Λ̇)〉 < 0 holds for all (X , Λ) ∈ U × Uλc \ Cλc . Hence, the compact set Cλc is
asymptotically stable (see Appendix A for details).

The hypothesis that
∑N

k=1〈(∂V/∂Xk)(X ) | K(Xk)〉 = 0 leads to the existence of a constant of motion:
J(λ1, . . . , λN ) :=∑N

k=1(λk(t)/sk). Indeed, for {λk(t)}N
k=1 orbits of Equations (3.1), we have

d[J(λ1(t), . . . , λN (t))]

dt
=

N∑
k=1

λ̇k

sk
= −

N∑
k=1

〈
∂V
∂Xk

(X )

∣∣∣∣K(Xk)

〉
= 0.

Thus C =∑N
k=1(λk(t)/sk) for all t, and C =∑N

k=1(λk(0)/sk). Owing to the convergence, C =
λc
∑N

k=1(1/sk) and therefore

λc :=
∑N

k=1(λk(0)/sk)∑N
k=1(1/sk)

.

�
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Proof of Proposition 3.4. The convergence towards CΛc follows from Lyapunov’s second method with
Lyapunov function

FΛc(X , Λ) := F(X ) + 1

2

p∑
s,l=1
s<l

(
N∑

k=1

(λk,l,s − λc,l,s)
2

sk,l,s

)
� 0,

where F(X ) is defined in Lemma 3.1 with here Ek(Xk) = 1
2 G(Xk)

2. The rest of the proof is similar to the
one in Proposition 3.2. Full calculations are found in Rodriguez (2011). �

Proof of Proposition 3.6. The convergence towards Cλc×Λc follows from Lyapunov’s second method
with Lyapunov function:

Fλc×Λc(X , Λ) := F(X ) + 1

2

v∑
k=1

(λk − λc)
2

sk
+ 1

2

p∑
s,l=1
s<l

(
N∑

k=v+1

(λk,l,s − λc)
2

sk,l,s

)
,

where F(X ) is defined as in Appendix D with Ek(Xk) := 1
2

∑
j∈Ik

Gj(Xk)
2 for k = 1, . . . , v and Ek(Xk) :=

1
2 G1(Xk)

2 for k = v + 1, . . . , N . The rest of the proof is similar to the one in Proposition 3.2. Full calcu-
lations are found in Rodriguez (2011). �


