Faculté des sciences

Climate oscillations and species interactions: large-scale congruence but regional differences in the phylogeographic structures of an alpine plant and its monophagous insect

Borer, Matthias ; Arrigo, Nils ; Buerki, Sven ; Naisbit, Russell E. ; Alvarez, Nadir

In: Journal of Biogeography, 2012, p. -

Aim To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host plant as a case study.Location The Alps.Methods We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect)... Plus

Ajouter à la liste personnelle
    Summary
    Aim  To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host plant as a case study.Location  The Alps.Methods  We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern.Results  Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago.Main conclusions  Species-specific interactions are scarce in alpine habitats because glacial cycles have limited the opportunities for co-evolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at a large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host dependence of the beetle, which locally limits the establishment of dispersing insects.