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We reformulate notions from the theory of quasi-Poisson g-manifolds in terms of

graded Poisson geometry and graded Poisson–Lie groups and prove that quasi-Poisson

g-manifolds integrate to quasi-Hamiltonian g-groupoids. We then interpret this result

within the theory of Dirac morphisms and multiplicative Manin pairs, to connect our

work with more traditional approaches, and also to put it into a wider context suggest-

ing possible generalizations.

1 Introduction

Let G denote a Lie group the Lie algebra g of which is equipped with an invariant inner

product. Quasi-Hamiltonian G-manifolds were introduced in [3], where they were shown

to be equivalent to the theory of infinite-dimensional Hamiltonian loop group spaces. In

particular, they were used to simplify the study of the symplectic structure on the mod-

uli space of flat connections by using finite-dimensional techniques. In [4], the more

general quasi-Poisson g-manifolds were introduced. These notions were further gener-

alized and studied in subsequent papers [5, 6, 9–12, 14, 40, 41, 63], to cite a few.
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The main objective of this paper is to prove that the following three facts hold

for an arbitrary quasi-Poisson g-manifold, M:

qP-1 T∗M inherits a Lie algebroid structure.

qP-2 Each leaf of the corresponding foliation of M inherits a quasi-symplectic

g-structure.

qP-3 If the Lie algebroid T∗M integrates to a Lie groupoid Γ ⇒ M, then Γ

inherits a quasi-Hamiltonian g-structure. Moreover, the source map s :

Γ → M is a quasi-Poisson morphism, while the target map t : Γ → M is

anti-quasi-Poisson.

Besides completing the theory of quasi-Poisson manifolds, our result can provide a new

angle towards integrating certain Poisson structures. In addition to this, it has appli-

cations towards the integration of certain Courant algebroids. We plan to explore these

consequences in forthcoming papers.

The methods we use to prove the results (qP-1–3) are of independent interest. We

reformulate notions from the theory of quasi-Poisson g-manifolds in terms of graded

Poisson geometry and graded Poisson–Lie groups. Then we prove the results (qP-1,2,

and 3) using well-known theorems established for Poisson manifolds and Poisson–

Lie groups. In particular, we prove (qP-3) by interpreting structures in terms of Lie

algebroid/groupoid morphisms, as was done in [13, 33, 39, 41]. As a result, we are able

to avoid infinite-dimensional path spaces. We hope our approach will provide the reader

with a fresh and insightful perspective on the theory of quasi-Poisson g-manifolds.

The methods we use to derive the results (qP 1,2 and 3) are an application of the

more general theory of MP-groupoids. We use the latter half of our paper to describe the

theory of MP-groupoids. MP-groupoids are a reinterpretation of multiplicative Manin

pairs [39] in terms of graded Poisson geometry [14, 46]. In this portion of the paper,

we also describe the link between our approach to quasi-Poisson g-manifolds and the

standard approach in terms of Dirac morphisms and multiplicative Manin pairs [6, 9,

11, 14, 39].

1.1 Overview

Our paper is organized as follows. In Section 2, we briefly summarize some background

material and introduce our main result, the integration of quasi-Poisson g-manifolds.

In Section 3, we provide a new perspective on the theory of quasi-Poisson g-manifolds

using the theory graded Poisson geometry and graded Poisson–Lie groups. We then use
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this new perspective to prove the results from Section 2. Next, in Section 4, we provide

some detailed examples of the integration of quasi-Poisson g-manifolds.

The remainder of the paper is spent relating our approach to the theory of Manin

pairs. In Section 5, we review the definitions of Courant algebroids, Manin pairs, their

morphisms and the category of multiplicative Manin pairs. Following this, in Section 6,

we recall the relationship between the categories of Manin pairs and graded Poisson

manifolds. Using this relationship, we introduce the infinitesimal notion corresponding

to a multiplicative Manin pair. We apply these concepts in Section 7 to relate the content

of Section 3 to the theory of Manin pairs.

2 Background and statement of results

In this section, we want to recall the theory of quasi-Poisson g-manifolds. To provide

some intuition and motivate the definitions, we will develop both the theory of quasi-

Poisson g-manifolds and the theory of Poisson manifolds in parallel. We will describe

the Poisson case in a series of remarks.

In Section 3, we will use a graded version of the theory of Poisson manifolds and

Lie bialgebra actions to prove some results about quasi-Poisson g-manifolds. In particu-

lar, in Section 3, we will require some understanding of quasi-triangular Lie bialgebras.

We intend to summarize this background material in this section.

2.1 Quasi-Poisson g-manifolds

Let g be a Lie algebra with a chosen ad-invariant element s ∈ S2g. Define s� : g∗ → g by

β(s�(α))= s(α, β) for α, β ∈ g∗. Let φ ∈ ∧3g be given by

φ(α, β, γ )= 1
2α([s

�β, s�γ ]) (α, β, γ ∈ g∗).

Definition 2.1 ([4, 5]). A quasi-Poisson g-manifold is triple (M, ρ, π), where

• M is a g-manifold,

• ρ : M × g → T M is the anchor map for the action Lie algebroid, and

• π ∈ Γ (∧2T M)g is a g-invariant bivector field

satisfying

[π, π ] = ρ(φ) and [π, ρ(ξ)] = 0, (1)

for any ξ ∈ g. Here we view φ and ξ as constant sections of M × ∧g and extend ρ to a mor-

phism ρ : M × ∧g → ∧T M. The bracket in (1) is the Schouten bracket on multivector fields.
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Let (Mi, ρi, πi) be two quasi-Poisson g-manifolds (for i = 1,2). A map f : M1 → M2

is a quasi-Poisson morphism if π2 = f∗π1 and ρ2 = f∗ ◦ ρ1. �

Example 2.2. Suppose that ρ is an action of g on M. For x ∈ M let gx = ker(ρx) be the

stabilizer at the point x, and g⊥
x ⊂ g∗ be its annihilator. Then ρ(φ)= 0 if s�(g⊥

x )⊂ gx, in

which case we say the stabilizers are coisotropic (with respect to s). In this case, the

triple (M, ρ,0) is a quasi-Poisson g-manifold. �

Remark 2.3 (Poisson parallel). We now recall the related notion in Poisson geometry.

Let h be a Lie bialgebra with cobracket δ : h → ∧2h. A Poisson h-manifold is a

triple (N, ρ, π), where

• N is a h-manifold,

• ρ : M × h → T N is the anchor map for the action Lie algebroid, and

• π ∈ Γ (∧2T N) is a bivector field,

satisfying

[π, π ] = 0 and [π, ρ(ξ)] = ρ(δ(ξ)) (2)

for every ξ ∈ h, which we view as a constant section of M × h.

If H denotes the Poisson–Lie group corresponding to the Lie bialgebra h, and if

ρ can be integrated to an action of H on N (or we work with local actions), the action

H × N → N becomes a Poisson map [30, 31].

When h = 0, then we may refer to a Poisson h-manifold (N, ρ = 0, π) as a Poisson

manifold (N, π). �

Remark 2.4. Recall that the Lie bracket on g extends to a Gerstenhaber bracket on
∧

g.

Suppose there is an element u∈∧2 g such that [u,u] = −φ. Then g becomes a Lie bialgebra

with cobracket δ : ξ → [u, ξ ]. Lie bialgebras of this type are called quasi-triangular [7, 24]

and the combination r = s + u∈ g ⊗ g is called a classical r-matrix.

In this case, quasi-Poisson g-manifolds and Poisson g-manifolds are equivalent

via a “twist” by u, as shown in [4]. To recall the details, if (M, ρ, π) is a quasi-Poisson

g-manifold then π ′ = π + ρ(u) satisfies [π ′, π ′] = 0, that is, π ′ is a Poisson structure. More-

over, the action of g via ρ becomes an action of the Lie bialgebra g on the Poisson

manifold (M, π ′).

Note that in Section 3 we will use a graded version of this equivalence. �
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For simplicity, we shall restrict from now on to the case where s is nondegener-

ate. We shall identify g with g∗ via s, and let 〈·, ·〉 denote the corresponding ad-invariant

inner-product on g. Such a Lie algebra is called quadratic. Let ei and ei denote two bases

of g dual with respect to 〈·, ·〉.

Remark 2.5. Suppose (M, ρ,0) is as in Example 2.2, s is nondegenerate, and g = f ⊕ h

where f and h are Lagrangian subalgebras. We can choose bases { fi} of f and {hi} of h

such that 〈 fi,hi〉 = 1 and 〈 fi,hj〉 = 0 for i �= j. Then with u:=∑
i fi ∧ hi, r = s + u∈ g ⊗ g is

a classical r-matrix. As in Remark 2.4, π ′ := π + ρ(u) defines a Poisson structure on M.

The Poisson structure π ′ was constructed in [28] via a Courant algebroid

structure on M × g. The approach via quasi-Poisson g-manifolds appears to be more

direct. �

Recall that Lie algebroid structure on a vector bundle A→ M is equivalent to a

differential on the algebra Γ (∧∗ A∗) [15, 52].

Theorem 2.6. If (M, ρ, π) is a quasi-Poisson g-manifold, then T∗M becomes a Lie alge-

broid, where the Lie algebroid differential dT∗ M on Γ (∧∗T M) is

dT∗ M = [π, ·] + 1

2

∑
i

ρ(ei) ∧ [ρ(ei), ·]. (3)

Furthermore, the induced action of g on T∗M preserves the Lie algebroid structure.

Let prg : M × g → g be the projection to the second factor, and ρ∗ : T∗M →
M × g∗ ∼= M × g the transpose of ρ, then μρ := prg ◦ρ∗ : T∗M → g is a Lie algebroid

morphism. �

This can be proved by a direct calculation: the two parts of dT∗ M commute with

each other and their squares cancel each other. We give a conceptual proof of the

theorem in Section 3.3.

The corresponding Lie bracket on 1-forms α, β ∈Ω1(M) is

[α, β] = [α, β]π + 1

2

∑
i

(α(ρ(ei))Lρ(ei)β − β(ρ(ei))Lρ(ei)α),

where

[α, β]π = dπ(α, β)+ ιπ�(α) dβ − ιπ�(β) dα (4)
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is the Koszul bracket (here β(π�(α))= π(α, β)). The anchor map, a : T∗M → T M, is

a = π� + 1
2ρ ◦ ρ∗. (5)

We call a quasi-Poisson g-manifold integrable if the Lie algebroid structure on

the cotangent bundle is integrable to a Lie groupoid.

Remark 2.7 (Poisson parallel). If (N, π) is a Poisson manifold, there is a Lie alge-

broid structure on T∗N the corresponding Lie algebroid differential dT∗ N : Γ (∧nT N)→
Γ (∧n+1T N) of which is

dT∗ N = [π, ·].

In this case, the anchor map a : T∗M → T M, is given by

a = π�, (6)

and the bracket is given by (4).

If a Lie bialgebra h acts on N, then μρ := prh∗ ◦ρ∗ : T∗N → h∗ is a Lie algebroid

morphism, where prh∗ : M × h∗ → h∗ is the projection to the second factor and ρ∗ : T∗M →
M × h∗ is the transpose of ρ. �

Remark 2.8. It was shown in [9] that whenever (M, ρ, π) is a quasi-Poisson g-manifold,

there is a Lie algebroid structure on A= T∗M ⊕ g. The Lie algebroid T∗M described in

Theorem 2.6 is embedded as a subalgebroid of T∗M ⊕ g by the map α→ α + ρ∗(α).

The following was pointed out by a referee: suppose that (M, ρ, π) also possesses

a moment mapΦ : M → G (see Definition 2.12). Let θ denote the (left) Maurer–Cartan form

on G, and let η= 1
2 〈[θ, θ ], θ〉. Bursztyn and Crainic [9] describe a Φ∗η-twisted Dirac struc-

ture L ⊂ T M ⊕ T∗M associated to the quasi-Poisson g-structure on M. In [9, Proposition

3.19] they describe a map

A→ L ⊂ T M ⊕ T∗M,

which restricts to T∗M ∼= Grρ∗ ⊂ A to define an isomorphism of Lie algebroids T∗M ∼= L .

In particular, Bursztyn and Crainic [9] show that in the presence of a moment

map the Lie algebroid described in Theorem 2.6 can be viewed as a Φ∗η-twisted Dirac

structure. �
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Remark 2.9. The foliation of the quasi-Poisson g-manifold (M, ρ, π) given by the Lie

algebroid T∗M is different from the foliation given in [4, 5, 9]. The latter foliation is

tangent to ρx(g)+ π
�
xT∗

x M at any point x ∈ M; in particular, the leaves contain the g-orbits.

This is not the case for the foliation given by the Lie algebroid T∗M; for instance, if as

in Example 2.2, (M, ρ,0) is a quasi-Poisson g-manifold, the anchor map a : T∗M → T M

is trivial (ρx ◦ ρ∗
x = 0 for any point x ∈ M, since the stabilizers of ρ are coisotropic), while

the g-orbits may not be.

On the other hand, as we shall see below, for a Hamiltonian quasi-Poisson

g-manifold these two foliations coincide. �

Definition 2.10. A quasi-symplectic g-manifold is a quasi-Poisson g-manifold (M, π, ρ)

such that the anchor map (5) is bijective. �

Remark 2.11 (Poisson parallel). A Poisson manifold (N, π) is called symplectic if the

corresponding anchor map (6) is bijective. �

2.2 Hamiltonian quasi-Poisson g-manifolds

There is a concept of a group valued moment map for quasi-Poisson g-manifolds [4,

5]. Let G be a Lie group with Lie algebra g. For any ξ ∈ g let ξL, ξR ∈ Γ (TG) denote the

corresponding left and right invariant vector fields. Let θL, θR ∈Ω1(G, g) denote the left

and right Maurer Cartan forms on G defined by

θL(ξL)= ξ, θR(ξR)= ξ.

Definition 2.12 ([4, 5]). A map Φ : M → G is called a moment map for the quasi-Poisson

g-manifold (M, ρ, π) if

• Φ is g-equivariant, and

• π�(Φ∗(α))= ρ(Φ∗(b∗α)) for any α ∈Ω1(G),

where the vector bundle map b : G × g → TG is given by

b : (g, ξ)−→ 1
2 (ξ

L(g)+ ξR(g)). (7)

Under these conditions, we call the quadruple (M, ρ, π,Φ) a Hamiltonian quasi-

Poisson g-manifold, or a Hamiltonian quasi-Poisson g-structure on M. �
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Theorem 2.13. If (M, ρ, π,Φ) is a Hamiltonian quasi-Poisson g-manifold, then the map

i : g −→Ω1(M), i(ξ)=Φ∗〈ξ, θL〉 (8)

is a morphism of Lie algebras such that a ◦ i = ρ. �

Again this can be proved by a direct calculation, and we give a conceptual proof

in Section 3.4.

Remark 2.14 (Poisson parallel). In Section 3, we will need the corresponding notion of

group-valued moment maps for Poisson geometry [30], summarized as follows.

Let again h be a Lie bialgebra, and let H∗ denote the 1-connected Poisson Lie

group integrating h∗. Recall [30] that a Poisson map

Φ : N −→ H∗

gives rise to a morphism of Lie algebras

i : h −→Ω1(N), i(ξ)=Φ∗(ξL),

where ξL is the left-invariant 1-form on H∗ equal to ξ at the group unit. The morphism

i then in turn produces an action ρ of h on N via the anchor map on T∗N, that is,

ρ(ξ)= π�(i(ξ)).

The map Φ is automatically h-equivariant, where the so-called dressing action of h on

H∗ comes from the identity moment map H∗ → H∗. Φ is called a moment map for the

action ρ. �

Remark 2.15. When s ∈ (S2g)g is not assumed to be nondegenerate, one can proceed as

follows. The element s is equivalent to a triple (d, g, g′), where

• d is a quadratic Lie algebra,

• g ⊂ d is a Lagrangian subalgebra,

• g′ ⊂ d an ideal such that d = g ⊕ g′ as vector spaces, and
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the restriction to g′ of the inner product on d is s (where we identify g′ with g∗ via the

inner product in d).

Moment maps then have value in a group G ′ integrating g′. �

Theorem 2.16. If (M, ρ, π,Φ) is a Hamiltonian quasi-Poisson g-manifold then

ρx(g)+ π�x(T
∗
x M)= a(T∗

x M). �

Proof. Recall that a = π� + 1
2ρ ◦ ρ∗, hence ρx(g)+ π

�
x(T∗

x M)⊇ a(T∗
x M). On the other hand,

by Theorem 2.13 we have a ◦ i = ρ. Hence,

π� = a − 1
2ρ ◦ ρ∗ = a ◦ (id − 1

2 i ◦ ρ∗),

and π�x(T∗
x M)⊆ ax(T∗

x M). �

Remark 2.17. A Hamiltonian quasi-Poisson g-manifold (M, ρ, π,Φ) is a quasi-

Hamiltonian g-manifold [3–6, 9], if for every point x ∈ M,

ρx(g)+ π�x(T
∗
x M)= TxM. (9)

It follows from Theorem 2.16 that a quasi-Hamiltonian g-manifold is equiva-

lent to a Hamiltonian quasi-symplectic g-manifold. We will use the latter term in this

paper. �

2.3 Fusion

The category of quasi-Poisson g-manifolds, has a braided monoidal structure given by

fusion [5]. Let (M, ρ, π) be a quasi-Poisson g ⊕ g-manifold,

ψ = 1

2

∑
i

(ei,0) ∧ (0, ei) ∈ ∧2(g ⊕ g), (10)

and let diag(g)∼= g denote the diagonal subalgebra of g ⊕ g. The quasi-Poisson

g-manifold

(M, ρ|diag(g), πfusion) with πfusion = π + ρ(ψ), (11)

is called the fusion of M [5]. Moreover, if (Φ1, Φ2) : M → G × G is a moment map, then the

pointwise product Φ1Φ2 : M → G is a moment map for the fusion [5].
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If (Mi, ρi, πi, Φi) (for i = 1,2) are two Hamiltonian quasi-Poisson g-manifolds,

then (M1 × M2, ρ1 × ρ2, π1 + π2, Φ1 ×Φ2) is a quasi-Poisson g ⊕ g-manifold. The fusion

(M1 × M2, (ρ1 × ρ2)|diag(g), (π1 + π2)fusion, Φ1Φ2)

is called the fusion product, and denoted

(M1, ρ1, π1)� (M2, ρ2, π2)

or just M1 � M2.

The fusion product of two quasi-Poisson g-manifolds is defined similarly, one

just ignores the moment maps.

The monoidal category of Hamiltonian quasi-Poisson G-manifolds is braided

[5]: if (Mi, ρi, πi, Φi) are two Hamiltonian quasi-Poisson G-manifolds, the corresponding

isomorphism between fusion products

M1 � M2 −→ M2 � M1

is given by (x1, x2) �→ (Φ1(x1) · x2, x1).

To provide an alternate explanation for this monoidal structure in Section 3, we

will need to understand the story for Poisson manifolds.

Remark 2.18 (Poisson parallel). If (M, πM) and (N, πN) are two Poisson manifolds, then

(M × N, πM + πN) is also a Poisson manifold. If M → H∗, N → H∗ are Poisson (moment)

maps, we can compose

M × N −→ H∗ × H∗ −→ H∗

(the latter arrow is the product in H∗) to get a Poisson map M × N → H∗. The category of

those Poisson manifolds with a Poisson map to H∗ is thus monoidal (but not necessarily

braided). Note, that unlike the case of quasi-Poisson manifolds, the resulting action of h

on M × N is not just the diagonal action, but it is twisted by the moment map on M. On

the other hand, the Poisson bivector is simply the sum πM1 + πM2 .

If (M1, π1) and (M2, π2) are Poisson manifolds, then the Lie algebroid structure

on T∗(M1 × M2) is the direct sum of the Lie algebroids T∗M1 and T∗M2. �
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For quasi-Poisson g-manifolds, one may ask how the Lie algebroids T∗(M1 � M2)

and T∗M1 ⊕ T∗M2 are related. A direct computation shows

dT∗(M1�M2) = dT∗ M1 + dT∗ M2 +
∑

i

ρ1(e
i) ∧ [ρ2(ei), ·],

so that the obvious isomorphism of vector spaces T∗(M1 � M2)∼= T∗M1 ⊕ T∗M2 is not

an isomorphism of Lie algebroids. However, for Hamiltonian quasi-Poisson manifolds,

there is a nonstandard isomorphism T∗(M1 × M2)∼= T∗M1 ⊕ T∗M2 which is an isomor-

phism of Lie algebroids.

By a comorphism [32] from a Lie algebroid A→ M to a Lie algebroid A′ → M′

we mean a morphism of Gerstenhaber algebras Γ (
∧

A′)→ Γ (
∧

A). The assignment

M �→ T∗M is a functor from the category of quasi-Poisson g-manifolds and quasi-Poisson

morphisms to the category of Lie algebroids and comorphisms.

Proposition 2.19. Let (Mi, ρi, πi, Φi) (i = 1,2) be two Hamiltonian quasi-Poisson

g-manifolds and let the isomorphism J : T∗M1 ⊕ T∗M2 → T∗(M1 � M2) be given by

(α, β) �→ (α, β − i2(ρ
∗
1(α))). Then J is a isomorphism of Lie algebroids. Moreover, J is a

natural transformation which makes the functor M �→ T∗M (from the category of Hamil-

tonian quasi-Poisson g-manifolds to the category of Lie algebroids and comorphisms)

strongly monoidal. �

The proof is in Section 3.6, but it requires a deeper understanding of the rela-

tionship between the monoidal structures for the categories of quasi-triangular Poisson

manifolds and quasi-Poisson g-manifolds, which we shall now recall.

Let h be a quasi-triangular Lie-bialgebra. As described in Remark 2.3, h corre-

sponds to a Manin triple (d, h, h∗). Let h′ ⊂ d = h ⊕ h∗ be the graph of the r-matrix. Then

h′ is an ideal, so that (d, h, h′) is as in Remark 2.15. Let H, H∗, H ′ ⊂ D be groups with

Lie algebras h, h∗, h′ ⊂ d. Suppose further that the maps H∗ → D/H and H ′ → D/H are

bijections.

Suppose (M, ρ, π,Φ) is a quasi-Poisson H-manifold with H-action ρ : H × M →
M, bivector π , and with moment map Φ : M → D/G ∼= H ′. Define Fh(M, ρ, π,Φ) :=
(M, ρ, π ′, Φ) to be the Poisson H-manifold with bivector π ′ given by twisting π as in

Remark 2.4, the same H-action, and the same moment map Φ : M → D/G ∼= H∗. Then as

shown in [4, 10, 14, 40], the functor

Fh : Ham-qPoish −→ Ham-Poish
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describes an equivalence between the category Ham-qPoish of quasi-Poisson

H-manifolds with H ′-valued moment maps and the category Ham-Poish of Poisson

H-manifolds with H∗-valued moment maps.

There is a canonical choice for the inverse functor, F −1
h (M, ρ, π ′, Φ) :=

(M, ρ, π,Φ), where π is constructed from π ′ by reversing the procedure in Remark 2.4.

Remark 2.20. This equivalence can be understood more intrinsically. What is signifi-

cant is that there is a natural Dirac structure living over D/G,

(d × D/G, g × D/G)

(see Example 5.5 for more details). It was shown in [10, 14, 40] that a morphism of Manin

Pairs

(Φ, K) : (TM, T M) ��� (d × D/G, g × D/G)

is the intrinsic data underlying both (M, ρ, π,Φ) and (M, ρ, π ′, Φ). Indeed, the action

ρ is specified by the morphism of Manin pairs, and the bivectors π and π ′ arise from

choosing two different Lagrangian complements to g in d [4, 40]. �

Remark 2.21. As shown by Weinstein and Xu [61], when the Lie-bialgebra h is quasi-

triangular, the category of Poisson H-manifolds with H∗-valued moment maps is

braided monoidal. In fact, Fh is a strong monoidal functor with the natural transfor-

mation given by

J : Fh(M1 � M2)−→ Fh(M1)× Fh(M2), (x1, x2) �→ (x1, j(Φ1(x1)) · x2),

whereΦ1 : M1 → D/G ∼= H∗ is the moment map for M1 and j : H∗ → H is the map specified

by the condition

gj(g) ∈ H ′ for every g ∈ H∗.

(To define j : H∗ → H , we used the fact that the maps H∗ → D/H and H ′ → D/H are

bijections.)

We shall need a graded version of this fact in the proof of Proposition 2.19 in

Section 3.6. �
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2.4 Hamiltonian quasi-Poisson g-groupoids

Let Γ ⇒ M be a groupoid, and let GrmultΓ = {(g,h, g · h)} ⊂ Γ × Γ × Γ denote the graph of

the multiplication map. A bivector field πΓ ∈ Γ (∧2TΓ ) is said to be multiplicative [41] if

GrmultΓ is a coisotropic submanifold of (Γ, πΓ )× (Γ, πΓ )× (Γ,−πΓ ).

Definition 2.22. Suppose that Γ ⇒ M is a groupoid, and (Γ, ρ, πΓ ,Φ) is a Hamiltonian

quasi-Poisson g-manifold. It is called a Hamiltonian quasi-Poisson g-groupoid if

• Φ : Γ → G is a morphism of groupoids,

• g acts on Γ by (infinitesimal) groupoid automorphisms, and

• GrmultΓ is coisotropic with respect to the bivector field

((πΓ + πΓ )fusion)1,2 − (πΓ )3,

where ((πΓ + πΓ )fusion)1,2 appears on the first two factors of Γ × Γ × Γ and

(πΓ )3 appears on the third.

We refer to the last condition as π being fusion multiplicative.

A Hamiltonian quasi-symplectic g-groupoid is a Hamiltonian quasi-Poisson

g-groupoid such that the anchor map (5) is bijective.

A Hamiltonian quasi-Poisson g-groupoid is called source 1-connected if Γ is

source 1-connected and G is 1-connected. �

Remark 2.23 (Poisson parallel). If (N, π) is a Poisson manifold, and the Lie algebroid

T∗N integrates to a (possibly local) Lie groupoid Γ ⇒ N, then [59]

• there is a bivector field πΓ ∈ Γ (∧2TΓ ) such that (Γ, πΓ ) is a Poisson manifold,

• πΓ is nondegenerate (so that Γ is in fact symplectic).

• πΓ is multiplicative, so that (Γ, πΓ ) is a Poisson groupoid [60] (in fact, a sym-

plectic groupoid).

Suppose, in addition, that a Lie bialgebra h acts on N. We can interpret the action as a Lie

bialgebroid morphism T∗N → h∗, which then integrates to a Poisson groupoid morphism

Γ → H∗ (see [62]). �

2.5 Main results

We may now state the first of our main results.
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Theorem 2.24. There is a one-to-one correspondence between source 1-connected

Hamiltonian quasi-symplectic g-groupoids (Γ, ρΓ , πΓ ,Φ) and integrable quasi-Poisson

g-manifolds (M, ρ, π). Under this correspondence, the Lie algebroid of Γ is T∗M and

Φ integrates the Lie algebroid morphism μρ : T∗M → g. Furthermore, the source map

s : Γ → M is a quasi-Poisson morphism, while the target map t : Γ → M is anti-quasi-

Poisson. �

Remark 2.25. Theorem 2.24 was already established for the case where the quasi-

Poisson g-manifold (M, ρ, π) possess a moment map Φ : M → G. This fact was pointed

out to us by a referee, and we explain it in Remark 7.3 after recalling some

background. �

Theorem 2.24 prompts one to ask what a general Hamiltonian quasi-Poisson

g-groupoid corresponds to infinitesimally. To answer this, we extend the notion of a

quasi-Poisson g-manifold, by replacing the tangent bundle with an arbitrary Lie alge-

broid.

Definition 2.26 (quasi-Poisson g-bialgebroid). A quasi-Poisson g-bialgebroid over a

g-manifold M is a triple (A, ρ,D) consisting of

• a Lie algebroid A→ M,

• a Lie algebroid morphism ρ : M × g → A, where M × g is the action Lie alge-

broid, and

• a degree +1 derivation D of the Gerstenhaber algebra Γ (
∧

A),

such that

• Dρ(ξ)= 0 for any constant section ξΓ (M × g), and

• D2 = 1
2 [ρ(φ), ·] , where we view φ as a constant section of M × g.

Let prg : M × g → g denote the projection to the second factor, and ρ∗ : A∗ → M ×
g∗ ∼= M × g be the transpose of ρ. Define μρ : A∗ → g by μρ := prg ◦ρ∗. �

Remark 2.27. Quasi-Poisson g-bialgebroids are examples of Lie quasi-bialgebroids, a

notion introduced by Roytenberg [42, 44] (see also [25]). A Lie quasi-bialgebroid is a triple

(A,D, χ), where A is a Lie algebroid, D is a degree +1 derivation of the Gerstenhaber

algebra Γ (∧A), and χ ∈ Γ (∧3 A). They must satisfy the equations D2 = 1
2 [χ, ·] and Dχ = 0.

Therefore, if (A, ρ,D) is a quasi-Poisson g-bialgebroid, then (A,D, ρ(φ)) is a Lie

quasi-bialgebroid. �
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Example 2.28 (Quasi-Poisson g-manifolds). Suppose that (M, ρ, π) is a quasi-Poisson

g-manifold. Let

Dπ = [π, ·]Schouten

be the derivation of Γ (∧∗T M) given by the Schouten bracket. Then (T M, ρ,Dπ ) is a quasi-

Poisson g-bialgebroid. �

Proposition 2.29. Let A→ M be a Lie algebroid with anchor map aA : A→ T M. A

compatible quasi-Poisson g-bialgebroid structure (A, ρ,D) defines a canonical quasi-

Poisson g-structure (M,aA ◦ ρ, πD) on M via

π
�

D(df)= aA ◦ D f,

where we view the function f ∈ C ∞(M) as an element of Γ (∧0 A). �

The result is just a special case of [41, Proposition 4.8], proved for general Lie

quasi-bialgebroids.

We refer to (M,aA ◦ ρ, πD) as the induced quasi-Poisson g-structure.

Remark 2.30. As a converse to Example 2.28, suppose that (T M, ρ,D) is a quasi-

Poisson g-bialgebroid. Then by [43, Lemma 2.2.], D = [π, ·] for a unique bivector field

π ∈ Γ (∧2T M). Since π�D(df)= aA ◦ D f , it follows that π = πD.

Consequently (T M, ρ,D) is of the form given in Example 2.28 for the quasi-

Poisson g-structure (M, ρ, πD). �

Proposition 2.31. If (A, ρ,D) is a quasi-Poisson g-bialgebroid, then A∗ becomes a Lie

algebroid, where the Lie algebroid differential dA∗ on Γ (∧A) is

dA∗ =D + 1

2

∑
i

ρ(ei) ∧ [ρ(ei), ·]A. (12)

Furthermore, the action of g on A∗ preserves the Lie algebroid structure, and μρ : A∗ → g

is a Lie algebroid morphism, where μρ := prg ◦ρ∗. �

A proof of this is given in Section 3.7.

A quasi-Poisson g-bialgebroid will be called integrable if A∗ is an integrable Lie

algebroid. In particular, (A, ρ,D) may be integrable even if A is not.
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We can now state our second theorem.

Theorem 2.32. There is a one-to-one correspondence between source 1-connected

Hamiltonian quasi-Poisson g-groupoids, (Γ, ρΓ , πΓ ,Φ), and integrable quasi-Poisson

g-bialgebroids (A, ρ,D). Under this correspondence, the Lie algebroid of Γ is A∗ and

Φ integrates the Lie algebroid morphism μρ : A∗ → g. �

We also have the following proposition.

Proposition 2.33. Suppose (Γ, ρΓ , πΓ ,Φ) is a Hamiltonian quasi-Poisson g-groupoid

corresponding to the quasi-Poisson g-bialgebroids (A, ρ,D). Then the source map

s : Γ → M is a quasi-Poisson morphism onto the induced quasi-Poisson g-structure

(M,a ◦ ρ, πD) described in Proposition 2.9. Meanwhile the target map t : Γ → M is anti-

quasi-Poisson. �

We will provide a proof of both theorems in the next section using graded

Poisson-Lie groups.

3 Quasi-Poisson structures and graded Poisson geometry

In this section, we make use of graded geometry (super geometry) to prove the results

from Section 2. Some good references for super geometry are [17, 26, 53–55]. For the

additional structure of graded manifolds one may look at [34, 43, 47, 56].

3.1 g-differential algebras

Let g be a Lie algebra, and ĝ = g[1] ⊕ g ⊕ R[−1] be the graded Lie algebra with bracket

given by

[Iξ , Iη] = 0,

[Lξ , Iη],= I[ξ,η]g , [Lξ , Lη] = L [ξ,η]g

[D, Iη] = Lη, [D, Lη] = 0, [D, D] = 0.

Here D is the generator of R[−1], and Lξ ∈ g ⊂ ĝ and Iξ ∈ g[1] ⊂ ĝ denote the elements

corresponding to ξ ∈ g.
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If ρ : g → Γ (T M) is a morphism of Lie algebras, then the graded Lie algebra ĝ

acts on the graded algebra Ω(M) by derivations. D acts by the de Rham differential d,

Lξ acts by the Lie derivative Lρ(ξ), and Iξ acts by the interior product ιρ(ξ).

Generally, a graded algebra with a graded action of ĝ by derivations is called a

g-differential algebra [22, 35]. Note that, by a graded action, we mean that a degree k

element of ĝ acts by a degree k derivation.

Example 3.1. As a generalization of Ω(M), suppose A→ M is any Lie algebroid, and

ρ : g → Γ (A) is any Lie algebra morphism. Then Γ (∧A∗) is a g-differential algebra. The

action of ĝ is given as follows

• D · α = dAα, where α ∈ Γ (∧A∗) and dA is the Lie algebroid differential.

• Iξ · α= ιρ(ξ)α for any ξ ∈ g.

• Lξ · α = ιρ(ξ)(dAα)+ dA(ιρ(ξ)α) for ξ ∈ g and α ∈ Γ (∧A∗). �

Remark 3.2. If A→ M is any vector bundle, the following are equivalent:

• A→ M is a Lie algebroid, and there is a Lie algebra morphism ρ : g → Γ (A)

• Γ (∧A∗) is a g-differential algebra.

We can think of Γ (∧A∗) as the algebra of functions on the graded manifold A[1],

hence another equivalent formulation is

• The graded Lie algebra ĝ acts on the graded manifold A[1]. �

3.2 The quadratic graded Lie algebra Q(g)

Suppose a Lie algebra g possesses an invariant nondegenerate symmetric bilinear form

〈·, ·〉g. We can associate to g the quadratic graded Lie algebra Q(g), an R[2] central exten-

sion of ĝ,

0 −→ R[2] −→Q(g)−→ ĝ −→ 0,

which plays a central role in the theory of quasi-Poisson structures.

As a graded vector space, Q(g)= R[2] ⊕ ĝ. Let T denote the generator of R[2]. The

central extension is given by the cocycle

c(Iu, Iv)= 〈u, v〉T, c(D, ·)= c(Lu , ·)= 0,
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that is,

[a,b]Q(g) = [a,b]ĝ + c(a,b)

for a,b ∈ ĝ.

The quadratic form 〈·, ·〉Q(g) of degree 1 is given by

〈a,b〉Q(g) = 0 for any a,b ∈Q(g) such that deg(a)+ deg(b)+ 1 �= 0, and (13a)

〈T, D〉Q(g) = 1, 〈Iξ , Lη〉Q(g) = 〈ξ, η〉g. (13b)

Note that (13a) is equivalent to saying that the quadratic form is of degree 1.

Remark 3.3. The Lie algebra Q(g) was first introduced in [1], where the so-called

noncommutative Weil algebra was defined as a quotient of the enveloping algebra

of Q(g). �

3.3 Quasi-Poisson g-manifolds revisited

It is easy to check that R[2] ⊕ g[1] and g ⊕ R[−1] are transverse Lagrangian subalge-

bras of Q(g). Therefore (Q(g),R[2] ⊕ g[1], g ⊕ R[−1]) forms a Manin triple [18, 30, 31].

The corresponding Lie bialgebra R[2] ⊕ g[1] integrates to the Poisson Lie group

Gsmall = R[2] × g[1],

where multiplication is given by

(t, ξ) · (t′, ξ ′)= (t + t′ + 1
2 〈ξ, ξ ′〉g, ξ + ξ ′).

Since the quadratic form on Q(g) is of degree 1, the Poisson bracket on Gsmall is

of degree −1. To describe the Poisson bracket, note that linear functions on g[1] may be

identified with elements of g (using the quadratic form). If we let t denote the standard

coordinate on R[2], then we see that there is a canonical algebra isomorphism C ∞(R[2] ×
g[1])∼= (∧∗g)[t]. Under this isomorphism the Poisson bracket is simply

{t, t} = φ {t, ξ} = 0 {ξ, η} = [ξ, η]g
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Proposition 3.4. A quasi-Poisson g-structure on M is equivalent to a graded Poisson

map T∗[1]M → Gsmall. �

Proof. A quasi-Poisson g-manifold (M, ρ, π) is equivalent to a morphism of

Gerstenhaber algebras ρ ′ : (∧∗g)[t] → Γ (∧∗T M). Here ρ ′ is defined on the generators

by ρ ′(t)= π and ρ ′(ξ)= ρ(ξ) for any ξ ∈ g.

The standard symplectic form on T∗[1]M induces a degree −1 Poisson bracket

on C ∞(T∗[1]M). As Gerstenhaber algebras, C ∞(T∗[1]M)∼= Γ (∧∗T M), canonically. Paired

with the isomorphism C ∞(Gsmall)∼= (∧∗g)[t], we see that ρ ′ defines a morphism of Poisson

algebras

C ∞(Gsmall)−→ C ∞(T∗[1]M).

This is equivalent to a Poisson morphism

T∗[1]M −→ Gsmall. �

Proof of Theorem 2.6. If (M, ρ, π) is a quasi-Poisson g-manifold, then we have a Pois-

son map f : T∗[1]M → Gsmall ( f∗t = π , f∗ξ = ρ(ξ)). Therefore, the dual Lie algebra g ⊕
R[−1] acts on T∗[1]M. To describe the action explicitly, recall [30] that the left invariant

1-forms on Gsmall form a subalgebra of Γ (T∗Gsmall) isomorphic to g ⊕ R[−1] ∼= T∗
e [1]Gsmall

(evaluation at the identity provides the isomorphism). The left-invariant 1-form on Gsmall

corresponding to D is

dt + 1

2

∑
i

ξ i dξi,

where ξi and ξ i refer to coordinates on g[1] induced by the basis vectors ei and ei, respec-

tively. The corresponding vector field on T∗[1]M is thus

{ f∗t, ·} + 1

2

∑
i

f∗ξ i{ f∗ξi, ·},

that is, the differential dT∗ M (3). Since [D, D] = 0, this shows that d2
T∗ M = 0. The action of

g on T∗[1]M preserves dT∗ M (since g ⊕ R[−1] is a direct sum) and it is just the natural lift

of the action ρ on M (the left-invariant 1-form on Gsmall corresponding to ξ ∈ g is dξ ).

The dressing action of D ∈ ĝ on Gsmall is given by

{t, ·} + 1

2

∑
i

ξ i{ξi, ·} = φ∂t + dg,
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where dg is the Lie algebra differential of g. The projection Gsmall → g[1] is thus

R[−1]-equivariant, with respect to the R[−1] actions generated by D ∈ ĝ and dg, respec-

tively. Since the map f is also R[−1]-equivariant, so is their composition T∗[1]M → g[1],

that is, we have a Lie algebroid morphism T∗M → g. �

The fusion also appears in a natural way from this perspective. A Poisson

morphism

f : T∗[1]M −→ Gsmall × Gsmall

defines a quasi-Poisson g ⊕ g-structure on M. Since Gsmall is a Poisson Lie group, the

multiplication map

mult : Gsmall × Gsmall −→ Gsmall

is a Poisson morphism. The map

mult ◦ f : T∗[1]M −→ Gsmall

defines a quasi-Poisson g-structure on M. Since mult∗ t = t1 + t2 + 1
2

∑
i(ξ

i)1(ξi)2 (where

the sub-indices (·)1 and (·)2 indicate which factor of Gsmall × Gsmall the coordinates

parameterize), the bivector on M is modified by the term f∗( 1
2

∑
i(ξ

i)1(ξi)2) (note the sim-

ilarity to (10)). It is easy to check that this is the same quasi-Poisson g-structure on

M given by the fusion (11).

3.4 Hamiltonian quasi-Poisson g-manifolds revisited

Let G be a Lie group with Lie algebra g. Suppose 〈·, ·〉g is a quadratic form on g. Let ḡ

denote the quadratic Lie algebra the quadratic form of which is 〈·, ·〉ḡ = −〈·, ·〉g. We let

d = g ⊕ ḡ, and diag(g)⊂ d denote the diagonal subalgebra. Then

R[2] ⊕ g[1] ⊕ ḡ (14a)

and

ĝ ∼= diag(g)[1] ⊕ diag(g)⊕ R[−1] (14b)

are two Lagrangian subalgebras of the quadratic Lie algebra

Q(d)= R[2] × d[1] × d × R[−1]
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defined in Section 3.2. The corresponding Lie bialgebra R[2] ⊕ g[1] ⊕ ḡ integrates to the

Poisson–Lie group

Gbig = R[2] × g[1] × G,

where multiplication is given by

(t, ξ, g) · (t′, ξ ′, g′)= (t + t′ + 1
2 〈ξ, ξ ′〉, ξ + ξ ′, g · g′).

The group Gbig is thus the direct product of G with the Heisenberg group Gsmall described

above. As in Section 3.3, there is a canonical identification C ∞(Gbig)∼= (∧∗g)[t] ⊗ C ∞(G).

Using this identification, we may describe the Poisson bracket (of degree −1) on Gbig by

{t, t} = φ, (15)

{t, ξ} = 0, {ξ, η} = [ξ, η]g, (16)

{t, f } = b∗df, {ξ, f } = (ξL − ξR) · f, { f, g} = 0, (17)

where f, g ∈ C ∞(G), ξ, η ∈ g, ξL, and ξR denote the corresponding left and right invariant

vector fields on G and b is given by (7).

We have the following statements.

Proposition 3.5. A Hamiltonian quasi-Poisson g-structure on M is equivalent to a

graded Poisson map T∗[1]M → Gbig. �

Proof. The proof of Proposition 3.4 shows that M is a quasi-Poisson g-manifold. The

map T∗[1]M → Gbig restricts to define a map

Φ : M −→ G; (18)

and the formulas for the brackets in (17) show that Φ defines a moment map

(Definition 2.12). �

As in Section 3.3, fusion can be described in terms of composition with the mul-

tiplication Poisson morphism

mult : Gbig × Gbig −→ Gbig,

this is precisely equivalent to the explanation given in [6].
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Proof of Theorem 2.13. A Poisson morphism F : T∗[1]M → Gbig induces an action of

diag(g)[1] ⊕ diag(g)⊕ R[−1] ∼= ĝ on T∗[1]M,

� : ĝ −→ Γ (T(T∗[1]M)).

For ξ ∈ g, and the corresponding element Iξ ∈ ĝ, let us describe this action explicitly.

The standard symplectic form on T∗[1]M induces a degree −1 Poisson bracket on

C ∞(T∗[1]M). As Gerstenhaber algebras, C ∞(T∗[1]M)∼= Γ (∧∗T M), canonically. A function

f ∈ C ∞(M) acts on Γ (∧∗T M) by contraction with df . It follows that the Hamiltonian

vector field generated by a one form α ∈Ω1(M) acts on Γ (∧∗T M) by contraction with α.

Let λIξ denote the left invariant one form on Gbig corresponding to Iξ . λIξ is

just the pullback of 〈ξ, θL〉 ∈Ω1(G) to Gbig. Consequently, �(Iξ ) acts by contraction with

Φ∗〈ξ, θL〉, where Φ : M → G given by (18). For X ∈ Γ (T M),

�(Iξ ) · X = (Φ∗〈ξ, θL〉)(X)= i(ξ)(X),

where i : g →Ω1(M) is given by (8).

As stated in Remark 3.2, an action of ĝ on T∗[1]M is equivalent to Γ (∧∗T M) being

a g-differential algebra. The proof of Theorem 2.6 shows that the differential is given by

(3). From this perspective, Theorem 2.13 is just a special case of Example 3.1. �

3.5 Hamiltonian quasi-Poisson g-groupoids revisited

Let Γ be any groupoid. Recall that T∗[1]Γ has a natural groupoid structure (see

Appendix A). Combining this structure with the canonical symplectic structure on the

cotangent bundle, T∗[1]Γ becomes a symplectic groupoid.

Since T∗[1]Γ is a symplectic groupoid, it integrates a Poisson manifold [59]. We

can describe this Poisson manifold explicitly. Let A∗ denote Lie algebroid corresponding

to the groupoid Γ (we denote the Lie algebroid A∗ (and not A) for later convenience). A[1]

has a linear Poisson structure on it (of degree −1) defining the Lie algebroid structure

on A∗ [52]. T∗[1]Γ is the symplectic groupoid integrating A[1].

Proposition 3.6. A compatible Hamiltonian quasi-Poisson g-structure on Γ is equiva-

lent to a morphism of Poisson groupoids

F : T∗[1]Γ −→ Gbig. (19)

�
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Proof. First we introduce some notation. If M is a graded manifold and f ∈ C ∞(M ), let

( f )i denote the pullback of f to the ith factor of the direct power Mn. If M is a graded

Poisson manifold with Poisson bracket {·, ·}M, let M̄ denote the same graded manifold

with the Poisson bracket

{·, ·}M̄ = −{·, ·}M. (20)

By Proposition 3.5, F defines a Hamiltonian quasi-Poisson g-structure on Γ . The

moment map Φ : Γ → G is given by restricting F to the subgroupoid Γ ⊂ T∗[1]Γ . Conse-

quently Φ is a morphism of Lie groupoids.

Under the isomorphism C ∞(Gbig)∼= (∧∗g)[t] ⊗ C ∞(G), η ∈ g defines a function on

Gbig. We note that the functions

(η)1 + (η)2 − (η)3 and (t1 + t2 + 1
2 (ξ

i)1(ξi)2)− t3

vanish on the graph of the multiplication GrmultGbig
∈ Gbig × Gbig × Gbig. Since F is a

groupoid morphism, it follows that the functions

(F ∗η)1 + (F ∗η)2 − (F ∗η)3 and

(
(F ∗t)1 + (F ∗t)2 + 1

2

∑
i

(F ∗ξ i)1(F
∗ξi)2

)
− (F ∗t)3

vanish on the graph of the multiplication GrmultT∗ [1]Γ . In the first case, this shows that

action of g on Γ × Γ × Γ is tangent to the graph of the multiplication. In other words,

g acts on Γ by groupoid automorphisms. In the latter case, this shows that the bivector

field on Γ is fusion multiplicative. �

3.6 The Lie bialgebra ĝ is quasi-triangular

Recall that (14) makes ĝ into a Lie bialgebra.

Proposition 3.7. The element r̂ =∑
i Iei ⊗ Lei ∈ ĝ ⊗ ĝ is an r-matrix for the graded Lie

bialgebra ĝ. �

Proof. We may view the degree −1 element r̂ ∈ ĝ ⊗ ĝ as a degree 0 map r̂ : ĝ∗[1] → ĝ.

Using (14), we identify ĝ∗[1] and ĝ with the transverse Lagrangian subalgebras

R[2] ⊕ g[1] ⊕ ḡ ⊂Q(d)
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and

diag(g)[1] ⊕ diag(g)⊕ R[−1] ⊂Q(d),

respectively. Then the graph of r̂ : ĝ∗[1] → ĝ is identified with the subspace

Gr(r̂)∼= R[2] ⊕ g[1] ⊕ g.

Thus, Gr(r̂) is an ideal of the Drinfeld double of ĝ. Equivalently r̂ is an r-matrix. �

Proof of Proposition 2.19. By Proposition 3.7, ĝ is a quasi-triangular Lie bialgebra.

Recall from Section 2.3, the functor

Fĝ : Ham-qPoisĝ −→ Ham-Poisĝ,

from the category of Hamiltonian quasi-Poisson ĝ-manifolds to the category of

Hamiltonian Poisson ĝ-manifolds, and its inverse F −1
ĝ

, which describe an equivalence

of categories.

Let M and M′ be two Hamiltonian quasi-Poisson g-manifolds. By Proposition 3.5,

T∗[1]M and T∗[1]M′ are Hamiltonian Poisson ĝ-manifolds. Now Fĝ is strongly monoidal,

and we have the natural transformation

J : Fĝ(F
−1
ĝ
(T∗[1]M)� F −1

ĝ
(T∗[1]M′))−→ (T∗[1]M)× (T∗[1]M′) (21)

described in Remark 2.21. Note that the map j : Gbig → Ĝ from Remark 2.21 is just the

projection Gbig → g[1]. Therefore (21) is just the map J described in Proposition 2.19.

The right-hand side of (21) describes the fusion of T∗[1]M and T∗[1]M′ as

Hamiltonian Poisson ĝ-manifolds. As shown in Section 3.4, (T∗[1]M)× (T∗[1]M′)=
T∗[1](M � M′), where the right-hand side is the fusion of M and M′ as Hamiltonian

quasi-Poisson g-manifolds.

The left-hand side of (21) describes the fusion of F −1
ĝ
(T∗[1]M) and F −1

ĝ
(T∗[1]M′)

as Hamiltonian quasi-Poisson ĝ-manifolds. Therefore the action of ĝ on (T∗[1]M)�
(T∗[1]M′) is by definition diagonal, and the functor Fĝ preserves this action.

Therefore the Lie algebroid structure on the left-hand side (given by the action

of D ∈ ĝ) is the direct sum of the Lie algebroids T∗M and T∗M′ (as the action of ĝ is

diagonal), while the right-hand side corresponds to the Lie algebroid T∗(M � M′). �
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3.7 Quasi-Poisson g-bialgebroids revisited

Before proving Theorem 2.32, it is important to formulate a description of quasi-Poisson

g-bialgebroids in terms of the Manin triple (Q(g ⊕ ḡ), ĝ,R[2] ⊕ g[1] ⊕ ḡ). In fact, the

description is quite natural, namely as follows.

Proposition 3.8. Suppose A→ M is a vector bundle. The following are equivalent:

• A is a quasi-Poisson g-bialgebroid.

• There is a Poisson structure of degree −1 on A[1], and a Lie bialgebra action

of ĝ on A[1]. �

Proof. Suppose we are given a degree −1 Poisson structure π on A[1] and an action ρ̂

of the Lie bialgebra ĝ on A[1]. We need to show that A is a quasi-Poisson g-bialgebroid.

Recalling Definition 2.26, we must show that

• We have a Lie algebroid structure on A and a Lie algebra morphism

ρ : g −→ Γ (A).

(This follows directly from Remark 3.2.)

• There is a degree +1 derivation D of the Gerstenhaber algebra Γ (
∧

A), such

that

◦ Dρ(ξ)= 0 for any ξ ∈ g, and

◦ D2 = 1
2 [ρ(φ), ·] .

By Proposition 3.7 and the graded version of Remark 2.4, an action of the Lie

bialgebra ĝ on A[1] is equivalent to a quasi-Poisson action of ĝ on A[1]. Let us describe

this explicitly, to avoid possible sign problems (as ĝ is a graded Lie bialgebra with

cobracket of degree −1). A Poisson structure of degree −1 on the graded manifold A[1] is,

by definition, a function π on the bigraded symplectic manifold T∗[1,1]A[1,0] of degree

(1,2) such that {π, π} = 0. An action ρ̂ of the graded Lie algebra ĝ can be seen as a map

ρ̂ : ĝ → C ∞(T∗[1,1]A[1,0]) (as vector fields can be seen as linear functions on the cotan-

gent bundle) shifting degrees by (1,1).

The action ρ̂ is a Lie bialgebra action on (A[1,0], π). Therefore, by Proposition 3.7

and Remark 2.4,
π̃ = π − 1

2

∑
i

ρ̂(Iei )ρ̂(Lei ) (22)
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is ĝ-invariant and (A[1,0], π̃) is a quasi-Poisson ĝ-space

{π̃ , π̃} = 1

4

∑
i jk

cijk ρ̂(Iei )ρ̂(Iej )ρ̂(Lek),

where cijk = 〈[ei, ej], ek〉 are the structure constants of g. We can rewrite it as

{π̃ , π̃} = {ρ̂(D), ρ̂(Iφ)}. (23)

Using the canonical symplectomorphism

T∗[1,1]A[1,0] ∼= T∗[1,1]A∗[0,1], (24)

π̃ becomes a vector field on A∗[0,1] (since it is a function linear on the fibers of

T∗[1,1]A∗[0,1]), that is, a derivation D of the algebra Γ (∧A) of degree 1. Since π̃ is

ĝ-invariant, D preserves the Gerstenhaber bracket on Γ (∧A) and Dρ(ξ)= 0 for every

ξ ∈ g. Finally, Equation (23) becomes D2 = 1
2 [ρ(φ), ·].

We have shown that, (A,D, ρ) is a quasi-Poisson g-bialgebroid. To establish the

converse, just reverse the procedure. �

Proof of Proposition 2.31. By Proposition 3.8, a quasi-Poisson g-bialgebroid structure

on A defines a degree −1 Poisson structure on A[1]. This is equivalent to a Lie algebroid

structure on A∗ [52].

A careful examination of the proof of Proposition 3.8 allows us to describe the

Lie algebroid differential explicitly. The bivector corresponding to the Poisson structure

on A[1] is a function π on the bigraded symplectic manifold T∗[1,1]A[1,0] of degree

(1,2). Under the canonical symplectomorphism (24) it becomes a degree +1 vector field

on A∗[1]. By (22) this vector field is

D + 1

2

∑
i

ρ̂(Iei )ρ̂(Lei ).

The corresponding Lie algebroid differential is given by (12).

The remaining details in Proposition 2.31 follow from a similar examination of

the proof of Proposition 3.8. �
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Remark 3.9. One can also describe quasi-Poisson g-bialgebroids in the spirit of

Proposition 3.4. If A is a Lie algebroid, so that A∗[1] is a graded Poisson manifold, a

Poisson map A∗[1] → Gsmall would give us a quasi-Poisson g-bialgebroid structure on

A, but with the additional property that D is Hamiltonian. In general, a quasi-Poisson

g-bialgebroid structure on a Lie algebroid A is equivalent to a principal Poisson R[2]-

bundle P → A∗[1] with a Poisson R[2]-equivariant map P → Gsmall. �

3.8 Proof of Theorem 2.32

The proof of [62, Theorem 5.5] (see also [20, 21]) goes through in the graded setting to

show that the existence of a morphism of Poisson groupoids

F : T∗[1]Γ −→ Gbig

is equivalent to the action of the Lie bialgebra ĝ on the Poisson manifold A[1].

By Proposition 3.6, the former describes a compatible Hamiltonian quasi-Poisson g-

structure on Γ , while the latter describes a quasi-Poisson g-bialgebroid structure

(A, ρ,D) (see Proposition 3.8). This proves Theorem 2.32.

Proof of Proposition 2.33. Let (Γ, ρΓ , πΓ ) be the quasi-Poisson structure on Γ

and (M, ρM, πD) be the quasi-Poisson structure on M induced by (A, ρ,D) (see

Proposition 2.9). We must show that the source map s0 : Γ → M is a quasi-Poisson mor-

phism. Let DA and DΓ be the homological vector fields on A[1] and T∗[1]Γ defined by the

respective actions of D ∈ ĝ. Since the source map s : T∗[1]Γ → A[1] is ĝ-equivariant, we

have

s∗(DA f)= DΓ s∗ f,

for every f ∈ C ∞(M), where we view f as an element of C ∞(A[1]). Since s : T∗[1]Γ → A[1]

is also a Poisson map, it follows that

s∗{DA f, g}A[1] = {DΓ s∗ f, s∗g}T∗[1]Γ , (25)

for every g ∈ C ∞(M). Now DA and DΓ define the Lie algebroid differentials on Γ (∧∗ A∗)

and Γ (∧∗TΓ ), respectively, while {·, ·}A[1] and {·, ·}T∗[1]Γ define the respective Gerstenhaber
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algebra brackets, so the left-hand side of (25) is equal to

s∗
[
D f + 1

2

∑
i

ρ(ei) ∧ [ρ(ei), f ], g

]

or simply

s∗
0

[
[πD, f ] + 1

2

∑
i

ρM(e
i) ∧ [ρM(ei), f ], g

]
,

while the right-hand side is

[
[πΓ , s

∗
0 f ] + 1

2

∑
i

ρΓ (e
i) ∧ [ρΓ (ei), s

∗
0 f ], s∗

0g

]
.

Since s0 is g-invariant, it follows that

s∗
0[[πD, f ], g] = [[πΓ , s

∗
0 f ], s∗

0g].

Therefore, s0 : (Γ, ρΓ , πΓ )→ (M, ρM, πD) is a quasi-Poisson morphism. Similarly, one may

check that the target map is anti-quasi-Poisson. �

3.9 Proof of Theorem 2.24

Let Γ ⇒ M be a Hamiltonian quasi-Poisson g-groupoid. By Proposition 2.19 the Lie

algebroid T∗Γ is multiplicative, where the groupoid structure on T∗Γ is the standard

one (see Appendix A) precomposed with the map J. In particular, the anchor map

aΓ : T∗Γ → TΓ is a groupoid morphism.

Suppose that Γ is source 1-connected. Let A→ M be the quasi-Poisson

g-bialgebroid corresponding to Γ . Then for any x ∈ M ⊂ Γ we have TxΓ ∼= TxM ⊕ A∗
x and

aΓ : Ax ⊕ Tx
∗M → TxM ⊕ A∗

x equal to aA ⊕ a∗
A. Hence aA is an isomorphism if and only if

the anchor map aΓ is an isomorphism at points of M. However if aΓ is an isomorphism

at points of M, then it must be an isomorphism in a neighborhood of M. Since aΓ is a

morphism of source 1-connected groupoids, this is the case if and only if it is an iso-

morphism everywhere.

By Theorem 2.16, Γ is a Hamiltonian quasi-symplectic g-space if and only if aΓ is

an isomorphism. By Remark 2.30, A comes from a quasi-Poisson structure on M if and

only if aA is an isomorphism. As we just proved, these two conditions are equivalent,

that is, Theorem 2.24 is proved.
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4 Examples

4.1 Quasi-symplectic case

Let (M, ρ, π) be a quasi-Poisson g-manifold such that its anchor a : T∗M → T M is bijec-

tive, that is, M is a quasi-symplectic manifold. Since a is an isomorphism of Lie alge-

broids, the source-1-connected groupoid integrating T∗M is the fundamental groupoid

Π(M) of M. Π(M) is a covering of M × M, and the quasi-Poisson structure on Π(M) is

the lift of the quasi-Poisson structure on (M, π, ρ)� (M,−π, ρ).
The Lie algebroid morphism μρ : T∗M → g gives us (via a) a Lie algebroid mor-

phism T M → g, that is, a flat g-connection on M. The moment map Π(M)→ G is the

parallel transport of this connection.

Suppose (M, ρ, φ) is endowed with a moment map Φ (so that it is a Hamiltonian

quasi-symplectic g-manifold). In this case, a Hamiltonian quasi-symplectic groupoid

integrating it is just the pair groupoid (M, ρ, π,Φ)� (M, ρ,−π,Φ−1); to get a source-

1-connected groupoid, we just lift the Hamiltonian quasi-symplectic structure to Π(M).

Remark 4.1 (Poisson parallel). This example is the quasi-Poisson analog of an exam-

ple in Poisson geometry. Namely, if (N, πN) is a Poisson manifold so that the anchor

π
�

N : T∗N → T N is bijective, then a symplectic groupoid integrating (N, πN) is just the

pair groupoid (N, π)× (N,−π). If Π(N) is the fundamental groupoid of N, then Π(N) is

a covering of N × N. Consequently, it inherits the structure of a symplectic groupoid.

As such Π(N) is the source 1-connected symplectic groupoid integrating N. �

4.2 The double

For a related example, let G be a Lie group with Lie algebra g. For ξ ∈ g, let ξL and ξR

denote the corresponding left and right invariant vector fields on G, and let ρ : g ⊕ g →
Γ (TG) be given by ρ(ξ, η)= −ξR + ηL. As explained in [5, Example 5.3], since ρ(φg⊕g)=
φL

g − φR
g = 0, (G, ρ,0) is a quasi-Poisson g ⊕ g-manifold, and it is easily seen to be quasi-

symplectic. If G is 1-connected, it follows that the pair groupoid

(G × G, ρ1, π) := (G, ρ,0)� (G, ρ,0)

is the source-1-connected Hamiltonian quasi-symplectic g-groupoid integrating

(G, ρ,0); its moment map is given by Φ : (a,b)→ (a · b−1,a−1 · b). In [5] this example is

called the double and is denoted D(G).
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4.3 The group G

The simplest example of a quasi-Poisson g-bialgebra is g with ρ = id and D = 0. We get

that μρ : g∗ → g is the identification of g∗ with g via the inner product and it is an isomor-

phism of Lie algebras (more on quasi-Poisson g-bialgebras can be found in Section 8).

The corresponding Hamiltonian quasi-Poisson g-group is G with

πG = 1

2

∑
i

eiL ∧ ei
R,

Φ = id and ρ is the conjugation. It appears in [5] as the basic example of a Hamiltonian

quasi-Poisson space.

4.4 Fused double

Since D(G) is a Hamiltonian quasi-Poisson g ⊕ g-manifold, it has a fusion (11), which we

denote by D(G) [5]. There is a Hamiltonian quasi-symplectic groupoid structure on D(G)

given as follows. The source and target maps, s, t : D(G)⇒ G, are s(a,b)= ab−1, t(a,b)=
b−1a, and the composition is

(a′,b′) · (a,b)= (a′a,a′b)= (a′a,b′a).

This Hamiltonian quasi-symplectic G-groupoid is called the Alekseev-Malkin-

Meinrenken groupoid in [8, 63]. It integrates the quasi-Poisson group G.

Remark 4.2 (Poisson parallel). The double D(G) is in some sense the quasi-Poisson

analog of the symplectic groupoid T∗G, where G is a Lie group. T∗G integrates the triv-

ial Poisson manifold G. It has another groupoid structure, as the groupoid integrating

g∗; this is analogous to the groupoid D(G). �

Remark 4.3. Geometrically, D(G) is the moduli space of flat g-connections on a cylin-

der, with a marked point on each boundary circle. The composition in D(G) corresponds

to cutting cylinders along curves connecting the marked points (the first cylinder along

a straight line and the second along a curve that goes once around) and gluing them to

form a single cylinder. The composition in D(G) is just the concatenation of cylinders.

These two compositions do not form a double groupoid, rather they commute modulo

a Dehn twist of the cylinder. �
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4.5 Actions with coisotropic stabilizers

Let q ⊂ g be a subalgebra which is coisotropic with respect to the quadratic form, let

h = q⊥. Suppose that h and q integrate to closed subgroups H, Q ⊂ G. Let G act on the left

of G/Q, ρ ′ : g → Γ (T(G/Q)) be the corresponding map of Lie algebras, and (G/Q, ρ ′,0)

be the quasi-Poisson g-manifold of Example 2.2. We will be interested in calculating

the Hamiltonian quasi-Poisson g-groupoid that (G/Q, ρ ′,0) integrates to. Note that the

Lie algebroid T∗(G/Q) has a vanishing anchor, that is, it is a bundle of Lie algebras.

Consequently, the groupoid is a bundle of groups.

Since G × G acts on D(G) by groupoid morphisms, we have the following mor-

phism of groupoids:

D(G) = G × G ��

s

��
t

��

D(G)/({1} × Q)

����

G �� G/Q

By [5, Section 6], D(G)/({1} × Q) is a Hamiltonian quasi-Poisson g-manifold, with

moment map the first component of Φ; and it follows that

D(G)/({1} × Q)⇒ G/Q (26)

is a Hamiltonian quasi-Poisson g-groupoid.

It is easy to check that

X =Φ−1(G × H)/({1} × Q)= {(a,b) ∈ (G × G)/diag(Q) | a−1 · b ∈ H}

is a subgroupoid of D(G)/({1} × Q) (where diag(Q)⊂ G × G denotes the diagonal embed-

ding). However, one may also check that X is precisely the leaf of the foliation corre-

sponding to the Lie algebroid T∗(D(G)/({1} × Q)) which passes through the set of iden-

tity elements. Consequently, since (26) is a Hamiltonian quasi-Poisson g-groupoid,

X ⇒ G/Q

is a quasi-Hamiltonian g-groupoid integrating (G/Q, ρ ′,0).
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Remark 4.4 (Poisson parallel). This construction is a quasi-Poisson analog of the

(rough) principle in Poisson geometry that “symplectization commutes with reduction”,

[20, 21, 51]. �

Remark 4.5. One can note that the groupoid X ⇒ G/Q is braided-commutative with

respect to the braiding on the category of Hamiltonian quasi-symplectic spaces. More

generally, braided-commutative Hamiltonian quasi-symplectic groupoids integrate the

quasi-Poisson manifolds of the form (M, ρ,0) where ρ has coisotropic stabilizers. This

corresponds to the following fact in Drinfeld’s category [19] of modules of g with braided

monoidal structure given by a choice of an associator: braided-commutative algebras

in this category are g-modules A with a commutative g-equivariant algebra structure

A⊗ A→ A, such that
∑

i(e
i · x)(ei · y)= 0 for every x, y∈ A. If A= C ∞(M), it means exactly

that the action of g on M has coisotropic stabilizers.

Thus one can say in this case that C ∞(M), with its original product and consid-

ered as an object of Drinfeld’s category, is the quantization of (M, ρ,0). �

5 Courant algebroids and Manin pairs

5.1 Definition of a Manin pair

Dirac structures were introduced by Courant–Weinstein [16] (see also [15]) in order to

provide a unified setting in which to study closed 2-forms, Poisson structures, and their

corresponding Hamiltonian vector fields. Courant algebroids were introduced by Liu

et al. [29] to provide an abstract setting from which to study Dirac structures.

Definition 5.1. A Courant algebroid is a quadruple, (E, 〈·, ·〉,a, [[·, ·]]), consisting of a

pseudo-Euclidean vector bundle (E → M, 〈·, ·〉), a bundle map a : E → T M called the

anchor, and a bilinear bracket [[·, ·]] on the space of sections Γ (E) called the Courant

bracket, such that the following axioms hold:

C-1 [[X1, [[X2, X3]]]] = [[[[X1, X2]], X3]] + [[X2, [[X1, X3]]]],

C-2 a(X1)〈X2, X3〉 = 〈[[X1, X2]], X3〉 + 〈X2, [[X1, X3]]〉,
C-3 [[X1, X2]] + [[X2, X1]] = a∗(d〈X1, X2〉),

for Xi ∈ Γ (E). Here a∗ : T∗M → E∗ ∼= E is dual to a using the isomorphism given by

inner product 〈·, ·〉. We will often refer to E as a Courant algebroid, the quadruple

(E, 〈·, ·〉,a, [[·, ·]]) being understood.

Note that (E,−〈·, ·〉,a, [[·, ·]]) is also a Courant algebroid, which we denote by Ē.
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A sub-bundle A⊂ E of a Courant algebroid is called Lagrangian if A⊥ = A, and is

called a Dirac structure if the space of sections Γ A is closed under the Courant bracket.

A Manin Pair is a pair (E, A), where E is a Courant algebroid, and A⊂ E is a Dirac

structure. �

Example 5.2 (The standard Courant algebroid). Let M be a manifold, η ∈Ω3(M) be a

closed 3-form, and let TηM = T∗M ⊕ T M be the pseudo-Euclidean vector bundle with

the inner product given by the canonical pairing,

〈α + X, β + Y〉 = α(Y)+ β(X),

and the Courant bracket given by

[[α + X, β + Y]] = [X,Y] + LXβ − ιYdα + ιYιXη, (27)

for any α, β ∈Ω∗(M) and X,Y ∈ Γ (T M). With the anchor a : TηM = T∗M ⊕ T M → T M

defined as the projection along T∗M, TηM becomes a Courant algebroid, called the stan-

dard Courant algebroid twisted by η. We will often write TM := T0M.

Examples of Manin pairs are (TM, T M) and (TM, T∗M). �

Example 5.3 (Quadratic Lie algebras). A Courant algebroid over a point is just a

quadratic Lie algebra.

Let g be a quadratic Lie algebra, d = g ⊕ ḡ and diag : g → d be the diagonal embed-

ding. Then (d,diag(g)) is a Manin pair. �

Suppose ρ : M × d → T M defines an action of a quadratic Lie algebra on a man-

ifold M with coisotropic stabilizers (see Example 2.2). Then as shown in [28], there is a

unique Courant algebroid structure on M × d such that

• the anchor is ρ,

• the Courant bracket extends the Lie bracket on constant sections, and

• the pseudo-Euclidean structure is given by the quadratic form on d.
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Example 5.4 (The Cartan–Dirac structure). Let G be a Lie group integrating a quadratic

Lie algebra g. Then the action of d = g ⊕ ḡ on G by

ρ : (g, ξ, η)−→ −ξR
g + ηL

g

has coisotropic stabilizers. Therefore AG := G × d is a Courant algebroid and EG :=
G × diag(g) is a Dirac structure called the Cartan–Dirac structure [11, 27, 49]. It was

introduced independently by Alekseev, Strobl, and S̆evera (see also [6, 28]). �

Example 5.5. Suppose that D is a Lie group with quadratic Lie algebra d and G ⊂ D

is a closed subgroup with Lagrangian Lie subalgebra g ⊂ d. Then the left action of d on

S := D/G has coisotropic stabilizers. Therefore (S × d, S × g) is a Manin pair. This fact

goes back to the unpublished work of Ševera [50], and Alekseev and Xu [2]. See also

[10, 14, 28, 40]. �

5.2 Morphisms of Manin pairs

To describe morphisms of Manin Pairs, we first need to recall the notions of generalized

Dirac structures and Courant morphisms, both due to Ševera [47, 50] (see also [2, 14, 40]).

Definition 5.6 (Generalized Dirac structure with support). Let E → M be a Courant

algebroid, and S ⊂ M be a submanifold. Let E|S denote the restriction of the pseudo-

Euclidean vector bundle E to S. A generalized Dirac structure with support on S is a

sub-bundle K ⊂ E|S such that

GD-1 K is Lagrangian, namely K⊥ = K,

GD-2 a(K)⊂ T S, and

GD-3 if Xi ∈ Γ (E), and Xi|S ∈ Γ (K), then [[X1, X2]]|S ∈ Γ (K). �

For any smooth map f : M → N, we let Gr f = {(m, f(m)) | m ∈ M} denote its graph.

Definition 5.7 (Courant morphism). If E → M and F → M denote two Courant alge-

broids, a Courant morphism ( f, K) : E ��� F is a smooth map f : M → N together with

a generalized Dirac structure K ⊂ F × Ē with support on Gr f , the graph of f . �

Definition 5.8 (Morphism of Manin pairs). Suppose (E, A) and (F, B) are Manin pairs.

A morphism of Manin pairs ( f, K) : (E, A) ��� (F, B) is a Courant morphism ( f, K) : E ��� F
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such that the image of K under the projection F × Ē → F/B × Ē/A is the graph of a bun-

dle map

φK : A∗ −→ f∗B∗.

Here we used A∗ ∼= E/A, and B∗ ∼= F/B. �

The notion of a Morphism of Manin Pairs was introduced in [14] to study general

moment maps. The following example is also found in [14].

Example 5.9 (Strong Dirac morphisms). Let f : M → N be a map between smooth

manifolds, let ξ ∈Ω3(M) and η ∈Ω3(N) be closed 3-forms, and ω ∈Ω2(M) a 2-form. Then

K( f,ω) = {( f∗α − ιXω, X, α, f∗ X) | p∈ M, α ∈ T∗
f(p)N, X ∈ TpM}

is a generalized Dirac structure of Tξ M × T̄ηN supported on Gr f if and only if

ξ = f∗η + dω.

Suppose now (TξM, A) and (TηN, B) are two Manin pairs. ( f, K( f,ω)) define a mor-

phism of Manin pairs

( f, K( f,ω)) : (Tξ M, A) ��� (TηN, B)

if and only if ( f, ω) : (M, A, ξ)→ (N, B, η) is a strong Dirac morphism, as in [6]. With

ω= 0, ( f, K( f,0)) : (T f∗ηM, A) ��� (TηN, B) is a morphism of Manin pairs if and only if f

is a strong Dirac map from A to B, as in [9, 10]. �

In order to identify morphisms of Manin Pairs of the form given in Example 5.9

we introduce the notion of Definition 5.10.

Definition 5.10 (Full morphisms of Manin pairs). A morphism of Manin pairs, ( f, K) :

(E, A)→ (F, B), is called full if a(K)= T Gr f . �

Remark 5.11. Suppose ( f, K) : (Tξ M, A) ��� (TηN, B) is a full morphism of Manin pairs.

Since a : K → T Gr f is surjective, there must be a 2-form ω ∈Ω2(M) such that K = K( f,ω).

Furthermore, the morphism of Manin pairs must be of the form given in Example 5.9.

So ( f, K) simply describes a strong Dirac morphism ( f, ω) : (M, A, ξ)→ (N, B, η). �
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5.3 Multiplicative Manin pairs

We will be interested in Dirac structures living on groupoids which are multiplicative

in some sense. Although Poisson–Lie groups [18, 30, 31, 45], Poisson groupoids [33, 60],

and symplectic groupoids [36, 59] are examples of such objects, the first comprehensive

study of them appears in the papers of Ortiz [38, 39] (see also [13]), where multiplicative

Dirac structures are defined. In this section we show that, when endowed with certain

morphisms, multiplicative Dirac structures form subcategory of the category of Manin

pairs. This subcategory, called Multiplicative Manin Pairs, should be thought of as the

groupoid objects in the category of Manin Pairs.

A Lie groupoid V ⇒ E is called a VB-groupoid, if V and E are also vector bundles

over Γ and M, respectively, and all the structure maps are smooth vector bundle maps

(see Appendix A). In this case Γ ⇒ M inherits the structure of a Lie groupoid. We may

refer to V → Γ as a VB-groupoid when we want to specify Γ as the base of the vector

bundle.

Next we need the concepts of Courant groupoids and multiplicative Dirac struc-

ture as given by Ortiz [38, 39].

Definition 5.12 (Courant groupoid). Let E → Γ be a VB-groupoid such that E is a

Courant algebroid, and let

Km ⊂ Ē × Ē × E

and

GrmΓ
⊂ Γ × Γ × Γ

denote the respective graphs of the multiplications for E and Γ . E is called a Courant

groupoid if Km is a generalized Dirac structure with support on GrmΓ
.

A morphism of Courant groupoids ( f, K) : E ��� F is a Courant morphism for

which f is a morphism of Lie groupoids and K ⊂ F × Ē is a Lie subgroupoid.

A multiplicative Dirac structure, is a Dirac structure A⊂ E which is also a sub-

groupoid. A multiplicative Manin pair is a pair (E, A), where E is a Courant groupoid,

and A⊂ E is a multiplicative Dirac structure. �

Definition 5.13 (Morphism of multiplicative Manin pairs). A morphism of multiplica-

tive Manin pairs

( f, K) : (E, A) ��� (F, B)



Quasi-Hamiltonian Groupoids 2331

is a morphism of Manin pairs such that ( f, K) : E ��� F defines a morphism of Courant

groupoids. �

The following example is found in [11, 13, 38, 39].

Example 5.14. If Γ is any groupoid, then by applying the tangent functor to all the

spaces and morphisms TΓ becomes a VB-groupoid. T∗Γ is its dual VB-groupoid. Con-

sequently, TΓ = T∗Γ ⊕ TΓ becomes a VB-groupoid. One can check that it is actually

a Courant groupoid.

Examples of multiplicative Manin pairs are (TΓ, TΓ ) and (TΓ, T∗Γ ). �

Example 5.15. Let g be a quadratic Lie algebra, and consider d = g ⊕ ḡ together with

the pair groupoid structure. (d,diag(g)) is a multiplicative Manin pair. �

The following example is found in [6, 9, 28].

Example 5.16. The Courant algebroid AG = G × g ⊕ ḡ (Definition 5.4) is the direct prod-

uct of the Lie group G and the pair groupoid g ⊕ ḡ; with this groupoid structure, it

becomes a Courant groupoid. Clearly the Cartan Dirac structure EG (Definition 5.4) is

a subgroupoid, and so (AG, EG) is a multiplicative Manin pair. �

The infinitesimal version of a multiplicative Dirac structure is studied in [39]

(see also [11, 13, 38]). We will be interested in the infinitesimal version of morphisms of

multiplicative Manin pairs. To study this in Section 6, we will find it more convenient to

use an alternative description of Manin pairs via graded Poisson geometry [14].

6 Manin pairs and MP-manifolds

It was shown in [14] that category of Manin pairs is equivalent to the category of

MP-manifolds (first introduced in [50], see also [46, 48]). Since using the latter category

can sometimes bring more geometric insight, we recall the equivalence described in [14].

Definition 6.1. An MP-manifold is a principal R[2] bundle P → A∗[1], where A is a vec-

tor bundle over a manifold M, such that P carries a Poisson structure of degree −1 which

is R[2] invariant. We call M the MP-base of P . �
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There is a natural notion of morphisms for MP-manifolds:

Definition 6.2 (Morphisms of MP-manifolds). Let P → A∗[1] and Q → B∗[1] be two

MP-manifolds, then a morphism of MP-manifolds

P

��

F
�� Q

��

A∗[1]
F/R[2]

�� B∗[1]

is an R[2] equivariant Poisson map. We will often abbreviate morphisms of

MP-manifolds as F : P ��� Q. �

The Poisson structure on P induces a map π� : T∗[2]P → T [1]P . If we use F

to pull back the cotangent bundle on Q to a bundle over P , then we have a map

(T [−2]F )∗ : F ∗(T∗[2]Q)→ T∗[2]P dual to the tangent map. Finally, if M is the MP-base

of P we denote the projection p : P → A∗[1] → M, and the corresponding tangent map

T [1]p : T [1]P → T [1]M.

Definition 6.3. A morphism of MP-manifolds is called full if the map

T [1]p◦ π� ◦ (T [−2]F )∗ : F ∗(T∗[2]Q)−→ T [1]M (28)

is surjective. �

Remark 6.4. Let μ : T∗[2]Q → R be the moment map for the R[2] action. Let F ∗(μ−1(1))

denote the pullback of μ−1(1) by F . Since π is R[2] invariant and F is R[2] equivariant,

(28) is surjective if and only if

(T [1]p/R[2]) ◦ (π�/R[2]) ◦ ((T [−2]F )∗/R[2]) : F ∗(μ−1(1))/R[2] −→ T [1]M (29)

is surjective.

However the 1-graded part of F ∗(μ−1(1))/R[2] describes a vector bundle KF → M,

so (29) describes a base-preserving morphism of vector bundles aF : KF → T M. It is clear

that (29) is surjective if and only if aF is surjective, or equivalently

a∗
F : T∗M −→ K∗

F (30)
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is injective. Note that since a∗
F is a smooth base preserving morphism of vector bundles,

it is injective if and only if it is an immersion. �

Theorem 6.5. The equivalence between the categories of Manin pairs and

MP-manifolds described in [14] identifies full morphisms of Manin pairs with full

morphisms of MP-manifolds. �

Proof. First we recall the functor from the category of MP-manifolds to Manin pairs

given in [14].

In the work of Roytenberg, Vaintrob, Weinstein, and Ševera [42–44, 47, 50], it

was shown that a Courant algebroid E is equivalent to a degree 3 function, Θ, on a

nonnegatively graded degree 2 symplectic manifold, M, such that {Θ,Θ} = 0. In this

picture, a Dirac structure with support on a submanifold corresponds to a Lagrangian

submanifold of M on which Θ vanishes.

Suppose P is an MP-manifold. The Poisson structure on P corresponds to an

R[2]-invariant degree three function, π ∈ C ∞(T∗[2]P ), such that {π, π} = 0. π descends to

a degree 3 function, Θ, on MP = T∗[2]P//1R[2], the symplectic reduction at moment value

1, such that {Θ,Θ} = 0. Thus P defines a Courant algebroid, E. The map MP → A∗[1]

corresponds to a base-preserving vector bundle morphism

E −→ A∗ (31)

the kernel of which is a Dirac structure A⊂ E. In this way, P defines a Manin pair (E, A).

Suppose that P and Q are MP-manifolds corresponding to the Manin pairs

(E, A) and (F, B). Let F : P ��� Q be a morphism of MP-manifolds, and GrF its graph.

Let M and N be the respective MP-bases, and f : M → N denote the restriction of F .

The conormal bundle N∗[2] GrF ⊂ T∗[2]Q × T∗[2]P is a Lagrangian submanifold on which

πQ× P̄ vanishes. The reduction L F of N∗[2] GrF to the symplectic quotient MQ × MP is

a Lagrangian submanifold on which ΘQ× P̄ vanishes; it corresponds to a generalized

Dirac structure K defining a morphism of Manin pairs ( f, K) : (E, A) ��� (F, B) (see [14]

for details).

We need to show that ( f, K) is full if and only if F is full. By identifying M with

Gr f , the anchor map takes the form a : K → T M. It is surjective if and only if ( f, K) is

full. By identifying P with GrF , the conormal bundle N∗[2] GrF may be naturally identi-

fied with F ∗(T∗[2]Q), and similarly L F with F ∗(μ−1(1))/R[2] (where μ : T∗[2]Q → R is the

moment map for the R[2] action, as in Remark 6.4). Under this identification, the vector
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bundle KF of Remark 6.4 corresponds to K, and aF to the anchor map a. Consequently by

Remark 6.4, ( f, K) is a full morphism of Manin pairs if and only if F is a full morphism

of MP-manifolds. �

Example 6.6. The simplest example of an MP-manifold is T∗[1]M × R[2], where the

Poisson structure comes from the canonical symplectic structure on the cotangent bun-

dle and the trivial one on R[2], and the R[2] action is the obvious one. It corresponds to

the Manin pair (TM, T M). �

6.1 Multiplicative Manin pairs and MP-groupoids

In this section we introduce the category of MP-groupoids (a subcategory of

MP-manifolds) and establish an equivalence between it and the category multiplicative

Manin pairs.

Given the notion of a Poisson groupoid [33, 60], there is a natural notion of MP-

groupoids.

Definition 6.7 (MP-groupoid). An MP-manifold P → A∗[1] is called an MP-groupoid, if

it is a Poisson groupoid, and the R[2] action map, P × R[2] → P , is a groupoid morphism.

In more detail, let P̄ be the graded groupoid P with minus the Poisson structure

(20). Let

GrmP ⊂ P × P × P̄

denote the graph of the multiplication and P0 ⊂ P the submanifold of identity elements.

Then P is a MP-groupoid if GrmP and P0 are coisotropic submanifolds, and the action

map P × R[2] → P is a groupoid morphism.

A morphism of MP-groupoids is a morphism of MP-manifolds which is also a

groupoid morphism.

If an MP-groupoid is actually a (graded) Lie group, we may refer to it as an

MP-group. �

The following proposition should come as no surprise.

Proposition 6.8. The equivalence between the category of Manin pairs and

MP-manifolds induces an equivalence between the categories of multiplicative Manin

Pairs and MP-groupoids. �
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First we need a short lemma.

Lemma 6.9. Let E → Γ be a Courant groupoid. A Dirac structure A⊂ E is multiplica-

tive if and only if there is a VB-groupoid structure on A∗ → Γ for which the projection

p : E → E/A∼= A∗ is a morphism of VB-groupoids.

Furthermore, if ( f, K) : (E, A) ��� (F, B) is a morphism of multiplicative Manin

pairs, then the induced map φK : A∗ → B∗ is a morphism of Lie groupoids. �

Proof. We recall [32, Proposition 11.2.5] that A∗ has the structure of a VB-groupoid if

and only if A also has the structure of a VB-groupoid (See Appendix A for details). Fur-

thermore, the inner product 〈·, ·〉 defines an isomorphism between the VB-groupoids E

and E∗, where the latter has the structure of the dual VB-groupoid. Using this isomor-

phism, the projection p : E → A∗ is dual to the inclusion i : A→ E. [32, Proposition 11.2.6]

states that if either p or i is a morphism of VB-groupoids, then they both are.

Since K ⊂ E × F̄ is a subgroupoid, it follows that K/(K ∩ (A× B)) is a sub-

groupoid of (E × F̄)/(A× B)= A∗ × B∗. However, K/(K ∩ (A× B)) is the graph of φK :

A∗ → B∗. Therefore φK is a morphism of Lie groupoids. �

Proof of Proposition 6.8 (Sketch). Let P be an MP-groupoid. M= T∗[2]P//1R[2] is a

symplectic groupoid, and the degree-3 function on M corresponding to the Poisson

structure on P is multiplicative. In other words, M describes a Courant groupoid E. Fur-

thermore, the map (31) describes a morphism of VB-groupoids. Therefore, by Lemma 6.9,

the Manin pair (E, A) corresponding to P is multiplicative. Similarly, it is easy to check

that morphisms of MP-groupoids correspond to morphisms of multiplicative Manin

pairs. �

6.2 MP-algebroids

We will be interested in studying the infinitesimal counterparts of MP-groupoids. Intu-

itively, since an MP-groupoid is just a Poisson groupoid (together with some free R[2]

action), it must integrate some Lie bialgebroid [33] (and since the R[2] action is given

by a groupoid morphism, it must integrate a Lie algebroid morphism). This intuition

should motivate the following definition.

Definition 6.10 (MP-algebroid). An MP-algebroid is a graded Lie algebroid P , such that

P is also an MP-manifold, and



2336 D. Li-Bland and P. Ševera

MPA-1 the Poisson structure on P is linear, defining a Lie algebroid structure on P ∗

(see [52]),

MPA-2 the Lie algebroid structures on P and P ∗ are compatible, so that P is a Lie

bialgebroid (see [33, 56–58]), and

MPA-3 the action map P × R[2] → P is a Lie algebroid morphism, where R[2] is

viewed as a trivial Lie algebra.

We call P integrable if it is integrable as a Lie algebroid, and if P is actually a

Lie algebra (rather than just a Lie algebroid), we may call it an MP-algebra.

Morphisms of MP-algebroids are morphisms of Lie algebroids which are also

morphisms of MP-manifolds. �

Proposition 6.11. The category of integrable MP-algebroids is equivalent to the cate-

gory of source 1-connected MP-groupoids. �

Proof. The proofs in Mackenzie and Xu [33] apply in the graded category to establish an

equivalence between the categories of source 1-connected graded Poisson groupoids and

integrable graded Lie bialgebroids. Since MP-groupoids and MP-algebroids are simply

Poisson groupoids and Lie bialgebroids (respectively) together with additional require-

ments regarding an R[2] action, we need only show that these requirements correspond

to each other under the Mackenzie-Xu equivalence.

We may view R[2] as a trivial Lie bialgebroid, which integrates to R[2] (viewed as

a groupoid under addition with the trivial Poisson structure). On the Poisson groupoid

level we required the existence of an R[2] action map which was both a groupoid and a

Poisson morphism (see Definition 6.7), clearly this corresponds to the Lie bialgebroid

level for requiring the existence of an R[2] action map which is both a Lie algebroid

and a Poisson morphism (see Definition 6.10). �

Example 6.12. Let B be a Lie algebroid integrating to the groupoid Γ . Then T∗[1]B ×
R[2] is a MP-algebroid which integrates to the MP-groupoid T∗[1]Γ × R[2], where the

cotangent bundle has the canonical Poisson structure and R[2] has the trivial one. This

MP-groupoid corresponds to the multiplicative Manin pair (TΓ, TΓ ). �

Theorem 6.13. Let P and Q be MP-algebroids integrating to MP-groupoids ΓP and ΓQ.

A morphism of MP-groupoids F : ΓP ��� ΓQ is full if and only if the corresponding mor-

phism of MP-algebroids f : P ��� Q is full. �
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Proof. Let Γ be the MP-base of ΓP and let the Lie algebroid of Γ be denoted by A.

Clearly A is the MP-base of P .

F is full if and only if the morphism

a∗
F : T∗Γ −→ KF (32a)

described in (30) is an injective immersion. Meanwhile f is full if and only if

a∗
f : T∗ A−→ K f (32b)

is an injective immersion.

So f is full if and only if (32b) describes the inclusion of a subalgebroid, while

F is full if and only if (32a) describes the inclusion of a subgroupoid. However (32a)

integrates the Lie algebroid morphism (32b). Consequently, if F is full, then so is f .

On the other hand, if f is full, then (32a) is an immersion (by [37, Section 3.2]), and

consequently F is full (by Remark 6.4). �

6.3 MP groups

We can now give a description of MP Lie groups in terms of generalized Manin triples.

This description is a generalization of the usual description of Lie bialgebras and

Poisson–Lie groups.

Let us remark that an MP group with the base H (where H is a Lie group) is

equivalent to a multiplicative Manin pair (E, A) on H such that E/A is a group (not just a

groupoid); equivalently, the space of objects of the groupoid E is the fiber of A at 1 ∈ H .

MP groups are the general type of Manin pairs that lead to moment maps admit-

ting a fusion product. If P is an MP group, a P -type moment map is a graded Poisson

map T∗[1]M → P , and such maps can be multiplied via the product in P .

Our generalized Manin triples are (f, h, k), where f is a Lie algebra with a chosen

ad-invariant element s of S2f and h and k are its subalgebras such that f = h ⊕ k as a

vector space and k is s-coisotropic. As we shall see, these data are equivalent to a MP

group with the base H , the 1-connected group integrating h.

Let us consider the graded Lie algebra

Qs(f)= R[2] ⊕ f∗[1] ⊕ f ⊕ R[−1]
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with the Lie bracket given by (α, β ∈ f∗[1], ξ, η ∈ f)

[α, β] = s(α, β) · T,

[ξ, α] = −ad(ξ)∗α, [ξ, η] = [ξ, η]f,

[D, α] = s�(α), [D, ξ ] = 0, [D, D] = 0,

where T and D are the generators of R[2] and of R[−1], respectively, and T is central.

It has a nondegenerate pairing of degree 1 given by 〈T, D〉 = 1, 〈ξ, α〉 = α(ξ).

A generalized Manin triple (f, h, k) then gives rise to a pair of transverse

Lagrangian subalgebras of Qs(f)

R[2] ⊕ h⊥[1] ⊕ h and k⊥[1] ⊕ k ⊕ R[−1],

that is, to a graded Lie bialgebra (with cobracket of degree −1). It makes the graded

Poisson–Lie group integrating R[2] ⊕ h⊥[1] ⊕ h to an MP-group.

Theorem 6.14. An MP group with a 1-connected base H is equivalent to a generalized

Manin triple (f, h, k). The corresponding Courant algebroid on H is exact if and only if

s is nondegenerate and k ⊂ f is Lagrangian. �

Proof. MP groups with base H correspond to graded Lie bialgebras (with cobracket

δ of degree −1) of the form

R[2] ⊕ V [1] ⊕ h

(where V is some vector space), such that the generator T of R[2] is central and δ(T)= 0.

One can easily check that these are exactly the Lie bialgebras coming from triples (f, h, k).

The Courant algebroid corresponding to the MP-group is transitive if and only if

the identity morphism of Manin pairs is full. By Theorem 6.13 this is equivalent to the

identity morphism of MP-algebras being full. That is to say s�|k⊥ : k⊥ → k is an injection.

For dimensional reasons, the Courant algebroid corresponding to the MP-group

is exact if and only if s�|k⊥ : k⊥ → k is an isomorphism; this means that s is nondegenerate

and k ⊂ f is Lagrangian. �
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Remark 6.15. When the Courant algebroid is exact and moreover the projection of s to

S2h is nondegenerate, the corresponding Manin pair on H was used in [23] as a boundary

condition for the Wess-Zumino-Witten model on the group H . �

Remark 6.16. If the Courant algebroid on H is exact then the dual Lie algebra k⊥[1] ⊕
k ⊕ R[−1] is isomorphic to k̂. This type is the most interesting case from the point of view

of moment map theory.

On the other hand, any cobracket δ of degree −1 on k̂ making k̂ to a Lie bialgebra

comes from a triple (f, h, k) with s nondegenerate and h Lagrangian. �

Example 6.17. If s is nondegenerate and k ⊂ f is Lagrangian, then one may define an

invariant element η ∈ ∧3h∗ by η(X,Y, Z)= s−1([X,Y], Z) for X,Y, Z ∈ h. This corresponds

to an invariant closed 3-form on H (the characteristic class of the corresponding exact

Courant algebroid). In particular, if h is also Lagrangian, then η= 0 and the Courant

groupoid over H is just TH . In this case h becomes a Lie bialgebra and the multiplicative

Dirac structure A⊂ TH just describes the corresponding Poisson–Lie structure on H .

More generally, Ortiz [38] classified all multiplicative Dirac structures A⊂ TH

(not simply the ones for which TH/A becomes a Lie group). �

7 Manin Pairs and quasi-Poisson structures

7.1 Reinterpretation of Section 3 in terms of MP-manifolds

All the theory described in Section 3 can be reinterpreted in terms of MP-manifolds. To

begin with, if P is any MP-manifold, a Poisson map F : T∗[1]M → P can be canonically

lifted to a map of MP-manifolds

F̃ : T∗[1]M × R[2] ��� P

given by F̃ : (x, t)→ F (x)+ t for any x ∈ T∗[1]M and t ∈ R[2], where the addition refers to

the action of R[2] on P . Conversely, given any morphism of MP-manifolds G : T∗[1]M ×
R[2] ��� P , the map F : T∗[1]M → P given by F : x → G(x,0) is a Poisson morphism; and

we may recover G from F since G = F̃ .

We recall from Example 6.6, that T∗[1]M × R[2] corresponds to the Manin pair

(TM, T M). Let (E, A) denote the Manin pair corresponding to P . A Poisson morphism

T∗[1]M → P corresponds to a morphism of Manin pairs (TM, T M) ��� (E, A).
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The Manin triple (Q(d),R[2] ⊕ g[1] ⊕ ḡ, ĝ) of Section 3.4 defines a Lie bialgebra

structure on R[2] ⊕ g[1] ⊕ ḡ. In other words, R[2] ⊕ g[1] ⊕ ḡ comes with both a Lie algebra

structure and a compatible Poisson bracket of degree −1. This together with the natural

action of R[2] gives R[2] ⊕ g[1] ⊕ ḡ the structure of an MP-algebra. It integrates to the

MP-group Gbig described in Section 3.4, where R[2] acts in the obvious way. One may

check that the MP-group Gbig corresponds to the multiplicative Manin pair (AG, EG) of

Example 5.16.

In Section 3.4, we showed that a Hamiltonian quasi-Poisson g-structure on M

was equivalent to a Poisson map T∗[1]M → Gbig. It is now clear that it also corre-

sponds to a morphism of MP-manifolds T∗[1]M × R[2] ��� Gbig, or simply a morphism

of Manin pairs

(TM, T M) ��� (AG, EG). (33)

This fact was already known to be a direct consequence of [14, Proposition 3.5]

(or of [14, Theorem 3.7] and [6, Theorem 5.22]). As a result of Remark 5.11 and [6, Theorem

5.2], it is also clear that a Hamiltonian quasi-symplectic g-structure on M corresponds to

a full morphism of Manin pairs (TM, T M) ��� (AG, EG) or equivalently a full morphism of

MP-manifolds T∗[1]M × R[2] ��� Gbig. Furthermore, if Γ is a Lie groupoid, then it follows

from Section 3.5 that a compatible Hamiltonian quasi-symplectic g-structure on Γ is

equivalent to a full morphism of MP-groupoids

T∗[1]Γ × R[2] ��� Gbig.

The latter is equivalent to a full morphism of multiplicative Manin pairs

(TΓ, TΓ ) ��� (AG, EG).

Next consider the Manin triple (Q(g),R[2] ⊕ g[1], g ⊕ R[−1]). The Lie bialgebra

structure on R[2] ⊕ g[1] corresponds to an MP-algebra structure. R[2] ⊕ g[1] integrates

to the MP-group Gsmall corresponding the multiplicative Manin pair (d = g ⊕ ḡ,diag(g))

from Example 5.15. The theory in Section 3.3 then shows that a quasi-Poisson g structure

on a manifold M corresponds to a morphism of MP-manifolds

T∗[1]M × R[2] ��� Gsmall.
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The latter is equivalent to a morphism of Manin pairs

(TM, T M) ��� (d,diag(g)). (34)

More generally, Remark 3.9 states that a quasi-Poisson g-bialgebroid structure on a

vector bundle A is equivalent to a MP manifold P → A∗[1] together with a morphism

P ��� Gsmall, that is, to a morphism of Manin pairs

(E, A) ��� (d,diag(g)). (35)

The groupoid multiplication defines a morphism of Manin pairs

(d,diag(g))× (d,diag(g)) ��� (d,diag(g)),

and the fusion product of two quasi-Poisson g-structures (TMi, T Mi) ��� (d,diag(g) (for

i = 1,2) corresponds to the composition

(TM1, T M1)× (TM2, T M2) ��� (d,diag(g))× (d,diag(g)) ��� (d,diag(g)).

Remark 7.1. The morphism of Manin pairs (34) is full if and only if the corresponding

quasi-Poisson g-structure on M is nondegenerate [4, 5], namely (9) holds. �

Remark 7.2. The equivalence between morphisms of Manin pairs (34) and quasi-

Poisson g structures is just a restatement of the results in [12] (in particular, see the

first paragraph of [12, Section 5]). �

Remark 7.3 (Special case of Theorem 2.24). A referee explained to us that Theorem 2.24

was already established when there was a moment map Φ : M → G for the quasi-Poisson

g-manifold (M, ρ, π).

In this case, [9] describes an embedding of the Lie algebroid T∗M as a Dirac

structure L ⊂ T M ⊕ T∗M (see Remark 2.8). Let s, t : Γ → M be the source and target maps

of the Lie groupoid integrating T∗M ∼= L. Then [14], there is a full morphism of Manin

pairs

(s × t, K0) : (TΓ, TΓ ) ��� (TM × TM, L × L).

This follows from [11] or [41] together with [6].
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There are also full morphisms of Manin pairs

(Φ ×Φ−1, K1) : (TM × TM, L × L) ��� (AG × AG, EG × EG),

describing the Hamiltonian quasi-Poisson g-structure on M [6, 9], and

(mult, K2) : (AG × AG, EG × EG) ��� (AG, EG),

describing the fusion [6].

The composition of these morphisms

(TΓ, TΓ ) ��� (AG, EG)

describes a Hamiltonian quasi-symplectic g-structure on Γ [11]. �

7.2 Alternative proof of Theorem 2.24

As an application of Theorem 6.13, we may sketch an alternative proof to Theorem 2.24.

Let (A, ρ,D) be a quasi-Poisson g-bialgebroid. Recall from Proposition 3.8 that a

quasi-Poisson g-bialgebroid structure on A is equivalent to a Poisson structure of degree

−1 on A[1] together with a Lie bialgebra action of ĝ on A[1]. However [62], a Lie bialgebra

action ĝ on A[1] is equivalent to a morphism of Lie bialgebroids T∗[1](A[1])→ ĝ∗[1], Using

the canonical symplectomorphism T∗[1]A[1] ∼= T∗[1]A∗, we may rewrite this as

T∗[1]A∗ −→ ĝ∗[1]. (36)

where ĝ∗[1] is just the MP-algebra R[2] ⊕ g[1] ⊕ ḡ described in Section 3.4, so (36) is

canonically equivalent (as in Section 7.1) to a morphism of MP-algebroids

T∗[1]A∗ × R[2] ��� ĝ∗[1]. (37)

Since T∗[1]A∗ × R[2] is just the MP-algebroid corresponding to the Manin pair (TA∗, T A∗)

and ĝ∗[1] corresponds to the Manin pair (Tg∗,Grπg
), where πg is the Kirillov bivector

field and Grπg
is the graph of π�g : T∗g∗ → Tg∗; (37) just corresponds to a morphism of
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Manin pairs

(TA∗, T A∗) ��� (Tg∗,Grπg
). (38)

This is equivalent to a Poisson structure πA∗ on A∗ such that μρ : (A∗, πA∗)→ (g∗, πg) is

a Poisson morphism (i.e., a moment map). It is not difficult to check that πA∗ is just

the linear Poisson structure on A∗ corresponding to the Lie algebroid structure on A.

Equation (38) is full if and only if (A∗, πA∗) is actually a symplectic manifold, which

implies that A∼= T M as Lie algebroids.

Suppose Γ is a source 1-connected groupoid integrating the Lie algebroid A∗.

Example 6.12 (with B = A∗) and the fact that ĝ∗[1] integrates to Gbig show that (37) inte-

grates to the morphism of MP-groupoids

T∗[1]Γ × R[2] ��� Gbig (39)

describing the Hamiltonian quasi-Poisson g-structure on Γ . In the language of Manin

pairs, this is a morphism

(TΓ, TΓ ) ��� (AG, EG). (40)

Theorem 6.13 states that (40) is full if and only if (38) is full. However (40) is

full if and only if Γ is a Hamiltonian quasi-symplectic g-groupoid (see Section 7.1),

while (38) is full if and only if A∼= T M as Lie algebroids. Consequently, in light of

Remark 2.30, source 1-connected Hamiltonian quasi-symplectic g-groupoids are in one-

to-one correspondence with integrable quasi-Poisson manifolds. One can prove the rest

of Theorem 2.24 by simply checking the details in the above argument.

8 Hamiltonian quasi-Poisson g-groups

Since quasi-Poisson g-bialgebroids are equivalent to morphisms of Manin pairs (35),

it follows that 1-connected Hamiltonian quasi-Poisson g-groups are classified by

morphisms of Manin pairs

(id, K) : (f, h) ��� (d,diag(g)), (41)

where f is a quadratic Lie algebra, h is a Lagrangian subalgebra, and id : ∗ → ∗ is identity

map for the point.
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Proposition 8.1. Morphisms of Manin pairs of the form (41) are equivalent to quadru-

ples (f, h ⊂ f, h∗ ⊂ f, ρ : g → h), where f is a quadratic Lie algebra, and h, h∗ ⊂ f are two sub-

algebras such that h is Lagrangian and f = h ⊕ h∗ as a vector space. Furthermore ρ : g → h

is a Lie algebra morphism that satisfies

(1) ρ∗ : h∗ → g is a Lie algebra morphism,

(2) 〈x, y〉f = 〈ρ∗(x), ρ∗(y)〉g, and

(3) [ρ(g), h∗] ⊂ h∗ with ρ∗[ρ(ξ), x] = [ξ, ρ∗(x)] for ξ ∈ g and x ∈ h∗. �

Remark 8.2. It should be clear that these conditions define a Lie bialgebra morphism

ĝ → ĥ, where the Lie algebra bracket on (ĥ)∗[1] ∼= R[2] ⊕ h∗[1] ⊕ h∗ is given on h∗[1] by the

quadratic form on f, and R[2] is central. �

Proof. Since d = g ⊕ ḡ is the vector space direct sum of the subalgebras diag(g) and g,

it follows that f is a vector space direct sum of the subalgebras h and

g ◦ K = {x ∈ f | (y, x) ∈ K ⊂ d ⊕ f̄, for some y∈ g}.

We may identify g ◦ K with h∗ using the quadratic form on f. Then K ⊂ d ⊕ f̄ = g + ḡ +
h + h∗ can be written as

K = {(ξ, ξ, ρ(ξ),0) ∈ g + ḡ + h + h∗} + {(ρ∗(x),0,0, x) ∈ g + ḡ + h + h∗}, (42)

where ρ : g → h is a Lie algebra morphism.

On the other hand, suppose that (f, h ⊂ f, h∗ ⊂ f, ρ : g → h) is a quadruple satisfying

the assumptions. Then (42) is a Lagrangian subalgebra of d ⊕ f̄ defining a morphism of

Manin pairs (41). �

Appendix A. VB-groupoids

Definition A.1. A VB-groupoid is a Lie groupoid in the category of smooth vector bun-

dles (or a vector bundle in the category of Lie groupoids). In more detail, it is a diagram
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of the form

V
q̂

��

s̃
��

t̃
��

Γ

s

��
t

��

E
q

�� M

(A.1)

where q̂ : V → Γ and q : E → M are vector bundles, and V ⇒ E and Γ ⇒ M are Lie

groupoids the source, target, multiplication, and object inclusion maps (s̃, t̃, m̃, ĩ and

s, t,m, i, respectively) of which are morphisms of vector bundles. �

Suppose Γ ⇒ M is a Lie groupoid. Then applying the tangent functor, we get

a VB-groupoid TΓ ⇒ T M. Mackenzie [32, Proposition 11.2.5] states that if V → Γ is a

VB-groupoid, then V∗ → Γ naturally inherits the structure of a VB-groupoid. Briefly, if

(Grm̃)( f,g,g) is the fiber of the graph of the multiplication for V at the point ( f, g,h) ∈ Grm,

then

(Grm̃)
⊥
( f,g,h) ={(α, β, γ ) ∈ V∗

f × V∗
g × V∗

h | 0 = α(u)+ β(v)− γ (w),

∀(u, v, w) ∈ (Grm̃)( f,g,h)} (A.2)

is the fiber of the graph of the multiplication for V∗ at the point ( f, g,h). Meanwhile, if

g ∈ i(M)⊂ Γ is an identity element, and ĩ(Eg)⊂ Vg is the fiber of the identity elements of

V over g, then

ĩ(Eg)
⊥ = {α ∈ V∗

g | α(v)= 0 ∀v ∈ ĩ(Eg)}

is the fiber of the identity elements of V∗ over g. With this structure V∗ is called the dual

VB-groupoid.

Consequently, T∗Γ also has the structure of a VB-groupoid.

Remark A.2 (Technical note). The Theorems in [32, Section 11.2] assume that the

“double source condition” is satisfied for the VB-groupoids involved. That is to say if

(A.1) is a VB-groupoid, then the “double source map”

(q̂, s̃) : V −→ Γ ×s,q E (A.3)
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is a surjective submersion. In order to apply these theorems to the VB-groupoids used

in our paper, we need the following lemma.

Lemma A.3. If (A.1) is a Lie groupoid in the category of smooth vector bundles, then

(A.3) is a surjective submersion. �

Proof. We begin by showing that (A.3) is surjective. View Γ as the zero section of the

vector bundle V → Γ , and let g ∈ Γ . The vector space TgV decomposes into directions

tangent to the fibers and directions tangent to the zero section, namely

TgV = Vg ⊕ TgΓ.

Similarly Ts(g)E has a natural decomposition

Ts(g)E = Es(g) ⊕ Ts(g)M.

Since s̃ is a morphism of vector bundles, Tgs̃ decomposes as the direct sum

Tgs̃ = s̃|g ⊕ Tgs : Vg ⊕ TgΓ −→ Es(g) ⊕ Ts(g)M.

However V was assumed to be a Lie groupoid, hence s̃ is a surjective submersion, and

consequently s̃|g : Vg → Es(g) is surjective. It follows that (A.3) is surjective.

To show that (A.3) is also a submersion, apply the previous argument to

TV
Tq̂

��

Ts̃
��

Tt̃
��

TΓ

Ts
��

Tt
��

T E
Tq

�� T M �
�
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