
Geophys. J. Int. (2009) 176, 389–404 doi: 10.1111/j.1365-246X.2008.03989.x

G
JI

G
eo

de
sy

,
p
ot

en
ti
al

fi
el

d
an

d
ap

pl
ie

d
ge

op
hy

si
cs

Improved source modelling through combined use of InSAR and
GPS under consideration of correlated data errors: application to the
June 2000 Kleifarvatn earthquake, Iceland

Henriette Sudhaus and Sigurjón Jónsson
ETH Zurich, Institute of Geophysics, Sonneggstr. 5, 8092 Zurich, Switzerland. E-mail: sudhaus@erdw.ethz.ch

Accepted 2008 September 22. Received 2008 September 19; in original form 2008 June 16

S U M M A R Y
Simultaneous use of multiple independent data sets can improve constraints on earthquake
source-model parameters. However, the ways in which data sets have been combined in the past
are manifold and usually qualitative. In this paper we present a method to combine geodetic
data in source model estimations, which includes characterizing the data errors and estimating
realistic model-parameter uncertainties caused by these errors. We demonstrate this method in
a case study of the June 2000 Kleifarvatn earthquake, which occurred on Reykjanes Peninsula
in Iceland. We begin by showing to what extent additional data can positively influence the
source modelling results, by combining both GPS and descending-orbit InSAR data, which
were used in two earlier studies of that event, with InSAR data from an ascending orbit. We
estimate the data error covariances of the InSAR observations and base the data weights in our
model-parameter optimization on the corresponding data variance–covariance matrix. We also
derive multiple sets of synthetic data errors from the estimated data covariances that we use to
modify the original data to generate numerous data realizations. From these data realizations
we estimate the model-parameter uncertainties. We first model the Kleifarvatn earthquake as
a simple uniform-slip fault and subsequently as a fault with variable slip and rake. Our fault
model matches well with the field observations of coseismic surface ruptures and its near-
vertical dip (83◦) agrees with the regional faulting style as well as with aftershock locations.
The two published source models of the event, on the other hand, both differ from our model
as well as differing for one another. These studies, which were based on the descending InSAR
data alone (the first study) and on that same data and GPS data (the second study), both neglect
correlations in the InSAR data and do not report model-parameter uncertainties. Therefore,
to compare these results with our model, we simulate the earlier model estimation set-ups
and provide realistic estimates of the model-parameters uncertainties for these cases. We then
discuss the significance of the difference between the existing fault models and demonstrate
that both the inclusion of additional independent data as well as the covariance-based data
weights improve the model-parameter estimation.

Key words: Radar interferometry; Earthquake source observations.

1 I N T RO D U C T I O N

Knowledge about the reliability of earthquake source models is vital
for all research and applications making use of these models and
such information should in fact be part of the model description.
Model parameter uncertainties in geodetic source imaging arise
from data errors and data incompleteness (Wright et al. 2004), from
limited knowledge and simplifications about the material properties
of the crust (Masterlark 2003), from assumptions about the forward
model, and also from the method one uses to estimate the source
model (Cervelli et al. 2001). The uncertainty contribution from each

of these components is strongly case dependent, and therefore, the
overall model uncertainty has to be evaluated on a case by case
basis.

The geodetic data most extensively used in earthquake source
imaging are GPS and Interferometric Synthetic Aperture Radar
(InSAR) observations. Coseismic GPS data provide 3-D surface
displacements at individual observation locations, but the spatial
density of GPS sites is usually limited. With an InSAR image, on
the other hand, we can potentially measure the surface displacement
across wide swaths with some tens of meters between single data
points. However, InSAR observations are only sensitive to change in
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distance along the line-of-sight (LOS) of the radar, and thus provide
only one component of the surface displacement vector. Due to the
different viewing geometries of ascending- and descending-pass In-
SAR measurements, one can observe two different projections of the
displacement vector. Wright et al. (2004) demonstrate the advantage
of simultaneously using data from both look directions in narrow-
ing model parameter confidence intervals, with respect to the use of
single interferograms. Beside InSAR and GPS data, offsets between
two SAR images, measured parallel to the radar flight direction (az-
imuth offsets), can provide valuable information about azimuthal
surface movements, which is orthogonal to the line-of-sight dis-
placement vector imaged with InSAR. However, the applicability
of this method is limited to large surface displacements as its noise
level is much higher than for standard InSAR and GPS observa-
tions. In summary, while GPS data are spatially incomplete, they
provide full 3-D surface displacement vectors, and while InSAR
only give a 1-D projection of the surface displacements, they can
provide spatially dense observations. Several authors have therefore
taken advantage of these different data characteristics and combined
the different data sets in source estimations. For example, Johanson
et al. (2006) combined InSAR from different look directions and
GPS in their source imaging of the 2004 Parkfield earthquake. In
a study of the 1999 Hector Mine earthquake Jónsson et al. (2002)
used, in addition to GPS data, ascending and descending InSAR
data, azimuth offsets for the source imaging.

The way one combines different geodetic data sets, such as In-
SAR and GPS, can significantly influence the result of source model
estimations. A variety of data weighting approaches has been pub-
lished, which include using no specified weights or equal weights
(e.g. Wright et al. 2003; Funning et al. 2007), arbitrary weights for
InSAR (e.g. Delouis et al. 2002; Árnadóttir et al. 2004), weights
that minimize the misfit (e.g. Schmidt et al. 2005), weights that re-
flect the area each data point represents in subsampled InSAR data
(e.g. Simons et al. 2002; Lasserre et al. 2005), weight factors based
on the data error variance (e.g. Jónsson et al. 2002; Pedersen et al.
2003), and data weights based on both the data error variance and
covariance (e.g. Fukushima & Cayol 2005; Lohman et al. 2005).
Only the last two approaches quantitatively consider the data quality
of the independent data sets, but since InSAR and GPS data exhibit
correlated data errors (Hanssen 2001), using only the variance is
not an adequate description of the data errors. Data weights that
also account for the data error covariances do not only balance the
independent data sets with respect to one another, but also each sin-
gle data point consistently across the entire data set. Consistently,
because the complete representation of data errors enables the prop-
agation of the error structure through the different processing steps,
such as data subsampling that commonly is carried out for InSAR
data.

The weighting based on the data errors characteristics requires
an empirical estimation of the apparent error structure. The error
of GPS displacements is often estimated from the variance of re-
peated measurements, which is not applicable in case of InSAR.
A few different methods have been used to retrieve estimates of
the autocovariance of data errors in interferograms. Hanssen (2001)
found the characteristics of InSAR errors in many interferograms to
be similar, apart from a scale factor, and to be appropriately repre-
sented by power-law functions according to elementary turbulence
theory. In his approach only this scale factor needs to be estimated
from the interferogram. Knospe & Jónsson (2008) estimated 2-D
covariance functions for InSAR data exhibiting strong anisotropic
atmospheric errors. Lohman et al. (2005) discuss, in addition to
atmospheric errors, the contribution of decorrelation and other ef-

fects to InSAR data errors introduced in the processing, for example,
from filtering and multilooking. In purely empirical autocovariance
functions these effects are included while no assumptions on the
error origin are required.

In this paper we demonstrate the effect of combining different
geodetic data on source-model estimations and the corresponding
model-parameter uncertainties, as well as addressing the role of data
weights. In a case study we use data from the June 2000 Kleifarvatn
earthquake in southwest Iceland. This choice is motivated by the
fact that little is known from field and seismological data about this
event near the city of Reykjavı́k and that the two existing geodetic
source models of this event by Pagli et al. (2003) and Árnadóttir
et al. (2004) are somewhat different. In these two studies descending
InSAR data alone (Pagli et al. 2003), and together with GPS data
(Árnadóttir et al. 2004), were used, resulting in two sets of model
parameters that appear to be significantly different, although no
model parameters uncertainties were reported in these studies. We
complement the previously published data sets by adding ascending
InSAR data with the intention of improving the source model of the
Kleifarvatn earthquake. To find appropriate weights for the three
independent data sets in the source model optimization we estimate
the data error covariances in the interferograms. From these empiri-
cal covariances we also compute synthetic realizations of data errors
and use them to estimate the uncertainties of the optimum model
parameters. We then attempt to reproduce the two earlier source
model results of the Kleifarvatn event (Pagli et al. 2003; Árnadóttir
et al. 2004) to estimate the model parameter uncertainties for these
two case studies. With these results we address several questions,
such as: Are the differences in the source models significant? Can
we improve the Kleifarvatn source model with the use of additional
data? How do the data weights affect the source model estimations?
At last, we also present the first variable slip and rake model for the
Kleifarvatn earthquake.

2 T H E J U N E 2 0 0 0 K L E I FA RVAT N
E A RT H Q UA K E

The Kleifarvatn earthquake occurred on 2000 June 17 on Reykjanes
Peninsula in southwest Iceland, about 20 km south of the city of
Reykjavı́k (Fig. 1). It ruptured a previously unknown fault east of
Lake Kleifarvatn and was a part of a seismic sequence triggered
by the magnitude 6.5 Holt earthquake (Fig. 1), which occurred
77 km to the east in the South Icelandic Seismic Zone (SISZ). Four
earthquakes of that sequence reached magnitudes of 5 or larger:
the Second Holt event, the Hvalhnúkur event, the Kleifarvatn event,
and the Núpshlı́ arháls event (Pagli et al. 2003; Clifton et al. 2003;
Árnadóttir et al. 2004; Hjaltadóttir & Vogfjör 2005). From the
timing of the Hvalhnúkur and Kleifarvatn events, 26 and 30 s after
the Holt main shock, these events are thought to have been triggered
dynamically, as the timing roughly corresponds to the shear wave
traveltime from the main shock epicentre (Antonioli et al. 2006).

The Kleifarvatn earthquake was not felt as a separate event
and remained undetected for about one year. The local seismic
network recorded complex seismograms containing superimposed
wave trains of three M > 5 events, which, along with an unfor-
tunate coincidence of instrument malfunction and exceedance of
the dynamic range at stations installed on the Reykjanes Peninsula,
prohibited standard seismological analysis of the data (Clifton et al.
2003; K. Vogfjör personal communication, 2007). The Kleifar-
vatn event was eventually discovered in ERS interferograms, when
clear coseismic deformation pattern was detected in the vicinity of
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Figure 1. Map of Reykjanes Peninsula showing the Kleifarvatn investigation area (solid box) and the area where InSAR errors were estimated (dashed box)
in UTM coordinates (UTM zone 27V). Shown with stars are the M ∼ 5 earthquake epicentres of the June 2000 seismic sequence: the main shock (‘J17’),
the dynamically triggered Hvalhnúkur (‘H’) and Kleifarvatn (‘K’) events and the aftershocks: the Núpshlı́ arháls event (‘N’), the Second Holt event (‘H2’)
and the June 21 main shock (‘J21’). Open circles mark locations of the campaign GPS sites used in this study. The inset shows the map location in southwest
Iceland (solid box) and the main volcanic and tectonic structures. The on-land spreading segments (black lines), the Northern (NVZ), the Eastern (EVZ), and
the Western Volcanic Zone (WVZ), are connected to the oceanic Reykjanes Ridge (RR) and the Kolbeinsey Ridge (KR) through the southern transform zones
Reykjanes Peninsula (RP) and the South Icelandic Seismic Zone (SISZ) and the Tjörnes Fracture Zone (TFZ) in the north (grey lines).

Lake Kleifarvatn by Pagli et al. (2003). The surface fault rupture
appears to be similar to the other north–south striking, right-lateral
strike-slip faults on both the Reykjanes Peninsula and in the South
Icelandic Seismic Zone (Einarsson 1991; Clifton & Kattenhorn
2006).

The Kleifarvatn event has already been studied twice using
geodetic data sets, resulting in two different fault models, which
both have rectangular planar faults with uniform slip. The first
model by Pagli et al. (2003) is based on a single descending ERS
interferogram, while the second model by Árnadóttir et al. (2004)
was constrained using the same descending interferogram together
with campaign GPS data. What is noteworthy about these models
is their large discrepancy in fault dip (66◦ to the east versus 78◦), as
well as that both models have a shallower fault dip to the east com-
pared to the near-vertical (88◦) distribution of relocated aftershocks
(Hjaltadóttir & Vogfjör 2005) and the established understanding
of the regional faulting style (Einarsson 1991). Other parameters of
the two fault models are similar, except that the second fault model
has somewhat more strike-slip. No estimates of the model param-
eter uncertainties were reported for these models, which makes it
hard to judge whether or not the two fault models differ significantly
from one another.

3 DATA

In the source optimization we use three independent data sets. Two
InSAR images that provide spatially dense information about the
line-of-sight (LOS) projection of the surface displacement field
along both the ascending and descending imaging directions. We
complement the InSAR data with the full coseismic surface dis-

placement vectors at eleven locations measured using GPS and
provided by Árnadóttir et al. (2004).

3.1 InSAR data

At the high latitude of Iceland the ERS swaths are overlapping by
∼65 per cent so that the investigation area can potentially be imaged
from three parallel ascending and another three parallel descending
tracks. However, long winters, limited data acquisitions, and large
orbital baselines limit the number of good image pairs. We formed
a total of eleven coseismic interferograms; seven using ERS-2 data
from ascending tracks and four using data from descending tracks.
For each viewing geometry we chose the interferogram with the
highest quality (Table 1).

The descending InSAR image was generated using radar scenes
acquired on 2 October 1999 and 16 September 2000 and the per-
pendicular baseline B⊥ between the two orbits is only 5 m (Table 1
and Fig. 2). The radar scenes of the ascending interferogram were
recorded on 2 September 1999 and 17 August 2000 (Table 1 and
Fig. 2). Despite its fairly small B⊥ (38 m) and the similar time
span, the resulting correlation of the phase signal is for some reason
lower than in the descending interferogram. We therefore, multi-
looked (complex-value averaged) three adjacent pixels in the range
and azimuth directions of the ascending interferogram, resulting
in less white noise, but also lower resolution. The removal of the
topographic phase and the transformation from radar to geographic
coordinates (geocoding) are based on a digital elevation model with
a resolution of about 25 m. In addition, we applied an adaptive filter
(filter window size 32, filter exponent 0.8) to enhance the signal-
to-noise ratio (SNR) of the interferograms (Goldstein & Werner
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Table 1. Processed ERS-2 interferograms. Interferogram numbers marked
with a star show clear phase shifts in the epicentral region of the Kleifarvatn
event, bold letters denote the interferograms used in the model estimation.

Pass Track Frame Master Slave B⊥ BT

(m) (d)

1 Asc 173 1287 1999/03/27 2000/06/24 360 455

2 Asc 173 1287 1999/06/05 2000/06/24 470 385

3 Asc 402 1287 1998/08/10 2000/09/18 170 770

4 Asc 402 1287 1999/07/26 2000/09/18 410 420

5∗ Asc 402 1287 1999/10/04 2000/09/18 145 350

6 Asc 445 1287 1999/04/15 2000/08/17 100 490

7∗ Asc 445 1287 1999/09/02 2000/08/17 38 350

8∗ Desc 367 2313 1998/07/04 2000/07/08 100 735

9∗ Desc 367 2313 1999/10/02 2000/08/12 100 315

10∗ Desc 367 2313 1999/10/02 2000/09/16 5 350

11 Desc 367 2313 2000/02/19 2000/07/08 45 140

B⊥: perpendicular baseline between the orbits in metres.
BT : temporal baseline between acquisitions in days.

1998). Finally, we used the snaphu software for phase unwrapping,
the statistical-cost network-flow unwrapping algorithm by Chen &
Zebker (2001).

The dominant feature in the interferograms is the deformation
signature of the Kleifarvatn event around the lake (Fig. 2). In the
descending interferogram we observe positive phase shifts (range
increase) east of the lake and negative phase shifts to the southeast.
The pattern in the ascending interferogram is almost antisymmetric
with the largest phase shifts to the west and southwest of the lake.
Such patterns are typical for a right-lateral strike-slip motion on a
north–south striking fault, as the horizontal ground displacements,
combined with alternating uplift and subsidence in the compres-
sional and extensional quadrants around the fault, result in weak
LOS displacement signals on the side of the fault that is farther
away from the down-looking radar. Possible fault surface ruptures
cannot be observed in the InSAR data, due to the near-field decor-
relation (Fig. 2).

Both interferograms span time periods that include 2–3 months
after the Kleifarvatn earthquake and could therefore be affected
by post-seismic deformation. Rapid poro-elastic rebound was ob-
served after the two June main shocks in the SISZ (Jónsson et al.
2003) and it is not unlikely that similar rebound occurred after
the Kleifarvatn event. Post-seismic poro-elastic deformation tends
to act against the vertical coseismic deformation in the near-field,
although its amplitude is much smaller. Therefore, if some poro-
elastic deformation contaminated the coseismic interferograms it
could lead to an underestimation of shallow fault slip in source
modelling.

We attempted to measure the azimuth offset field by estimating
the pointwise mismatch or offsets between two single-look radar
images. The spatially variable offsets in the azimuth direction are
determined by cross-correlating small image patches within the am-
plitude images (Michel 1999). No significant offsets or clear signs of
the fault trace could be found using this method. With the maximum
expected strike-slip on the fault of about 0.7 m (Árnadóttir et al.
2004) and an image resolution of 4.9 m in the azimuth direction,
we are trying to detect a signal that is smaller than 15 per cent of
the resolution cell. Michel (1999) estimated the error of such offset
measurements to be somewhat lower, or around 10 per cent of the
resolution. This, together with the unstable near-field conditions on

Figure 2. Wrapped interferograms in UTM coordinates from (a) ascending
and (b) descending radar images. One colour cycle corresponds to a phase
shift of 2π or 2.83 cm displacement in the near-vertical line-of-sight direc-
tion (grey arrows). The white stars mark the epicentres of the Kleifarvatn
(‘K’) and Núpshlı́ arháls (‘N’) earthquakes.

the ground, implies that we are close to the limits of this technique
in our case.

3.2 Estimating error statistics in InSAR data

Errors in interferograms arise from several different sources. There
are noise sources at the radar instrument itself, on the path of the
radar waves, at the reflecting surface and errors can be introduced
in the processing of radar records as well (Hanssen 2001). Beside
random white noise induced by phase decorrelation, InSAR data
exhibit spatially correlated errors, due to smoothly varying atmo-
spheric signal delays. Therefore, InSAR data errors are particular
for each InSAR image depending on the state of the atmosphere
and the ground surface at the time of the two radar acquisitions.
As a consequence the processing steps and parameters for noise
reduction, like multilooking and filtering, are usually adjusted for
each interferogram.
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Improved source modelling of the June 2000 Kleifarvatn earthquake 393

The final power and structure of the data errors are quality mea-
sures of the processed InSAR images and the estimation of these
InSAR error characteristics is important for two reasons in par-
ticular. With information about the quality of all the data we can
assign meaningful and consistent weights to each data set. Further-
more, we can use the empirical covariances to generate multiple
sets of synthetic data errors, which we can add to the original data,
and through multiple optimizations obtain a distribution of model
parameters. By this, we ‘propagate’ the data uncertainties to fault
model uncertainties (Wright et al. 2003).

We estimate the error variances and autocovariances in an area of
the interferograms where neither deformation signal is expected nor
visible. We assume the error to be stationary, which implies that the
error statistics estimated in non-deforming parts of the images are
the same as in the adjacent deforming areas. The areas chosen for
the error estimation are of about the same size as the investigation
area to capture the whole bandwidth of periods present in the noise
(Figs 3a and b).

We use sample semi-variograms γ̂ (h) to estimate the InSAR
variances and sample covariograms Ĉ(h) to estimate the spatial

Figure 3. Non-deforming parts of the (a) ascending and (b) descending interferograms where the error characteristics were estimated. The areas are limited
by decorrelation, obvious deformation of the surface in the south, and the ocean in the west. (c) Variance (crosses at zero distance), sample covariance (thin
lines) and fitted covariance functions (thick lines) of the noise in the ascending data (grey) and the descending data (black). (d) and (e) Synthetic realizations
of correlated noise from the obtained covariance functions.

correlation in the data (Chilés & Delfiner 1999). The discrete sample
semi-variogram value for distance class hc is:

γ̂ (hc) = 1

2N

N∑
i=1

‖ri −si ‖�hc

[d(ri ) − d(si )]
2, (1)

with N being the number of data-point pairs at locations ri and si

such that ‖ri − si‖ � hc. Thus, when assuming isotropic noise, the
semi-variogram depends only on distance h between data points.
Similarly, the sample covariogram is:

Ĉ(hc) = 1

2N

N∑
i=1

‖ri −si ‖�hc

d(ri ) · d(si ). (2)

When calculating the sample semi-variograms and covariograms,
we first remove an overall linear ramp from the error estimation
image and then pick randomly data-point pairs d(ri ) and d(si ) with
distances h ranging from 40 m to 14 km. We then form the sample
semi-variogram γ̂ (h) and the sample covariogram Ĉ(h) by tak-
ing the average in 100 meter intervals containing about 700 single
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measurements. The data variance is estimated from the level at
which the sample semi-variogram γ̂ (h) forms a sill at distances
larger than the correlation length. In presence of white noise, the
covariance functions therefore have a step at a zero lag (Fig. 3c).

For a continuous description of the covariances we fit func-
tions to the sample covariograms. The covariance is by definition
a positive-definite function and we therefore use function types
ensuring positive-definiteness (Chilés & Delfiner 1999): an expo-
nential decay of the type b · e−h/a to represent the descending co-
variance and an exponential decay complemented by a cosine term,
b · e−h/a · cos( h

c ), to account for the anti-correlation present in the
error structure of the ascending interferogram. For the latter case,
positive-definiteness is limited to parameter values a < c.

The ascending image has lower error variance (15 mm2) than the
descending image (25 mm2), but shows higher autocovariance for
distances smaller than 5 km (Fig. 3c). The reason for the relatively
low ascending variance is that this image was multilooked in the
processing. The estimated covariance functions Casc(h) and Cdesc(h)
are

Casc(h) =
⎧⎨
⎩

15 mm2 , for h = 0

10.8 · e− h
3.1 · cos( h

3.15 ) , for h > 0
,

Cdesc(h) =
⎧⎨
⎩

25 mm2 , for h = 0

8 · e− h
0.79 , for h > 0

.

We use these covariance functions to form the InSAR data covari-
ance matrices and to generate multiple synthetic realizations of
InSAR error images, see Section 4.3.

3.3 Subsampling of InSAR images

The InSAR data as shown in Fig. 2 consist of several hundred thou-
sand data points. As the displacement field is varying smoothly, we
can decimate the numerous phase values without losing important
information. We subsample the unwrapped interferograms with a
quadtree algorithm (Jónsson et al. 2002) to obtain a reasonable
number of data points and good spatial representation of the LOS
displacements. This algorithm subsequently divides the InSAR im-
ages into squares until the phase values within each box do not
exceed a certain variance threshold. The average phase value of
the contributing pixels is then assigned to their focal point. The
algorithm is therefore sensitive to the variability of the phase values
across the area and to possible data gaps.

We used division-thresholds of 81 and 64 mm2 for the ascending
and descending images, respectively, which is significantly higher
than the variance derived from the error estimation (Section 3.2), but
leads to an appropriate representation of the deformation field with
only 634 data points (Fig. 4). Data gaps result from decorrelation,
masking of phase unwrapping errors, and layovers.

The subsampling procedure can be described as a linear opera-
tion. The operator A relates the full data vector dc to the subsampled
data vector d:

d = Adc. (3)

For the Ni pixels averaged in the ith quadtree square, the corre-
sponding Ni values in the ith row of A are equal to 1/Ni , but zero
elsewhere.

Figure 4. Subsampled unwrapped InSAR data from (a) ascending and (b)
descending interferograms showing the LOS displacement of the ground
towards the satellite. The horizontal coseismic GPS displacements vectors
are shown as arrows. The coloured circles give the radar line-of-sight pro-
jections of the GPS displacements.

3.4 GPS data

The Reykjanes campaign GPS network covers the entire Penin-
sula and it was occupied in 1998 and in July 2000 by the Nordic
Volcanic Institute (NORDVULK) and the Icelandic Meteorological
Office (IMO) in collaboration with the Science Institute of the Uni-
versity Iceland (SIUI). Árnadóttir et al. (2004) used results of the
1996, 1998 and 2000 campaigns to infer a model of interseismic
station velocities. They then used the velocities to extract the June
2000 coseismic displacements from the 1998–2000 GPS data. The
estimated variances of the GPS data are 25 and 100 mm2 for the
horizontal and vertical components, respectively (Árnadóttir et al.
2004).

Eleven campaign GPS sites are within our investigation area and
in most cases the coseismic GPS data agree very well with the
InSAR data when projected into the radar line-of-sight direction
(Fig. 4). However, at two stations in the northeast the vertical com-
ponents deviate strongly from the InSAR data, as well as from
neighbouring GPS stations. This suggests a possible error in the
measured antenna height and we therefore do not include the verti-
cal components of these two sites in our analysis.
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Improved source modelling of the June 2000 Kleifarvatn earthquake 395

4 FAU LT M O D E L L I N G

With the combined use of ascending and descending InSAR data
together with GPS data we aim to find an improved fault model of
the Kleifarvatn earthquake. For the Kleifarvatn and Núpshlı́ arháls
events we first assume simple uniform-slip faults and use a nonlinear
optimization approach to find the optimum model parameters. We
also estimate the corresponding model parameter uncertainties. To
compare our results with earlier studies of Pagli et al. (2003) and
Árnadóttir et al. (2004), we simulate these modelling calculations
and estimate their corresponding model parameter uncertainties.
We then discuss separately the influence of additional data and of
different data weights. Finally, we take the obtained fault geometry
and invert for variable slip and rake on the Kleifarvatn fault.

4.1 Data weighting

The data are a compound of data points from two InSAR images
and of campaign GPS displacements and we weight the data based
on their estimated uncertainty. In the fault parameter optimization
we are seeking the minimum of the L2-norm:

‖e‖ =
√

[R(dobs − dpred)]T R(dobs − dpred), (4)

where dobs and dpred are the observed and predicted data vectors,
respectively. The predicted data vector is calculated through for-
ward modelling for a given set of fault model parameters. R is a
weighting matrix and balances the data residual (dobs − dpred) in
the optimization, so that the influence of data points with high un-
certainties and/or correlation is reduced. R is based on the data
variance–covariance matrix with

�−1 = RT R. (5)

The weight of each data point is inversely proportional to the sum
of its variance and its covariances with respect to all other data
points.

The variance–covariance matrix � of the subsampled InSAR
data and GPS is formed from the variance–covariance matrix of
the full data set �c, which is defined by the covariance functions
we estimated for the interferograms in Section 3.2. As the quadtree
subsampling is an averaging procedure, the variance of each sub-
sampled data point in d is lower than the variance of the full res-
olution data in dc and it depends on the quadtree square size. We
propagate �c to � with the subsampling operator A (eq. 3):

� = A�cAT . (6)

�c is such a large matrix (740.000 × 740.000 values) that we
calculate consecutively each element of � from a subset of �c, here
CNi ×N j , containing the covariances between the pixels in each pair
of quadtree squares, di and d j :

�i j = 1

Ni N j

Ni∑
k=1

N j∑
l=1

Ckl , (7)

where Ni and N j are the number of pixels averaged in di and d j , re-
spectively. The diagonal of � (eq. 7, i = j) is therefore the average
autocovariance of the pixels in the quadtree squares themselves and
decreases with increasing number of pixel (or increasing area of
the quadtree square). The off-diagonal values of �(i 	= j) approx-
imately follow Casc(h) or Cdesc(h) (Fig. 3c). Hence, the weights of
data points in densely sampled areas are relatively low, because the
quadtree squares sizes are small and they have many neighbouring
squares at short distances (Fig. 5). Quadtree squares located at the

Figure 5. The weights of the InSAR and GPS data points. The arrow colour
shows the weight of each of the two horizontal components of the GPS data
and the coloured circles the weight of the vertical component.

border of the investigation area or near data gaps have relatively
high weights because of fewer correlated data point neighbours. In
summary, it is the area the subsampled data point is representing
(square size) and its position with respect to other data points that
control its resulting weight (Fig. 5).

In case of quadtree subsampling the point density is irregular
and depends on the local gradient of the deformation signal. This
gradient is usually higher in the near field of the fault and so is
the point density. Disregarding the data autocovariance inherently
increases the weight per area in densely sampled regions, which
holds for all irregular InSAR subsampling procedures. Through the
full propagation of the variance–covariance matrix (eqs 6 and 7), the
assigned variance for a data point representing a small area remains
high, balancing the weight per area across the irregularly sampled
investigation area.

4.2 Nonlinear optimization/uniform slip models

We model the Kleifarvatn and the Núpshlı́ arháls events as two rect-
angular planar faults with uniform slip in a homogeneous, elastic
half-space (Okada 1992), using a Poisson-ratio of 0.28 (Árnadóttir
et al. 2004). Each model is defined by nine model parameters

C© 2008 The Authors, GJI, 176, 389–404

Journal compilation C© 2008 RAS



396 H. Sudhaus and S. Jónsson

Figure 6. Distribution of model costs with four different critical temperatures Tc . Upward bars show the model cost distribution after the simulated annealing
optimization, while downward bars show the improvement after a subsequent Levenberg-Marquardt inversion.

describing the fault location, orientation, dimensions and the mech-
anism. We also account for possible orbit errors and long-period
atmospheric noise by adding plane parameters (3 parameters for
each InSAR image) to the model vector.

To minimize the data misfit (eq. 4) we use a simulated anneal-
ing (SA) optimization approach (Cervelli et al. 2001) that samples
the model parameter space within predefined bounds in search for
regions with low model costs. The SA algorithm progressively sam-
ples these low-cost regions more exhaustively until identifying a set
of model parameters that ideally are close to the global minimum of
the misfit space. Since the algorithm uses a fixed number of model
calls and has a predefined minimum step size in the parameter space,
it can only find a set of model parameters that is near the absolute
model-cost minimum. Therefore, we complement this procedure
with a subsequent derivative-based Levenberg–Marquardt inver-
sion, using the result of the SA optimization as a starting model and
using smaller step sizes to improve the model further.

The performance of the SA algorithm in finding the global min-
imum in a misfit space is controlled by the so called critical tem-
perature Tc and by a time-evolving temperature function, that is,
the cooling schedule. The cooling schedule usually begins with fast
cooling, slowing down near Tc, and then speeding up again after Tc

has been reached. Cervelli et al. (2001) found a Gaussian time-per-
temperature function centred at Tc to be appropriate for SA. In this
case Tc is equal to the mean temperature 〈T 〉. However, using the
fast approach to determine Tc (and thus 〈T 〉) proposed by Cervelli
et al. (2001), we find that a considerably lower 〈T 〉 worked better in
our case, in the sense that the scatter of the final model parameters
decreases as well as their mean model cost (Fig. 6). However, some
far off outliers appear in the model cost histograms, when 〈T 〉 is too
low, and in these cases the algorithm does not escape unfavourable
local minima. We chose a value of 100 for 〈T 〉. The model
cost of 500 solutions then has a narrow distribution without any
outliers.

The SNR for the Kleifarvatn data is not very high, compared
to most other InSAR studies of earthquakes. The deformation is
caused by medium-sized earthquakes and the maximum observed
LOS displacement is less than 15 cm (Fig. 4), while the maximum
error amplitudes are about 3 cm (Fig. 3 top panel). According to

Cervelli et al. (2001), a low SNR results in more minima in the
model-misfit space. We attempted to account for this by deviating
from the Gaussian cooling schedule and making the search more
exhaustive, which we did by using slower cooling after Tc, allowing
for about 20 per cent of extra searching time. The final model-cost
histograms indicate the finite precision of the optimization (Fig. 6)
and they suggest that the global minimum of the misfit space is
located in a broad valley with shallow slopes.

The model fault plane that best explains the measured surface
displacement near Lake Kleifarvatn is NNE striking and almost
vertical (Fig. 7 and Table 2). The fault plane reaches the surface and
extends 6.5 km southwards from the eastern lake shore, near the
earthquake epicentre, with a strike of N5◦E. The modelled mech-
anism is oblique, with dextral strike slip of 0.67 m and a small
amount of normal faulting (0.1 m). Based on the estimated fault
parameters we calculate the moment M0 = μAu and the moment
magnitude MW = 2

3 log10 M0 − 6.03 of the Kleifarvatn earthquake
from the fault plane area A, the static displacement u, and by as-
suming rock rigidity μ = 3 × 1010 N m−2 the resulting moment is
M0 = 7.15 × 1017 N m and the corresponding moment magnitude
close to 5.9.

The majority of the residuals between observed and predicted
data is smaller than 2 cm (Fig. 7), that is, comparable to the mag-
nitude of the data errors (see Fig. 3). However, systematic data
residuals are visible in the near field that likely result from slip
variations along the fault and therefore cannot be explained by this
simple uniform-slip model.

The deformation signal of the Núpshlı́ arháls event is small in
comparison with the Kleifarvatn event and we cannot reliably de-
termine its source parameters due to the superposition of the two
deformation signals. Therefore, we put tight bounds on the location
of the smaller event and fixed its strike to 12◦ (K. Vogfjör personal
communication, 2007) to stabilize the optimization. Similar to the
Kleifarvatn event, the Núpshlı́ arháls is not well represented by a
simple fault model as significant residuals remain. However, the
lack of data in the near field hampers a more detailed analysis of
this event. Moreover, seismological investigations in this case are
pointing to a more complex source mechanism than a planar failure
(K. Vogfjör personal communication, 2007).
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Figure 7. Model predictions of the best-fitting models for (a) the ascending and (b) the descending LOS and GPS displacements. Surface projections of the
optimal fault planes are plotted in magenta while the thick magenta lines mark the fault-plane upper edges. The residual between the observed data (Fig. 4)
and the model predictions are shown in (c) for the ascending and in (d) for the descending InSAR data and GPS.

Table 2. Fault parameters of the Kleifarvatn and Núpshlı́ arháls earthquakes from nonlinear optimizations assuming uniform slip (this study and earlier
publications). Fault locations are in UTM coordinates (UTM zone 27V). Negative dip-slip values indicate normal faulting, positive values thrust faulting. The
cited values of Pagli et al. (2003) refer to their ‘N-2’ solution. For the Kleifarvatn earthquake the uncertainties are given as well. The strike of the N event was
fixed.

Length Width Depth Dip Strike Easting Northing Strike-slip Dip-slip
(km) (km) (km) (deg) (deg) (km) (km) (m) (m)

K – best models
This study 6.4 5.5 0 83E 4.7 452.57 7086.65 0.67 −0.10
Árnadóttir et al. (2004) 6.0 5.3 0 77E 4 452.29 7086.12 0.7 −0.11
Pagli et al. (2003) 5.9 6.1 0 67E 2.5 452.0 7086.46 0.56 −0.11

95 per cent confidence intervals (6.2; 6.8) (4.8; 6.5) (0; 0.1) (76E; 87E) (2.5; 6.3) (452.29; (7086.5; (0.59; 0.72) (−0.12; −0.08)
452.77) 7086.84)

N – best models
This study 3.6 9.8 0 74E 12a 444.28b 7087.32b 0.20 0.05
Árnadóttir et al. (2004) 3.2 4.2 0.3 70E −4 444.43 7085.95 0.25 0.05
Pagli et al. (2003)(N2) 3.5 4.0 1.1 35E −10 443.94 7086.26 0.24 0.19

aFixed parameter (see main text, Section 4.2).
bTight bounds (see main text, Section 4.2).

4.3 Estimation of fault model parameter uncertainties

The uncertainties of the inferred model parameters are estimated by
using the same optimization procedure and multiple data sets that
have been modified by synthetic noise. First, 2500 realizations of

data errors were generated, εsynth,i , based on the GPS and InSAR
data covariance matrices. We then added each realization to the
original data and eq. (4) becomes:

‖e‖ =
√

(R(dobs + εsynth,i − dpred))T R(dobs + εsynth,i − dpred). (8)
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From tests we know that in our case the difference between the
empirical covariance and the covariance of two superposed realiza-
tions of correlated noise is negligible. Hence, the weighting of the
modified data sets based on the empirical covariance functions is
still meaningful.

We carried out multiple fault parameter estimations of the Klei-
farvatn event using all the modified data sets and formed histograms
of the resulting model parameters (Fig. 8, top row). From the his-
tograms we find the corresponding 95 per cent confidence bounds
of the model parameters, or strictly speaking the 0.025- and 0.975-
quantiles of the samples. The fault parameter values of the optimal
model correlate well with the histogram maxima (Fig. 8), except for
the fault strike. For the fault width and the fault dip we observe rel-
atively broad histogram peaks and some degree of asymmetry. The
scatter plots in Fig. 8 show how one model parameter may depend
on another parameter and thus enable visual detection of parameter
trade-offs. Here, we observe parameter trade-offs between fault slip,
fault width and fault dip.

Compared to the earlier fault models of the Kleifarvatn earth-
quake by Pagli et al. (2003) and Árnadóttir et al. (2004), our opti-
mal fault is significantly longer and therefore extends farther to the
north. The fault length of both of the earlier models lies outside the
95 per cent confidence interval. In addition, our fault has a steeper
dip and more slip than the earlier fault models.

4.4 Simulation of earlier fault model optimizations

We suspect model parameter trade-offs, for example, between fault
slip and dip, to cause the discrepancy between the three source
models of the Kleifarvatn event: Model 1 (Pagli et al. 2003), Model 2
(Árnadóttir et al. 2004), and our model (Fig. 8 and Table 2). Model
1 is based on a single descending InSAR image, from which we
can only measure the 1-D LOS projection of the 3-D coseismic
displacement field. Model 2 is based on the same InSAR data as
well as on several 3-D coseismic GPS displacements and it should
therefore be less affected by model parameter trade-offs than Model
1. We expect our fault model to be even less sensitive to parameter
trade-offs as it is also based on ascending InSAR data (Wright et al.
2004).

The final result of geodetic source optimizations can also be in-
fluenced by many methodological factors, such as by choices made
in the data processing, InSAR data subsampling, data weighting, the
particular optimization approach, and by assumptions made about
the forward model. These assumptions and methods are similar in
all the three studies of the Kleifarvatn event (Pagli et al. 2003;
Árnadóttir et al. 2004, and this study), except for the data weight-
ing. Therefore, the three fault models may possibly differ due to this
methodological difference as well as due to the fact that different
data sets were included in the fault model optimizations.

No model parameter uncertainties or trade-offs were reported for
Model 1 and Model 2 (Pagli et al. 2003; Árnadóttir et al. 2004).
Therefore, we here simulate these optimizations to estimate param-
eter uncertainties and dependencies of these models in the same way
as we described in Section 4.3. The similarity of the applied methods
and assumptions made in the optimizations enable the simulations
where we separately investigate the influence of additional indepen-
dent data (this section) and the impact of data weights accounting
for the correlation of data errors (next Section 4.5).

Originally, Model 1 and Model 2 were estimated considering the
data variances only (Pagli et al. 2003; Árnadóttir et al. 2004). To
simulate these fault model optimizations we build the data variance

matrix from the variance we estimated in the descending interfero-
gram of 25 mm2 and the variance of the GPS data. For comparison,
we also apply this variance based weighting in our set-up and refer
to it as simulation of Model 3. The low variance we obtained in our
error analysis for the multilooked ascending image (Fig. 3) does not
reflect its poor quality and we therefore estimate the full-resolution
variance by extrapolating the autocovariance function resulting in
46 mm2. Apart from these changes in the data weighting we run
the simulations of Model 1 and Model 2 with adjustments in the
parametrization of the SA algorithm and with a simplified forward
model. In the SA algorithm we adapt the mean temperature 〈T 〉
for each optimization set-up, since 〈T 〉 depends on the input data
and the weighting matrix R. For simplicity, we fix the parameters
(see Table 2) for the smaller Núpshlı́ arháls event (Figs 1 and 7),
despite the fact it was a part of the optimization in all three studies,
as its signal is not easy to explain with a simple fault model and
the optimization calculations tend to become unstable (Pagli et al.
2003).

In Fig. 9, we show the distributions of four selected model pa-
rameters resulting from the simulations when the autocorrelation of
data errors in the data weighting is neglected. The Kleifarvatn fault
model parameters published by Pagli et al. (2003) and Árnadóttir
et al. (2004) fall within the corresponding parameter histograms
from the simulation of Model 1 and Model 2 (Fig. 9). The older
fault model estimations thus seem to be reproducible, which is a
requirement for drawing meaningful conclusions from this case
study.

It is clear that increasing the number of independent data sets
improves the precision of the estimated fault parameters. However,
despite the fact that GPS data are typically an important complement
to InSAR, because they provide full 3-D displacement vectors, we
see here only a limited influence on the model parameter estimates
(Fig. 9). For instance, the fault dip values for Model 1 show a broad
distribution of more than 30◦ that only slightly improves by adding
the GPS data (Model 2). Including the ascending InSAR data, on
the other hand, narrows the histogram by a factor of three (Model 3).
The weight of each GPS data point is similar to the InSAR data point
weights, so the InSAR data dominate the optimization due to their
large number. The effect of adding the ascending data is therefore
larger, contributing significantly to the reduction of fault model pa-
rameter uncertainties represented by the histograms (Fig. 9) and the
effective suppression of model parameter trade-offs, for example,
between fault dip and strike-slip.

The fault width appears to be poorly constrained in all three
cases (Fig. 9) and the histograms are bimodal, revealing the exis-
tence of two almost equally likely fault model solutions. The second
favourable fault model, with a relatively large amount of slip on a
small-width fault, can not be ruled out by adding the ascending In-
SAR data. The large width of most the model parameter histograms
demonstrates the importance of estimating fault model uncertain-
ties, particularly when the observations are of a low SNR and are
limited in their number and/or spatial extent.

4.5 Model parameter uncertainties using different
data weights

The data weighting has a strong influence in the fault model esti-
mation and we therefore separately test the impact of different data
weights on the fault model optimizations and the influence of ad-
ditional input data. We compare the result from the simulation of
the fault models using data weights based on the variance matrix
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Figure 8. Model parameter distribution of the Kleifarvatn event from 2500 independent optimizations with added correlated noise. Top row: Histograms of
model parameters with 95 per cent confidence interval bounds (red lines). The thick coloured lines mark values of the best models obtained in this study (blue),
by Árnadóttir et al. (2004) (green) and by Pagli et al. (2003) (orange). From the scatter plots (rows 2–9) the 2-D distribution of parameter-pairs can be observed
to find possible trade-offs between parameters. The bottom-left distribution shows that the magnitude of the Kleifarvatn event is tightly constrained.
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Figure 9. Distribution of selected fault-model parameters from 200 fault optimizations assuming uncorrelated data errors in the data weighting: simulation of
Model 1 (top row), Model 2 (second row) and Model 3 (third row). The black bars show the corresponding published model parameter values (Table 2). Scatter
plots (rows 4–6) show the correlation between the model parameters. Large dots mark the published fault parameter values: simulation of Model 1 (orange),
Model 2 (green) and Model 3 (blue).

only (Model 1, Model 2 and Model 3, Section 4.4) with simula-
tions considering also the data covariances in the data weights (sec-
tion 4.2). The distribution of fault parameter values resulting from
the latter simulations reflect the uncertainties of fault models we
call Model 1∗, Model 2∗ and Model 3∗.

When the full data autocovariances are included the simulation
results show improved precision in the estimates of all model pa-
rameters (Fig. 10), compared to the model estimations using only
variance matrices. Most remarkable is the suppression of one of the
bimodal histogram peaks for fault width, now showing a clear pref-
erence for a fault model with a width of more than 5 km (Fig. 10).
Beside the more precise fault model estimations, we can also de-
tect a shift of the parameter histograms for Model 2∗ and Model
3∗, with respect to Model 2 and Model 3, for example, for the
slip-components (Fig. 10). We find that this shift in fault slip is
accompanied by shifts in the estimates of the orbital ramps also
and is likely caused by the reduced InSAR data weights near the
centre of the interferograms. This shift is also noteworthy because
fault slip parameters of most Model 3∗ solutions fall outside the
95 per cent confidence interval of Model 3. This reveals that the

model parameter uncertainties outlined by the Model 3 histograms
do not reflect the true uncertainty.

The introduction of autocorrelated data errors has a pronounced
positive effect on the precision of the model parameter estimates for
all simulations (Fig. 10). The influence of GPS is clearly visible and
stronger than in the variance-weighted simulations. The data point
weights of the GPS measurements (Fig. 5) are larger than those of
the adjacent InSAR points. We find that taking autocorrelated data
errors into account is not only a more consistent way to balance
independent data sets in fault model optimizations, but also leads
to better results. We link this obvious improvement to the way the
data are subsampled. The quadtree subsampling is an irregular sub-
sampling approach that samples certain regions of an image more
densely to capture details of the deformation signal. When we do
not balance the InSAR data against each other, but allocate equal
weights to them, areas with a high point density will be overrep-
resented in the model cost evaluation. Densely sampled areas are
usually near the fault, but there is no physical reason to focus on near
fault areas, while putting lower weights on the surrounding regions.
We show that the covariance weighting circumvents this problem
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Figure 10. Comparison of selected fault parameters from 200 fault optimizations applying diagonal covariance matrix (light colours; same as Fig. 9) and full
covariance matrix (dark colours): simulation of Model 1(∗) (top row), Model 2(∗) (second row) and Model 3(∗) (third row). Scatter plots (rows 4–6) show the
corresponding correlation between the model parameters (full data covariance matrix) together with the published fault parameters (large dots). Grey ellipses
outline 95 per cent confidence from 2500 optimizations including the Núpshlı́ arháls event (Fig. 8).

(Fig. 10), because the weight per area becomes more even. The ‘far
field’ information is thus better represented in the optimization and
the results become more stable.

The good agreement of the 95 per cent ‘confidence ellipses’
drawn from the 2500 original optimizations (Fig. 8) with the simu-
lation of Model 3∗ validates our simplified one-fault optimizations
and the limited number of 200 runs in each simulation. The fault
model parameters estimated by Pagli et al. (2003) lie outside these
confidence regions in most cases, especially the fault dip. From our
analysis we therefore reject the Kleifarvatn fault model estimated
by Pagli et al. (2003). The fault model estimated by Árnadóttir et al.
(2004) also differs significantly from our optimal model, particu-
larly in fault length. But considering that we only take data errors
into account, we stand back from rejecting it based on the results
given in Fig. 8 and Table 2.

4.6 Variable slip and rake model

Assuming uniform slip on fault planes is a simplification since
heterogeneity in fault displacement and rake is observed on all

scales of faults (Mai & Beroza 2002). Also, systematic near-field
residuals of the uniform-slip model (Figs 7c and d) suggest that a
uniform-slip model is too simple. Therefore, we use the fault plane
estimated in Section 4.2, extend its length to 10 km, its width to
8 km, and divide it into 10 × 8 subfaults to estimate variations in
slip on the fault.

Taking the locations and orientations of the Núpshlı́ arháls fault
and the Kleifarvatn subfaults, we solve for the slip, which constitutes
a linear inverse problem:

Rd = RGm, (9)

where G is the Green’s function relating the data vector d to the
model vector m, and R is again the weighting matrix. In our specific
case the two orthogonal components of fault slip m are related to
the observed surface displacement d through G, defining the fault
plane and the medium.

The model parameters defining the geometry of the fault plane
carry considerable uncertainty, as we showed in Section 4.3. There-
fore, we solve eq. (9) not only for the observed data dobs and the
optimum plane parameters incorporated in the Green’s function, G0,
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Figure 11. Trade-off-curve between fault-slip roughness and model cost.
The dots mark ‘stable’ slip models while ‘unstable’ (see Section 4.6) models
are marked with open circles.

to obtain our optimum distributed slip model m0:

Rdobs = RG0m0 (10)

but we also solve the problem for the N data sets modified with
synthetic data errors εsynth,i and their corresponding optimum model
plane (Fig. 8) applied in the Green’s functions Gi :

R(dobs + εsynth,i ) = RGi mi , i = 1, . . . N . (11)

The distribution of mi will reflect the sensitivity according to vari-
ations of the two fault planes and the data noise εsynth,i .

We apply the Fast Non-Negative Least Square (FNNLS) algo-
rithm of Bro & de Jong (1997) to the problem in eq. (10). The
non-negativity of the algorithm allows the rake to vary only 90 de-

Figure 12. Total slip and variable rake on the subfaults of the Kleifarvatn earthquake. The small white points represent the solutions mi using all 2500 fault
models from source optimizations with modified data sets. The fault plane of the uniform slip model is outlined in grey.

grees and we rotate the local in-plane coordinate axes to allow rake
variations (±45◦) about the estimated rake of the uniform source
model (189◦). We introduce correlations between slip on neighbour-
ing subfaults through a smoothing operator D (Jónsson et al. 2002),
with the balance between data misfit and fault slip smoothness con-
trolled by factor κ . The coupled system of equations becomes:[

dobs

0

]
=

[
G0

κD

]
m0, (12)

[
dobs + εsynth,i

0

]
=

[
Gi

κD

]
mi , i = 1, . . . , N . (13)

We compile a cost-roughness trade-off curve of our specific case
by inverting eq. (12) multiple times using different values of κ

(Fig. 11). One can select the appropriate value of κ from where
the misfit stops decreasing strongly with increasing slip roughness.
In our case we find that high roughness causes solution instability,
such that some near-zero slip values become negative. We chose
κ = 2.2 (Fig. 11) because it corresponds to the start of the trade-off
curve bend and ensures a high degree in solution stability for all
N + 1 inversion problems (eqs 10 and 11).

The optimum source model m0 has a concentration of fault slip
of more than 60 cm in the upper central part of the fault, extending
from the surface down to 3 km depth (Fig. 12). In the southern part
of the fault the total displacement decreases from the surface to
very small displacements below 5 km depth, while in the central
and northern parts of the fault the fault slip decreases only slightly
below 4 km. In summary, significant fault displacement of above 10
cm is restricted to the area of the simple rectangular fault model.

The uncertainties of m0 are outlined by the set of solutions mi

(Fig. 12). At depths between 1 and 4 km the fault slip shows the
smallest confidence intervals, indicating that it is constrained to
within about 20–30 cm. The slip constraints for the shallowest
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part of the fault are slightly poorer than at the centre of the fault
plane. The lateral extent of the rupture is well determined through
sharply decreasing slip with little scatter in the solutions mi . For
the deeper and central part of the fault the slip only decreases
to a value about 10–20 cm, while the relative uncertainty of the
displacement increases strongly with depth. At these subfaults the
scatter of mi clearly outlines the parameter bounds of the FNNLS
algorithm along the axes of the local rotated coordinate system, so
there we have very little fault slip resolution.

5 D I S C U S S I O N A N D C O N C LU S I O N S

With the use of additional InSAR data from an ascending track,
together with descending InSAR and GPS data, we have located the
previously unknown fault east of lake Kleifarvatn more precisely
than the two earlier geodetic source studies by Pagli et al. (2003)
and by Árnadóttir et al. (2004). We have shown that the differences
between the three source models (Pagli et al. 2003; Árnadóttir et al.
2004, this study) primarily arise from model parameter trade-offs.
These trade-offs are effectively reduced when using InSAR data
from the two viewing directions. We distinguish this improvement
of using additional data from the impact of using different data
weighting in the source model estimation, for which we also find
considerable fault parameter estimation improvement when consid-
ering correlated data errors.

The improvement of fault model precision is not the only good
argument for a weighting approach based on the full data covariance.
This implementation of empirical data error characteristics is also
a consistent and a quantitative way to combine independent data
sets. We further note that we reduce the bias of the InSAR data
subsampling with the strict propagation of the full data covariance
matrix to the covariance matrix of the subsampled data sets. Both
these effects increase the precision of the model parameter estimates
and the reproducibility of the modelling results, which justifies the
effort estimating of the data-error characteristics even more.

Aftershock locations can provide independent information about
the location of the rupture plane. Relocated aftershocks of the
Kleifarvatn earthquake are concentrated at depths between 5.5 and
7 km east of the lake and form a 6 km long, slightly north–northeast
striking lineament, extending from the hypocentre region to the
south (Hjaltadóttir & Vogfjör 2005, Fig. 13). Together with a few
shallow aftershocks they outline a steeply (88◦E) dipping plane.
The accuracy of the hypocentre locations depends on the quality of
the velocity model. The velocity model used for the aftershock re-
localization is of limited resolution leading to large uncertainties,
especially in hypocentre depths, which tend to be overestimated
(Hjaltadóttir & Vogfjör 2005). Therefore, the dip of the estimated
fault plane from aftershocks (88◦E) is rather too large as well and
we consider the difference between these results and our estimation
about the fault dip (Fig. 8 and Table 2) insignificant.

The distributed slip model shows a concentration of shallow
slip at the southeastern lake shore where surface ruptures were
found in the field (Clifton et al. 2003, Figs 12 and 13). Some
of these rupture traces form small pressure ridges, pointing to a
localized component of thrust faulting in the shallow part of the
fault, which is indicated in our geodetic source model (Figs 12
and 13). Furthermore, shallow fault slip extends beneath the lake
to its northern shore near the epicentre (Fig. 13). Clifton et al.
(2003) found here another concentration of surface ruptures and
hypocentres of relocated aftershocks also show an increased activity
in the north (Hjaltadóttir & Vogfjör 2005). The fault slip of our
distributed slip model is somewhat small (0.3 m) in the northern

Figure 13. Fault model surface traces of the Kleifarvatn earthquake inferred
from geodetic source modelling and lineament of relocated aftershocks.
The green and yellow dashed lines show the surface trace of the source
models after Pagli et al. (2003) and Árnadóttir et al. (2004), respectively.
The multicoloured stripe shows the trace of our model plane, where the
colour represents the total slip on the shallow subfaults. The dashed circles
outline the area of surface ruptures observed by Clifton et al. (2003). The
dashed dark-blue line gives the outline of aftershock locations projected to
the surface (Hjaltadóttir & Vogfjör 2005), and the star the epicentre of the
Kleifarvatn event.

part and the uniform slip model does not extend to the northern lake
shore. The source models by Pagli et al. (2003) and by Árnadóttir
et al. (2004) have even smaller fault extensions and the match to
observations in the field and from seismology is worse than for our
new model.

From our estimated parameter uncertainties we can reject the
source model by Pagli et al. (2003) as being a realistic representation
of the Kleifarvatn fault. The dominant discrepancies are the fault
dip, the fault length and the slip on the fault (Fig. 8). The difference
between our source model and the model by Árnadóttir et al. (2004)
is only significant for the fault length (Fig. 8). Since our estimation
of the model parameter uncertainties is solely based on the estimated
data errors, we stand back from rejecting this model.
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