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We provide an explicit example of a function that is homogeneous of degree one, rank-one
convex, but not convex.

1. Introduction

Let R2 x 2 denote the set of 2 x 2 real matrices and let / : R2 x 2 -»R be a continuous
function that is homogeneous of degree one, i.e. it satisfies the following condition

/((£) = t/(£), for every r ^ 0 a n d £ e R 2 x 2 . (1.1)

We would like to discuss the convexity properties of such functions. In addition to
the usual notion of convexity, we need the following definition:

DEFINITION 1.1. /:R2 X 2->R is rank-one convex if

for every t e [0 ,1 ] , £, f?eR2x2 with det (£-»/) = 0 (where det stands for the
determinant of the matrix).

Obviously any convex function is rank-one convex, while there are rank-one
convex functions (such as /(£) = det £) which are not convex. Surprisingly, if one
imposes condition (1.1), then it is not clear that the two notions are not equivalent.

The first person to produce a counterexample was Miiller [4], but in a very
indirect way. In fact his result gives more than this (see below). Dacorogna [2] then
showed that if, in addition to (1.1), / is assumed to be rotationally invariant (in
particular if /(£) = g(\£\, det £), where |£,\ denotes the Euclidean norm of the matrix,
i.e. \^\2 = ^fj=iifj), then any rank-one convex function is necessarily convex. Thus
it remained an open question to find an explicit example of a function that is
homogeneous of degree one and rank-one convex, but not convex. We produce here
a family of such examples. Before describing our results, we should emphasise that

* This research was supported in part by a grant from the Fonds National Suisse pour la Recherche
Scientifique.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500023180
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 15:20:03, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500023180
https:/www.cambridge.org/core


948 B. Dacorogna and J.-P. Haeberly

these functions and notions are important in the Calculus of Variations (see [1]).
There, the notion of quasiconvexity plays the central role. It is well known that
convexity implies quasiconvexity and quasiconvexity implies rank-one convexity.
Miiller's example gives in fact an example of a quasiconvex function that is not
convex. It is not presently known whether our examples are quasiconvex.

We now introduce some notation. It will be more convenient to identify R2 x 2 with
R4 and, therefore, a matrix £ will be written as a vector (£u £2, £3, £4). We then let

1 = 1

Note that \ is just the gradient of det £,. Consider the matrix E e R4 x 4 representing
the quadratic form det. It is denned as

/o o o i
0 0 - 1 0

0 - 1 0 0

\ l 0 0 0

Then

££ = I and det £, =

Finally, our counterexample will be of the form

E =

if <S = 0,

where y 2; 0 and M e R4 x 4 is a symmetric matrix whose eigenvalues are

We will see in the following theorems that choosing M and y appropriately will
produce rank-one convex functions, / , which are not convex.

THEOREM 1.2. Let f, M and y be as above. Then

f is convexoy ^ yc,

— 2A*I > 0,

+ co

REMARK 1.3. It will be obvious from the proof that if y ̂  0, then / is convex if and
only if

1

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500023180
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 15:20:03, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500023180
https:/www.cambridge.org/core


Convexity properties of homogeneous functions 949

THEOREM 1.4. Letf M and y be as above, and let <ph 1 rg i ̂  4, denote an orthonormal
set of eigenvectors corresponding to the ̂ ; 's. Assume further that M commutes with E.
Then two cases can happen:

CASE 1. / / d e t q>4 = —det q>u then

f is rank-one convexof is convex.

CASE 2. i f det <p4 = det q>u then

f is rank-one convex oy S )V>

where

and

min< —,—> if yt >0 and y2>0,
(Yi li)

if )>! ^ 0 and y2 > 05

V + co '/ 7i = 0 a n^ 72 =

The following corollary is an immediate consequence of the two theorems.

COROLLARY 1.5. Consider the function

(1) Let M be as in Theorem 1.2. Then

g is convexol\Xi — fi4 ̂  0.

(2) Let M be as in Theorem 1.4 with det <p^ = det (f>4. (If det ^ = —det ^4, see the
convex case.) Then

g is rank-one convexo <

(Hi + Hi ~ H4 ^ 0

and

0.

REMARK 1.6. It is interesting to compare the corollary with the case of quadratic
forms. It is well known that the function

;̂ O is convex <>Hi ^ 0.

Under the hypotheses of Theorem 1.4, one can show by a similar but simpler
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q is rank-one convex o

^ 0 if det ^ = — det <p2,

_ 0 if det (p1 = det <p2.

REMARK 1.7. Similar results as in Theorem 1.4 can be derived for y < 0. More
precisely,

u4- 2

and
/ is rank-one convex «• <

REMARK 1.8. The fact that in Theorem 1.4 we have to add the extra hypothesis on
M just means that yr depends not only on the eigenvalues of M, but also on the
eigenvectors, while yc depends only on the eigenvalues.

REMARK 1.9. With the help of the theorems we may now give an explicit example.
Let

h o o i\
0 6 2 0

0 2 6 0

1 0 0 9

M =

its eigenvalues are

V2

and

/

= 4 ^ \i2 = fi3 = 8 _ n4 = 10, with eigenvectors

1 1
-=(0 ,1 ,1 ,0) ,
V2

1 , -1 ,0 ) , ^ = -^= = y(l,0,0, -1).

It commutes with E and

Therefore, choosing y e (j, 1] gives the explicit counterexample.

REMARK 1.10. Theorems 1.2 and 1.4 should be compared with [2] when / is
rotationally invariant. In particular, if M = E, i.e.

det i ., „ _

if 5 = 0,
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Convexity properties of homogeneous functions 951

we find (as in [2]) that

= Yr= 3»

since the eigenvalues are /̂ 1 = \i2 = — 1 and /i3 = fi4 = 1.

REMARK 1.11. Of course our results do not settle the quasiconvexity of/. It is easy
to see that / is quasiconvex if and only if y ̂  yq for a certain yq. By the general fact,
we have ycf^yqf^yr- The question is to decide whether yq = yr or yq<yr. If equality
holds, then we would have an explicit example of a quasiconvex function satisfying
(1.1) which is not convex (as in [4]). Obviously, the second possibility would be
much more interesting and would settle the long-standing question of the equivalence
of quasiconvexity and rank-one convexity (see [5] for a counterexample in higher
dimensions). Our numerical results, presented in a forthcoming paper [3] , tend to
show that yq = yr.

2. Proof of Theorem 1.2
We start by computing the Hessian of / at £ # 0. Observe first that

m y

\z\ y

We then have

where 5xp is the Kronecker symbol. Thus, we get that, for any £, # 0,

\M2

(2-1)
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It is clear that / will be convex if and only if the quadratic form in (2.1) is positive
for every £ # 0 and A. The fact that / is not differentiable at 0 does not cause any
trouble in this case. Therefore

f 4 d2f(£) 1
/ isconvexoinfinN £ -£± A. A, = <V2/(£)A; A> l ^ 0.

Since the quadratic form is homogeneous of degree — 1 in £, we may assume that
|£| = 1. We may also write

X = t£ + srf, with t,se R, \n\ = \, and <£; /7>=0.

We then obtain that

So, coming back to the quadratic form, we have for |<j;| = \rj\ = 1,

We finally get that

/ i s convex<*• inf {1+y[2<Mj;;?/>-<M& £>]} ^ 0 . (2.2)
l«l = lnl = i

<&<!> = 0

Since y ̂  0, it is clear that the minimum is attained when <(Mf/; rf) is minimum and
<M<̂ ; <̂> is maximum, i.e. when r\ = q>l (the eigenvector corresponding to the smallest
eigenvalue fit) and £, = (p4 (the eigenvector corresponding to the largest eigenvalue
jU4). Thus

/ is convexo 1 + y{2ni — fi4) 2:0.

The conclusion of the theorem follows at once. One also notices that if y ̂  0, then
the same argument leads to

/ i s convexol +y(2/i4 — /^SrO. •

3. Proof of Theorem 1.4

We divide the proof into three steps.

Step 1. It is clear that, even though / is not differentiable at 0, we have

/ is rank-one convexo inf inf {<V2/(<J)A; A>} S; 0.

Writing A = t£ + sr\ with t, s e R, <£; rj} = 0, |£| = |?/| = 1, we find as in the proof of
Theorem 1.2 that (see (2.2)) / is a rank-one convex if and only if

t,seR with t2 + s2 # 0 } ^ 0 .

Since y 2; 0, we finally deduce that if

m = inf {2(Mtr, n) - <M£ O : |£| = |//| = 1, <^; ^> = det (t£ + sr,) = 0,

t, s e R with t2 + s 2 / 0 } , (3.1)
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then

/ is rank-one convexo 1 + ym 2: 0. (3.2)

(If y ̂  0, then one has to compute, analogously, the sup in (3.1).) We will show in
the next steps that, in case 1,

m = 2fi1-n4, (3.3)

while in case 2,

m = rain •{ nt + n2 —/i4, 2^ — > . (3.4)

Combining (3.2), (3.3), and (3.4) will then give the claimed result.

Step 2. Since M commutes with E, we necessarily have

for 1 ̂  i ̂  4. Therefore, cases 1 and 2 do cover all possibilities, since two of the det <pt

are +j and two are —\.
We then immediately get the theorem in case 1. Indeed, choose r\ = <p^, £ = q>4,

s = t = l, and observe that they are admissible for the minimisation in (3.1). This
choice leads to

Hence, we get (cf. Theorem 1.2)

/ is rank-one convex => 1 + y(2fit — fi4) S: 0=>y ^ yc.

Since, by Theorem 1.2, we have

y ̂ y c =>/ i s convex

and, trivially, / convex implies that / is rank-one convex, we have indeed established
the theorem in case 1.

Step 3. From now on, we will assume that det (pl = det <p4, so that the choice n = <pt

and £ = q>4 is no longer admissible in (3.1) for any choice of s, t e R with s2 + t2 ^ 0.
We will prove that the right choice is either

1
n = —j= ((pl + <p2), £ = <p4, and t = 0, s = 1,

or

= <pu £ = -j= {(p3 + (p4), and t = \, s = 0.

Let us write any £, n e R4 as
4
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If (3.4) holds, this means that for every ^ e R 4 , s , t e R with s2 + t2 # 0 such that

det (ti + sr,) =

we have to prove that

(3.5)

= 0,

or (3.6)

1 i-2\ ^ T

So we now have to show that (3.6) holds whenever (3.5) does. We will transform
(3.6) into more amenable inequalities. Using the facts that \£\ — \q\ = 1, we get that
(3.6) is equivalent to

-nl-nl-nl- Z.D + -nl-nl-nl- Zl) +

or

Rewriting the above inequalities, we find that

; - nl) + (2^3 - i"i

^ o,
or

2(fi4 - -HI Hi

Since fi4 ^ fi3 ^ fi2 ^ jUi, we find that if \x2 = fit or pi4 = n3, then one of the above
inequalities is satisfied. So we may assume that fi3 / fj,4 and jux # \i2.

We transform the inequalities again and get the following formulation, still
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Convexity properties of homogeneous functions 955

equivalent to (3.6):

or

(3.7)

From now on, we proceed by contradiction and assume that there exist £,n,s,t as
in (3.5) but that (3.6) does not hold. This means, using (3.7), that, in addition to
(3.5), £ and n satisfy

,,2 v ,,2
'l>rl

^ ^ i f 3 2 + 2

2̂-/̂ 1

and

— A*3

A*4 A*3

We now use the facts that det (t£ + st]) = 0, (%;n} = 0, and the strict inequalities
above, to get

0 = t\& + ti-i2
2- ti) + s\n\ + nl-nl- nl) -

^2 —

( 7I ^ )
1*4 — Ms

Hence, using the Cauchy-Schwarz inequality on the middle term, we get

0 > [(Ai4 - IH)\S\

which is absurd. Therefore, if (3.5) holds, then (3.6) does also. This concludes the
proof of the theorem. •
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