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ABSTRACT

Statistical inference for copulas has been addressed in various research papers.
Due to the complicated theoretical results, studies have been carried out mainly
in the bivariate case, be it properties of estimators or goodness-of-fit tests. How-
ever, from a practical point of view, higher dimensions are of interest. This work
presents the results of large-scale simulation studies with particular focus on the
question to what extent dimensionality influences point and interval estimators.
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1. INTRODUCTION

It is well known that distributions of test statistics of goodness-of-fit tests for
copulas may be influenced when the test is based on pseudo-observations; see
(Dobrić and Schmid, 2007; Genest et al., 2009; Kojadinovic and Yan, 2010a,
and references therein). A parametric bootstrap is typically used to compute
approximate p-values.

The influence of estimating the marginal distributions on the precision of
point and interval estimators is treated much less in the literature; available
references are Genest et al. (1995), Tsukahara (2005), Kim et al. (2007) and
Kojadinovic and Yan (2010b). Moreover, none of the existing work on inves-
tigating this influence (on either estimators or goodness-of-fit tests) has been
carried out in higher dimensions d (say, d = 100). However, from a practical
point of view, applications are often high-dimensional; specific examples are
Arbenz et al. (2012) in an insurance context, Hofert and Scherer (2011) in the
context of finance, or, in a more general context of risk management, McNeil
et al. (2005, Chapter 2).
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82 P. EMBRECHTS AND M. HOFERT

Typically, statements about the precision of estimators in higher dimensions
are made based on investigations in small dimensions, say, d ∈ {2, 3, 4, 5}, and
conclusions are often drawn by extrapolating beyond the investigated dimen-
sions. The problem is that this might not give a full picture of the behavior of
estimators in truly high dimensions. Additionally, without paying attention to
numerical issues (such as cancellation, rounding errors, underflows, overflows,
flat objective functions, and non-convergence of optimizers), it might very well
happen that computational results obtained are not reliable. These issues can
(sometimes invisibly) appear already in small dimensions, such as d = 5, and
may lead to doubtful statements about the precision of estimators in higher
dimensions; see Weiß (2010) for such a statement and Hofert et al. (2012) for
a correction. Once computations are carried out in higher dimensions, the nu-
merics involved become increasingly important in implementations, and careful
checks have to be conducted in order to obtain solid results. The common ap-
proach “let’s compute it and see if we obtain anything reasonable” is by far not
good enough.

In the present work, our goal is to investigate the impact of using estimated
marginal distributions on the precision of common point and interval estima-
tors of copula parameters. We focus particularly on high dimensions and assess
numerically the magnitude of this impact. The asymptotic theory of the estima-
tors we consider is quite demanding, difficult to check at best (see for instance
Kojadinovic and Yan, 2010b), and sometimes not developed yet. We therefore
conduct large-scale simulation studies in order to compare the performance of
the considered estimators in small (d = 2) to high dimensions (d = 100) for
popular copulas in finance and insurance.

Before we continue, let us remark that the term high-dimensional is not new
in the statistics literature. In contrast towhat we consider as high-dimensional (d
being large; see (1) below), there is also a well-known body of literature on high-
dimensional statistics for the problem of a high-dimensional parameter space (in
the notation below, this would mean that p was large). Although this is different
from our setup, we would like to point out, for example, Bühlmann and van de
Geer (2011), Hastie et al. (2009, Chapter 9), or Portnoy (1988) for the reader
interested in this area of statistics.

The paper is organized as follows. In Section 2, the notation and the es-
timators considered are introduced. Section 3 presents the simulation studies
conducted, and Section 4 concludes.

2. THE PARAMETRIC AND SEMI-PARAMETRIC ESTIMATORS CONSIDERED

Let Xi , i ∈ {1, . . . , n}, be independent and identically distributed (i.i.d.) copies
of a d-dimensional random vector X following the distribution function Hwith
continuous margins Fj , j ∈ {1, . . . , d}, and corresponding copula C, that is (by
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Sklar’s Theorem),

H(x) = C(F1(x1), . . . , Fd(xd)), x = (x1, . . . , xd)� ∈ Rd . (1)

In the following, we assume the j th margin Fj to belong to a parametric family
of continuous distribution functions

F j = {Fj ( · ; θ j ) |θ j ∈ � j }

with true but unknown parameter vector θ0, j , where � j is a non-empty, open
subset of R p j , j ∈ {1, . . . , d}. Furthermore, we assume thatC belongs to a para-
metric family of copulas

C = {C( · ; θC) |θC ∈ �C}

with true but unknown parameter vector θ0,C, where �C is a non-empty, open
subset of R pC . Based on realizations of Xi , i ∈ {1, . . . , n}, the main statistical
problem is to estimate the parameter vector

θ0 = (θ0,C, θ0,1, . . . , θ0,d)
�

of H and to construct confidence regions for it; here and in the following, we
drop the transpose inside vectors for the reader’s convenience.

In this work, we focus particularly on θ0,C. We assume that the margins Fj ,
j ∈ {1, . . . , d}, and the copula C are absolutely continuous with corresponding
densities f j , j ∈ {1, . . . , d}, and c, respectively.

2.1. Popular point estimators

In this section, we briefly present the estimators considered in this work. Al-
though rather unrealistic from a practical point of view, the known margins
maximum likelihood estimator, see Section 2.1.4 below, is included as a bench-
mark.

2.1.1. The maximum likelihood estimator. If H admits a density h which can
be expressed via (1) by

h(x; θ) = c(F1(x1; θ1), . . . , Fd(xd; θd); θC)

d∏
j=1

f j (xj ; θ j ), (2)

where θ = (θC, θ1, . . . , θd)
� ∈ � ⊆ R p, � = �C × �1 × · · · × �d , p =

pC + ∑d
j=1 p j . Let �(θ; x) = log h(x; θ). The log-likelihood corresponding to
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84 P. EMBRECHTS AND M. HOFERT

(2) based on Xi , i ∈ {1, . . . , n}, is thus

�(θ; X1, . . . , Xn) =
n∑
i=1

�(θ; Xi )

=
n∑
i=1

�C(θC; F1(Xi1; θ1), . . . , Fd(Xid; θd))

+
n∑
i=1

d∑
j=1

� j (θ j ; Xi j ), (3)

where �C(θC; u1, . . . , ud) = log c(u1, . . . , ud; θC) and � j (θ j ; x) = log f j (x; θ j ),

j ∈ {1, . . . , d}. The maximum likelihood estimator (MLE) θ̂
MLE
n of θ0 is then

defined by

θ̂
MLE
n = argsup

θ∈�

�(θ; X1, . . . , Xn). (4)

The optimization in (4) is typically done by numerical means. Note that this can
be quite demanding, especially in high dimensions.

2.1.2. The inference functions for margins estimator. Due to the form of (3),

Joe and Xu (1996) suggested to first estimate θ0, j by its MLE θ̂
MLE
n, j for each

j ∈ {1, . . . , d} individually (step 1), and then (step 2) estimate θ0,C via

θ̂
IFME
n,C = argsup

θC∈�C

�
(
θC, θ̂

MLE
n,1 , . . . , θ̂

MLE
n,d ; X1, . . . , Xn

)
.

The corresponding inference functions for margins estimator (IFME) θ̂
IFME
n of

θ0 is thus

θ̂
IFME
n =

(
θ̂
IFME
n,C , θ̂

MLE
n,1 , . . . , θ̂

MLE
n,d

)�
,

which is typically much easier to compute than θ̂
MLE
n from a numerical point of

view.

2.1.3. The maximum pseudo-likelihood estimator. The so-called maximum

pseudo-likelihood estimator (MPLE) is based on an idea similar to θ̂
IFME
n , but

for the former the j th margin is estimated non-parametrically by its empirical
distribution function F̂n, j , j ∈ {1, . . . , d}. This means that the margins are esti-
mated based on ranks, while the copula parameter θC is estimated based on the
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STATISTICAL INFERENCE FOR COPULAS IN HIGH DIMENSIONS 85

pseudo-observations Ûi , i ∈ {1, . . . , n}, given by

Ûi j = n
n + 1

F̂n, j (Xi j ) = Ri j
n + 1

,

where Ri j denotes the rank of Xi j among all Xi j , i ∈ {1, . . . , n}. To be more
precise, after computing the pseudo-observations (step 1), the copula parameter
θ0,C is estimated (step 2) via

θ̂
MPLE
n,C = argsup

θC∈�C

n∑
i=1

�C(θC; Ûi1, . . . , Ûid) = argsup
θC∈�C

n∑
i=1

log c(Ûi ; θC).

This estimator is introduced by Genest et al. (1995), who show consistency and
asymptotic normality under suitable regularity conditions (see also Tsukahara,

2005). Genest andWerker (2002) show that θ̂
MPLE
n,C is not asymptotically efficient

in general. Kim et al. (2007) compare θ̂
MLE
n , θ̂

IFME
n , and θ̂

MPLE
n,C in a simulation

study and argue in favor of the latter overall in terms of the (simulated) mean
squared error, especially with respect to robustness against misspecification of
the margins. Note that this study, as many others in the literature, is only carried
out in the bivariate case. Although from the notation Kim et al. (2007) treat the
general d-dimensional case, their conclusions are drawn only from the examined
bivariate case.

2.1.4. Estimation under known margins. Although θ̂
MPLE
n,C resembles an MLE

based on data from the copula C itself, in practical applications one never ob-
serves data from C directly. Indeed, one should keep in mind that the pseudo-
observations do not form a perfect random sample fromC (even if the Xi ’s form
a random sample) as they are neither independent nor perfectly following a uni-
variate standard uniform distribution; see, for example, Genest et al. (2009). If,
however, the Xi ’s form a random sample and we know all marginal distribution
functions Fj , j ∈ {1, . . . , d}, we can build

Ui j = Fj (Xi j ), i ∈ {1, . . . , n}, j ∈ {1, . . . , d},

and compute an estimator for θ0,C based on the i.i.d. sample Ui , i ∈ {1, . . . , n},
from C. Let us stress again that the assumption of known margins is unrealis-
tic in practical applications. However, we include this known margins maximum

likelihood estimator (KMMLE) θ̂
KMMLE
n,C in our simulation study to numerically

address the question to what amount “replacing the Ui ’s by the Ûi ’s” affects
the precision of the estimators considered, that is, how large is the estimation
error (and how is the estimation error affected by the number of dimensions)
when going from known margins to rank-based estimated margins. Note that a
more interesting question would be howmuch information is lost by going from
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86 P. EMBRECHTS AND M. HOFERT

θ̂
MLE
n,C to θ̂

MPLE
n,C , but computing θ̂

MLE
n,C in the high-dimensional cases we consider

is challenging at best.

2.1.5. The pairwise Kendall’s tau estimator. Similar to method-of-moment es-
timators, Genest and Rivest (1993) suggested to estimate the parameter θ0,C
of one-parameter bivariate Archimedean copulas by matching Kendall’s tau
τ = τ(θC) as a function of θC with its sample version τ̂n, that is, by solving
τ(θC) = τ̂n with respect to θC. Kendall’s tau is available for many copulas in
closed or semi-closed form and, thus, computing this estimator is often straight-
forward. It has been extended to the multivariate case (d > 2) in two ways. First,
for elliptical copulas, it has been applied in the multi-parameter case to estimate
the correlationmatrix through pairwise invertingKendall’s tau; see, for example,
McNeil et al. (2005, p. 231). Second, it has been applied to estimate parameters
in one-parameter exchangeable copula models where the bivariate margins de-
pend on θ0,C; see Berg (2009), Kojadinovic and Yan (2010b) and Savu and Trede
(2010). In the latter case, if τ̂n, j1 j2 denotes the sample version of Kendall’s tau
based on the random sample (Xi j1, Xi j2)

�, i ∈ {1, . . . , n}, then θ0,C is estimated
by the pairwise Kendall’s tau estimator (PKTE)

θ̂PKTE
n,C = τ−1

⎛
⎝(

d
2

)−1 ∑
1≤ j1< j2≤d

τ̂n, j1 j2

⎞
⎠ , (5)

that is, by matching Kendall’s tau with the mean over all different pairwise sam-
ple versions of Kendall’s tau (which seems intuitive in exchangeable models). In
the bivariate case, properties of this estimator follow from Kendall’s tau being
aU-statistic (see the book by Lee, 1990 for more details). The multivariate case
is more difficult; see Kojadinovic and Yan (2010b).

Note that we can base the computation of the pairwise sample versions of
Kendall’s tau on either the random sample Xi , i ∈ {1, . . . , n}, or the pseudo-
observations Ûi , i ∈ {1, . . . , n}, because, as ameasure of concordance,Kendall’s
tau is invariant under strictly increasing transformations on the ranges of the
underlying random variables.

Finally, let us remark that there exist multivariate versions of measures of
association such as Kendall’s tau (being applicable to d > 2); see, for example,
Jaworski et al. (2010, pp. 209). Since they are less widely used and numerically
more challenging to evaluate, they are not considered here.

2.2. Likelihood-based confidence-interval estimators

One way to obtain confidence intervals for θ0,C (in the one-parameter case) or
confidence regions for θ0,C (in the multi-parameter case) is by using asymp-
totic normality. In the one-dimensional case, this always gives symmetric confi-
dence intervals about the estimator of θ0,C. Another disadvantage comes from
a numerical point of view. In many copula models, computing derivatives of the
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STATISTICAL INFERENCE FOR COPULAS IN HIGH DIMENSIONS 87

likelihood function is significantly more demanding than computing the likeli-
hood itself; see, for example, the (one-parameter) Gumbel family in Hofert et al.
(2012).

The approach we consider here is based on likelihoods only and does not
require to compute derivatives of the likelihood. Confidence regions for θ0,C,
based on a random sample Ui , i ∈ {1, . . . , n}, from C, can be obtained via the
likelihood ratio statistic, defined by

W(θ;U1, . . . ,Un) = 2
(
�C

(
θ̂
MLE
n,C ;U1, . . . ,Un

)
− �C(θ;U1, . . . ,Un)

)
.

As Davison (2003, p. 126) notes, the likelihood ratio statistic asymptotically
follows a chi-square distribution:

W(θ0,C;U1, . . . ,Un)
d−→ χ2

pC (n → ∞).

Based on this result, an asymptotic 1 − α confidence region for θ0,C is given by{
θC ∈ �C

∣∣∣ �C(θC;U1, . . . ,Un) ≥ �C

(
θ̂
MLE
n,C ;U1, . . . ,Un

)
− qχ2

pC
(1 − α)/2

}
.

(6)

In Section 3 we investigate how the coverage probability of 1 − α is affected if

we replace θ̂
MLE
n,C and, correspondingly, the non-observable random sample Ui ,

i ∈ {1, . . . , n}, from C in (6) by the estimators presented in Section 2.1.

3. SIMULATION STUDIES

The theoretical conditions involved in the asymptotics of the estimators pre-
sented in the last section are difficult to compute theoretically (see Kojadinovic
and Yan, 2010b). We therefore conduct two simulation studies to assess how
point and interval estimators are affected by different substitutes for a perfect
random sample Ui , i ∈ {1, . . . , d}, from the underlying copula. To limit the
computational burden, we only consider exchangeable copulas, but go up to
rather high dimensions to get a realistic picture of how the dimension enters the
equations.

3.1. A word concerning the implementation

The results presented in this section are based on the following setup. All our
computations are done in R 2.15.0 with the package copula (version ≥ 0.99.0)
as can be obtained from http://nacopula.r-forge.r-project.org/. The required R
scripts to reproduce our studies may be obtained from the authors upon re-
quest. The computations are carried out on the computer clusterBrutus of ETH
Zurich which runs CentOS 5.4. The batch jobs are run on nodes with four quad-
core AMD Opteron 8380 CPUs and 32GB of RAM.
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88 P. EMBRECHTS AND M. HOFERT

The procedures are numerically and computationally challenging in many
ways and much effort has gone into accurate and efficient implementation in R.
We refer the interested reader to the package source code, documentation, and
examples.

3.2. Study 1: Bias, root mean-squared error

In our first simulation study, we consider the sample sizes n ∈ {20, 50, 100, 250},
the dimensions d ∈ {2, 5, 10, 20, 50, 100}, dependencies corresponding to the
Kendall’s tau τ ∈ {0.25, 0.5, 0.75}, the homogeneous (elliptical) Gaussian and
t4 copulas, as well as the one-parameter (Archimedean) copula families of Ali–
Mikhail–Haq (AMH), Clayton, Frank,Gumbel and Joe (parameters are chosen
such that the above Kendall’s tau are matched). For each of these combinations
(the exception being AMH for which the range of admissible Kendall’s tau is
bounded from above by 1/3), we generate a random sample of the correspond-
ing size and compute θ̂KMMLE

n,C , θ̂ IFME
n,C , θ̂MPLE

n,C , and θ̂PKTE
n,C . We repeat this proce-

dure N = 500 times and compute the bias and the root mean-squared error for
each of the four estimators.

Consider one of the N runs. The computations for the KMMLE θ̂KMMLE
n,C

are based on the random sample Ui , i ∈ {1, . . . , n}, from the corresponding
copula. This case, although unrealistic in real-life examples (especially in high
dimensions), is included as a benchmark.

For IFME θ̂ IFME
n,C , the same copula samples Ui , i ∈ {1, . . . , n}, are taken.

However, they are first transformed to standard normal margins (that is, trans-
formed to a random sample Xi , i ∈ {1, . . . , n}, where Xi j = �−1(Ui j ) for each
i, j ; � denotes the distribution function of the standard normal distribution)
and the sample mean and sample standard deviation (asymptotically equivalent
to theMLE for the standard deviation) are used as estimators of the parameters
of the normal margins. We hereby assume that we already know the distribu-
tional families for all margins, but not their true underlying parameters. After
the margins have been estimated, the sample Xi , i ∈ {1, . . . , n}, is transformed
componentwise via the (estimated) marginal probability integral transforms,
and the estimator of the copula parameter is computed based on this trans-
formed sample. One could interpret this sample as “parametric(ally estimated)
pseudo-observations”, hence we refer to it as para-pseudo-observations.

For MPLE θ̂MPLE
n,C , we also consider the same copula samples Ui , i ∈

{1, . . . , n}, as for θ̂KMMLE
n,C , but we first transform the samples to pseudo-

observations Ûi , i ∈ {1, . . . , n}. Clearly, the same realizations would have been
obtained by starting with any marginal distributions due to the fact that ranks
are built.

The PKTE θ̂PKTE
n,C is also computed based on the same simulated copula sam-

ples Ui , i ∈ {1, . . . , n}, as the other estimators. Since Kendall’s tau is a measure
of concordance, we could have transformed the samples to any other margins
before and would have received exactly the same value of the estimator.
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3.3. Study 1: Results

Overall, the bias was quite small so that the sample standard deviation was close
to the root mean squared error. We therefore only report on the latter.

Figure 1 shows the root mean squared error of all four estimators as a func-
tion in the dimension for the considered copula families and Kendall’s tau (for
AMH, note that τ ∈ [0, 1/3)). The sample size was fixed to n = 100. For
θ̂KMMLE
n,C , the root mean squared error seems linearly decreasing in d in log–log
scale (with the only exception being the t4 copula). For the exchangeable Archi-
medean families, this behavior has already been found numerically by Hofert
et al. (2012) and translates to the approximate behavior MSE ∝ 1/(nd) for the
mean squared error (MSE). The theoretical verification of this result is still an
open research problem.

To gain more insight in the realized values, Figure 2 shows, for fixed sample

size n = 100, boxplots of the root absolute deviations
√

|θ̂ ·
n,C − θ0,C| of the dif-

ferent estimators θ̂ ·
n,C (being θ̂KMMLE

n,C , θ̂ IFME
n,C , θ̂MPLE

n,C and θ̂PKTE
n,C ) for the different

dimensions considered.
Overall, the simulations show several important results. First note that the

rootmean squared error decreases for increasing dimensions d (uniformly for all
consideredKendall’s tau and copula families). However, as visible already in the
bivariate case (especially for largerKendall’s tau), the impact of not knowing the
marginal distribution functions (in comparison to knowing them) on the preci-
sion of point estimators for the parameter in the exchangeable copula models
considered is increasingly severe in higher dimensions. This is important in that
it stresses that we cannot expect results about statistical inference in small di-
mensions to carry over to higher dimensions. Furthermore, in high dimensions,
the performance of the different estimators under unknown margins does not
differ very much. Rather, computational aspects will play a role which estimator
to choose. For example, note that the complexity of computing θ̂PKTE

n,C is at least
of the order of d2n log n, hence quadratic in d; see (5). In large dimensions, this
becomes computationally demanding. The likelihood-based estimators might
be computed significantly faster in high dimensions, although one of the reasons
why θ̂PKTE

n,C has been considered has been computational simplicity.

3.4. Study 2: Coverage probabilities of likelihood-based confidence intervals

Besides estimation, in a realistic setup, we typically would like to compute confi-
dence intervals for the true underlying copula parameter. As mentioned earlier,
it is often convenient to compute confidence intervals based on likelihoods,
thus not requiring to compute possibly complicated derivatives of the likeli-
hood or score functions. To compute such confidence intervals, one, theoreti-
cally, would like to use a sample Ui , i ∈ {1, . . . , n}, from the underlying copula
C. Since such a sample is available only if the data are a random sample
from H with copula C and (a) known margins, one would resort to either (b)
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90 P. EMBRECHTS AND M. HOFERT

FIGURE 1: Study 1: root mean squared error (N = 500 replications) as a function in d in log–log scale for
n = 100. Note that the family of AMH is limited to τ ∈ [0, 1/3).
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FIGURE 2: Study 1: boxplots of the N = 500 root absolute deviations
√

|θ̂ ·
n,C − θ0,C |.
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92 P. EMBRECHTS AND M. HOFERT

para-pseudo-observations or (c) pseudo-observations. To what amount is the
coverage probability of likelihood-based confidence intervals affected by not
having perfect copula observations available? How does this error behave as a
function in the number of dimensions? These are questions Study 2 addresses.

We base our computations on N = 500 repetitions, the same dimensions,
copula families and dependencies measured in terms of Kendall’s tau as before.
For all combinations of these variables to our study and each of the N runs,
we draw a sample of size n = 100, transform it by either (a) the identity, (b)
para-pseudo-observations, or (c) pseudo-observations, and determine if the true
underlying parameter is covered by the likelihood-based confidence interval as
given in (6). Based on all runs, we thus obtain estimated coverage probabilities
of likelihood-based confidence intervals. We consider 1−α confidence intervals
for α ∈ {0.01, 0.05}.

3.5. Study 2: Results

Figure 3 shows the estimated coverage probabilities in percent of likelihood-
based confidence intervals obtained under (a)–(c). To be more precise, (6) is
used to numerically determine the confidence interval for each of the N runs.
The coverage probabilities are then determined as the percentage of runs for
which the confidence intervals contain the true underlying parameter θ0,C.

Similar to the results from Study 1, the impact of not knowing the margins
is increasingly severe in higher dimensions. Also, if the margins are not known
exactly, the differences in the approaches (b) (parametrically estimatedmargins)
and (c) (non-parametrically estimated margins) do not seem to make a big dif-
ference. Finally, let us remark that from a practical point of view, these problems
are severe and there is no easy solution known yet.

4. CONCLUSION

We conducted two simulation studies with particular focus on high dimensions.
In the first study, we investigated the precision of the following point estimators:
the maximum likelihood estimator under known margins (included as a bench-
mark), the inference functions for margins estimator the maximum pseudo-
likelihood estimator and the pairwise Kendall’s tau estimator. In the second
study, we considered how coverage probabilities of likelihood-based confidence
intervals are affected by not knowing themarginal distribution functions (which
is typically, if not always, the case in practical applications, especially in high
dimensions).

Overall, the results of our studies indicate that the root mean squared error
decreases with increasing dimensions. However, not knowing themargins has an
increasingly severe effect on both point and interval estimators the higher the
considered dimension. Although there is no simple solution to this problem yet,
we believe it is important to be aware of it when working in higher dimensions,
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FIGURE 3: Study 2: estimated coverage probabilities in percent (N = 500 replications) of likelihood-based
confidence intervals under known, parametrically, and non-parametrically estimated margins.
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especially since problems of this kind have been partly ignored in the existing
literature to this day.

Let us finish with some remarks on possible future research in this direction.
The performance of the inference functions for margins estimator might depend
on the choice of the marginal distributions. It is unclear how the performance
in terms of the root mean squared error, for example, differs in the case of other
marginals (such as t, log-normal or log-t distributions). Concerning the rate of
decrease of the root mean squared error for increasing dimensions under known
margins, this effect contrasts the expectations according to the curse of dimen-
sionality (see Bellman, 1957). It can bemotivated through the exchangeability of
the considered models and similar results can be seen in partially exchangeable
models such as nested Archimedean copulas, where each sector or child copula
is Archimedean and thus the above results directly apply to the sectors. An inter-
esting question would be in what way one can move away from exchangeability
such that the root mean squared error still decreases in the dimension and thus
the curse of dimensionality does not strike yet. As can already be seen from our
first study here, even in the case of perfect symmetry, the story looks quite a
bit different when the marginal distributions are not known. From a practical
point of view, this therefore does not leave too much hope that one can move
away from symmetry much, although, theoretically, it would be interesting to
investigate.
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