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We examine the driving forces behind farm households’ decisions to adapt to climate change, and the
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At the core of the ongoing debate regard-
ing the implications of climate change in
sub-Saharan Africa, there is the issue of
food security. In this part of Africa, mil-
lions of small-scale subsistence farmers, gen-
erally with less than one hectare of land,
produce food crops in extremely challeng-
ing conditions. The production environment is
characterized by a joint combination of low
land productivity and harsh weather condi-
tions (e.g., high average temperature, scarce
and erratic rainfall). These result in very
low yields and food insecurity (Di Falco
and Chavas 2009).

Food security is a broad concept. It encap-
sulates availability, access, and utilization of
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foodstuff.1 In this paper we focus on one
of the most important determinants of food
availability in the Ethiopian subsistence farms
context: food productivity (FAO 2002). The
availability (and to some extent the access)
of food is crucially determined by the produc-
tivity of these farm households. They account
for about 95% of the national agricultural out-
put, of which about 75% is consumed at the
household level (World Bank 2006). With low
diversified economies and reliance on rainfed
agriculture, sub-Saharan Africa’s development
prospects have been closely associated with
climate. For instance, the World Bank (2006)
reported that catastrophic hydrological events
such as droughts and floods have reduced
Ethiopia’s economic growth by more than a
third.

Climate change is projected to further
reduce agricultural productivity (Cline 2007;
Parry et al. 2005; Rosenzweig and Parry 1994).
A plethora of climate models converge in fore-
casting scenarios of increased temperatures for
most of this area (Dinar et al. 2008). The fourth
Intergovernmental Panel on Climate Change
(IPCC) states that at lower latitude, in trop-
ical dry areas, crop productivity is expected

1 For a critical discussion of the different dimensions and metrics
of food security please refer to Barrett (2010),Gregory,Ingram,and
Brklacich (2005), and Jenkins and Scanlan (2001).
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to decrease “for even small local tempera-
ture increases (1–2 ◦C)” (IPCC 2007, p. 11). In
many African countries, access to food will be
severely affected:“Yields from rain fed agricul-
ture could be reduced by up to 50% by 2020”
(IPCC 2007, p. 13). Given these discouraging
prospects, it is no surprise that the identifica-
tion of both “climate-proofing” technologies
and adaptation strategies are vital to support
the yields of food crops. These strategies can
indeed buffer against climate change and play
a crucial role in reducing the food insecurity of
farm households.

This paper aims to contribute to the lit-
erature on climate change on agriculture by
providing a micro perspective on the issue of
adaptation and food security. We investigate
how farm households’ decision to adapt, that
is to implement a set of strategies (e.g., chang-
ing crop varieties, adoption of soil and water
conservation strategies) in response to long
run changes in key climatic variables such as
temperature and rainfall,affects food crop pro-
ductivity in Ethiopia. This seems particularly
relevant because most of the debate on climate
change in agriculture has been focusing on the
impact of climate change rather than on the
role of adaptation.

The links between climate change and food
productivity have largely been explored focus-
ing on the relation between climate vari-
ables and agriculture. There is, indeed, a
large and growing body of literature that
uses either agronomic models or Ricar-
dian analysis to investigate the magnitude
of these impacts (e.g., Deressa and Hassan
2010; Kurukulasuriya and Rosenthal 2003; Seo
and Mendelsohn 2008). Agronomic models
attempt to estimate directly,through crop mod-
els, the impacts of climate change on crop
yields. They rely on experimental findings that
indicate changes in yield of staple food crops
(i.e., wheat) as a consequence of warming
temperatures (e.g., Amthor 2001; Fuhrer 2003;
Gregory et al. 1999). Then, the results from
the model are fed into behavioral models that
simulate the impact of different agronomic
practices on farm income or welfare.

The Ricardian approach (pioneered by
Mendelsohn et al. 1994) purports to iso-
late, through econometric analysis of cross-
sectional data, the effects of climate on farm
income and land value, after controlling for
other relevant explanatory variables (e.g., fac-
tor endowment, proximity to markets). The
Ricardian approach implicitly incorporates the
possibility of the implementation of adaptation

strategies by farmers.2 Since it is assumed
that farmers have been adapting optimally
to climate in the past, the regression coef-
ficients are estimating the marginal impacts
on outputs of future temperature or rainfall
changes already incorporating farmers’ adap-
tive response. Thus, adaptation choices do not
need to be modeled explicitly. They have been
efficiently implemented. One of the obvious
shortcomings of this approach is that it is a
“black box” that fails to identify the key adap-
tation strategies that reduce the implication of
climate on food production.

Disentangling the productive implications of
adaptation to climate change is of paramount
importance. Besides determining the impact
of climatic variables on food productivity, it is
necessary to understand how the set of strate-
gies implemented in the field by the farmers
(e.g.,changing crops,adopting water harvesting
technologies or, soil conservation measures) in
response to long term changes in environmen-
tal conditions affects crop productivity. More
specifically, it is necessary to assess whether the
farm households that actually did implement
those adaptation strategies are indeed getting
benefits in terms of an increase in the produc-
tivity of food crop. This is central if adaptation
strategies need to be put in place.

As mentioned earlier, our focus on the pro-
ductivity of food crops (and not on land val-
ues) is motivated by its implications for the
achievement of food security. Moreover, using
productivity seems particularly appropriate in
the Ethiopian context.A key assumption of the
Ricardian approach is that land markets are
working properly.3 Under this circumstance
land prices will reflect the present discounted
value of land rents into the infinite future
(Deschenes and Greenstone 2007). Properly
working land markets, however, may not be
operating in areas of the developing world
where land property rights are not perfectly
assigned. This is the case of Ethiopia. In this
country in 1975 a land reform was imple-
mented. As result all land was made state
property, land rentals as well as labor hiring
were made illegal under the regime of Derg
(1974 – 1991). After the change in the gov-
ernment land rentals and labor hiring were

2 The Ricardian approach has been recently widely adopted in a
series of country level analyses (see Dinar et al. 2008; Mendelsohn
2000). Global scale analysis can, however, mask tremendous local
differences.

3 An alternative approach would be to use farm net revenues
(i.e., Deressa and Hassan 2010).
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legalized. However, the predominance of oral
contracts and agreements has prevented the
formation of well-defined property rights, and
large areas of this country are still plagued
by tenure insecurity. Recent land certification
reforms, in some areas, seem to be contributing
to more secure tenure and the enhancement of
land markets (Deininger et al. 2007; Holden et
al. 2007).

There is existing literature on the estimation
of the impact of climate change on food pro-
duction at country, regional, and global scale
(McCarthy et al. 2001; Parry et al. 2004; Pearce
et al. 1996; Stern 2007). Insights from these
studies are crucial in appreciating the extent
of the problem and designing appropriate mit-
igation strategies at global or regional level.
The aggregate nature of these studies, how-
ever, makes it very difficult to provide insights
in terms of effective adaptation strategies at
micro or farm household level.4 Micro evi-
dence on the impact of rainfall, temperature,
and climate related adaptation strategies on
crop yield is very scanty.

Our study tries to fill the gap in the litera-
ture by examining how the decision to adapt or
not to adapt to climate change affects agricul-
tural productivity in the Nile Basin of Ethiopia.
We have access to a particularly rich database,
which contains both farm households that did
and did not adapt plus a very large set of con-
trol variables. Lack of enough spatial variation
on key climatic variables (rainfall and tem-
perature) in cross sectional data is one major
issue to conduct micro level studies on cli-
mate change. This can be particularly true in
developing countries where one meteorolog-
ical station is set to cover a wide geographic
area. To address this issue we employ house-
hold specific rainfall and temperature data
generated by the Thin Plate Spline method
of spatial interpolation. This method imputes
the farm specific values using latitude, longi-
tude, and elevation information of each farm
household (see Wahba 1990 for details).

We take into account that the differ-
ences in food productivity between those
farm households that did and those that
did not adapt to climate change could be
due to unobserved heterogeneity. Indeed, not

4 To the best of our knowledge, Temesgen (2006) is the only
economic study that attempts to measure the impact of climate
change on farm profit. This study applies the Ricardian approach
where the cost of climate variability is imputed from capitalized
land value. However, this study was conducted using subregional
(agro-ecology) agricultural data, not farm household level data.

distinguishing between the casual effect of
climate change adaptation and the effect of
unobserved heterogeneity could lead to mis-
leading policy implications. We account for the
endogeneity of the adaptation decision by esti-
mating a simultaneous equations model with
endogenous switching by full information max-
imum likelihood estimation. For the model
to be identified, we use as selection instru-
ments the variables related to the information
sources (e.g., government extension, farmer-
to-farmer extension, information from radio
and neighborhood).

Finally, we build a counterfactual analysis,
and compare the expected food productivity
under the actual and counterfactual cases that
the farm household adapted or not to climate
change. Treatment and heterogeneity effects
are calculated to understand the differences
in food productivity between farm households
that adapted and those that did not adapt, and
to anticipate the potential effects of changes
in agricultural policy. To our knowledge, con-
sidering the existing literature, this is a novel
exercise.

We find that there are significant and non-
negligible differences in food productivity
between the farm households that adapted and
those that did not adapt to climate change.
We also find that adaptation to climate change
increases food productivity. The impact of
adaptation on productivity is smaller for the
farm households that actually did adapt than
for the farm households that did not adapt
in the counterfactual case that they adapted.
In addition, if the nonadapters adapted, they
would produce the same as the adapters.

We control for the role of both rainfall and
temperature. We follow the existing literature
and include nonlinear terms for both these
variables (Mendelsohn et al. 1994). We find
that the estimated coefficients for rainfall in the
main rain season (Meher) are statistically sig-
nificant only for the group of farm households
that did not adapt. The same variables display
estimated coefficients that are not statistically
significant when we consider only the group of
farm households that implemented adaptation
strategies. This may indicate that this group
of farm households, through adaptation, is less
reliant on the rainfall in the Meher season.

We also analyzed the drivers behind
adaptation. Econometric results show that
information on both farming practices (irre-
spective of its source) and climate change
is crucial in affecting the probability of
adaptation. In addition, we find that farm
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households with access to credit are more
likely to undertake strategies to tackle climate
change.

Description of the Study Sites and Survey
Instruments

Ethiopia is a very interesting case study. A
recent mapping on vulnerability and poverty
in Africa listed Ethiopia as one of the coun-
tries most vulnerable to climate change with
the least capacity to respond (Orindi et al.
2006; Stige et al. 2006). The country’s econ-
omy heavily relies upon the agricultural sector,
which is mostly rainfed. The agricultural sec-
tor accounts for about 40% of national GDP,
90% of exports, and 85% of employment.
Ethiopia’s vulnerability is indeed largely due
to climatic conditions. This has been demon-
strated by the devastating effects of various
prolonged droughts in the twentieth century
and recent flooding. The productive perfor-
mance of the agricultural sector has been very
low. For instance, agricultural GDP and per
capita cereal production has been falling over
the last forty years with cereal yield stagnant at
about 1.2 tons per hectare. Direct implication
is that large areas of Ethiopia are plagued by
food insecurity.

This study relies on a survey conducted
on 1,000 farm households located within the
Nile Basin of Ethiopia in 2005. The sampling
frame considered traditional typology of agro-
ecological zones in the country (namely, Dega,
Woina Dega, Kolla and Berha), percentage of
cultivated land, degree of irrigation activity,
average annual rainfall, rainfall variability, and
vulnerability (number of food aid dependent
population). The sampling frame selected the
woredas (an administrative division equivalent
to a district) in such a way that each class in the
sample matched to the proportions for each
class in the entire Nile basin. The procedure
resulted in the inclusion of twenty woredas.
Random sampling was then used in selecting
fifty households from each woreda.

One of the survey instruments was in par-
ticular designed to capture farmers’ percep-
tions and understanding on climate change,
and their approaches on adaptation. Ques-
tions were included to investigate whether
farmers have noticed changes in mean tem-
perature and rainfall over the last two decades,
and reasons for observed changes. About 90%
of the sample perceived long term changes

in mean temperature or/and rainfall over the
last twenty years. About 68%, 4%, and 28%
perceived mean temperature as increasing,
decreasing and remaining the same over the
last twenty years, respectively. Similarly, 18%,
62%, and 20% perceived mean annual rain-
fall increasing, declining, and remaining the
same over the last twenty years, respectively.
Overall, increased temperature and declining
rainfall are the predominant perceptions in our
study sites.

Furthermore, some questions investigated
whether farm households made some adjust-
ments in their farming in response to long
term changes in mean temperature and rain-
fall by adopting some particular strategies. We
define the undertaken strategies as “adapta-
tion strategies,”and create the dummy variable
adaptation equal to 1 if a farm household
adopted any strategy in response to long-term
changes in mean temperature and rainfall, 0
otherwise. Changing crop varieties, adoption
of soil and water conservation strategies, and
tree planting were major forms of adaptation
strategies followed by the farm households in
our study sites. These adaptation strategies are
mainly yield-related and account for more than
95% of the adaptation strategies followed by
the farm households who actually undertook
an adaptation strategy. The remaining adap-
tation strategies accounting for less than 5%
were water harvesting, irrigation, non–yield
related strategies such as migration, and shift
in farming practice from crop production to
livestock herding or other sectors. About 58%
and 42% of the farm households had taken no
adaptation strategies in response to long term
shifts in temperature and rainfall, respectively.
More than 90% of the respondents who took
no adaptation strategy indicated lack of infor-
mation, land, money, and shortages of labor, as
major reasons for not undertaking any adap-
tation strategy. Lack of information is cited
as the predominant reason by 40–50% of the
households.

In addition, detailed production data were
collected at different production stages (i.e.,
land preparation, planting, weeding, harvest-
ing, and post harvest processing). The area is
almost totally rainfed. Only 0.6% of the house-
holds are using irrigation water to grow their
crops. Production input and output data were
collected for two cropping seasons, i.e., Meher
(long rainy season), and Belg (the short rainy
season) at the plot level. However, many plots
have two crops grown on them annually (one
during each of the Meher and Belg seasons).
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The farming system in the survey sites is
very traditional with plough and yolk (ani-
mals’ draught power). Labor is the major
input in the production process during land
preparation, planting, and post harvest pro-
cessing. Labor inputs were disaggregated as
adult male’s labor, adult female’s labor, and
children’s labor. This approach of collecting
data (both inputs and outputs) at different
stages of production and at different levels of
disaggregation should reduce cognitive burden
on the side of the respondents, and increase the
likelihood of retrieving a better retrospective
data. The three forms of labor were aggregated
as one labor input using adult equivalents. We
employed the standard conversion factor in the
literature on developing countries where an
adult female and children labor are converted
into adult male labor equivalent at 0.8 and 0.3
rates, respectively.

Monthly rainfall and temperature data were
collected from all the meteorological stations
in the country. Then, the Thin Plate Spline
method of spatial interpolation was used to
impute the household specific rainfall and tem-
perature values using latitude, longitude, and
elevation information of each household. By
definition, Thin Plate Spline is a physically
based two-dimensional interpolation scheme
for arbitrarily spaced tabulated data. The
Spline surface represents a thin metal sheet
that is constrained not to move at the grid
points, which ensures that the generated rain-
fall and temperature data at the weather sta-
tions are exactly the same as data at the
weather station sites that were used for the
interpolation. In our case, the rainfall and tem-
perature data at the weather stations are repro-
duced by the interpolation for those stations,
which ensures the credibility of the method
(see Wahba 1990). This method is one of the
most commonly used to create spatial climate
data sets. Its strengths are that it is readily avail-
able,relatively easy to apply,and it accounts for
spatially varying elevation relationships. How-
ever, it only simulates elevation relationship,
and it has difficulty handling very sharp spatial
gradients. This is typical of coastal areas. Given
that our area of the study is characterized by
significant terrain features, and no climatically
important coastlines, the choice of the Thin
Spline method is reasonable (for more details
on the properties of this method in comparison
to the other methods, see Daly 2006).

Finally,although a total of forty-eight annual
crops were grown in the basin, the first five
major annual crops (teff, maize, wheat, barley,

and beans) cover 65% of the plots. These are
also the crops that are the cornerstone of the
local diet. We limit the estimation to these pri-
mary crops. The final sample includes twenty
woredas, 941 farm households (i.e., on aver-
age about forty-seven farm households per
woreda), and 2,807 plots (i.e., on average about
three plots per farm household). The scale
of the analysis is at the plot level. The basic
descriptive statistics are presented in table 1,
and the definition of the variables in table A1
of the appendix.

Modeling Adaptation to Climate Change

The climate change adaptation decision and
its implications in terms of food productivity
(our metric of food security) can be modeled
in the setting of a two-stage framework. In the
first stage, we use a selection model for climate
change adaptation where a representative risk
adverse farm household chooses to implement
climate change adaptation strategies if it gener-
ates net benefits.5 Let A∗ be the latent variable
that captures the expected benefits from the
adaptation choice with respect to not adapting.
We specify the latent variable as

(1) A∗
i = Ziα + ηi with Ai =

{
1 if A∗

i > 0
0 otherwise,

that is farm household i will choose to adapt
(Ai = 1), through the implementation of some
strategies in response to long term changes in
mean temperature and rainfall, if A∗ > 0, and 0
otherwise.

The vector Z represents variables that affect
the expected benefits of adaptation. These fac-
tors can be classified in different groups. First,
we consider the characteristics of the operating
farm (e.g., soil fertility, erosion). For instance,
farms characterized by more fertile soil might
be less affected by climate change and there-
fore relatively less likely to implement adap-
tation strategies. Then, current climatic fac-
tors (e.g., rainfall, temperature) as well as the
experience of previous extreme events such
as droughts and floods (in the last five years)
can also play a role in determining the prob-
ability of adaptation. It is also important to
address the role of access to credit. Households
that have limited access to credit can have less

5 A more comprehensive model of climate change adaptation is
provided by Mendelsohn (2000).
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Table 1. Descriptive Statistics

Farm households Farm households
Total sample that adapted that did not adapt

Variable name Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Dependent variables
adaptation 0.689 0.463 1.000 0.000 0.000 0.000
quantity produced per

hectare
1,049.923 1,197.687 1,133.880 1,355.747 863.524 699.301

Explanatory variables
Climatic factors
Belg rainfall 322.881 160.644 307.921 150.277 356.095 177.186
Meher rainfall 1,111.162 295.047 1,145.948 285.157 1,033.931 302.059
average temperature 17.736 2.032 17.160 1.771 19.014 1.992
Soil characteristics
highly fertile 0.280 0.449 0.257 0.437 0.331 0.471
infertile 0.158 0.365 0.172 0.377 0.128 0.335
no erosion 0.484 0.500 0.472 0.499 0.510 0.500
severe erosion 0.104 0.305 0.114 0.318 0.081 0.274
Assets
machinery 0.019 0.136 0.024 0.153 0.007 0.084
animals 0.874 0.332 0.887 0.317 0.842 0.365
Inputs
labor 100.994 121.268 105.867 133.409 90.176 87.657
seeds 114.905 148.650 125.672 163.896 91.001 103.473
fertilizers 60.609 176.767 61.996 177.867 57.530 174.362
manure 198.148 831.347 254.560 951.670 72.758 438.123
Farmer head and farm

household characteristics
literacy 0.489 0.500 0.524 0.500 0.412 0.492
male 0.926 0.263 0.932 0.252 0.912 0.284
married 0.927 0.261 0.930 0.256 0.920 0.272
age 45.717 12.550 46.239 11.926 44.556 13.770
household size 6.597 2.190 6.760 2.138 6.234 2.260
off-farm job 0.250 0.433 0.285 0.452 0.170 0.376
relatives 16.464 43.630 19.534 51.284 9.457 13.259
access to credit 0.260 0.439 0.308 0.462 0.155 0.362
gold 0.377 0.485 0.453 0.498 0.206 0.405
flood experience 0.172 0.378 0.216 0.412 0.075 0.263
drought experience 0.443 0.497 0.565 0.496 0.172 0.378
Information sources
government extension 0.609 0.488 0.761 0.426 0.269 0.444
farmer-to-farmer extension 0.516 0.500 0.660 0.474 0.196 0.397
radio information 0.307 0.461 0.382 0.486 0.139 0.346
neighborhood information 0.316 0.465 0.320 0.467 0.306 0.461
climate information 0.422 0.494 0.563 0.496 0.110 0.313
Sample size 2,807 1,936 871

Note: The sample size refers to the total number of plots. The final total sample includes 20 woredas, 941 farm households, and 2,807 plots.

capital available to be invested in the imple-
mentation of more costly adaptation strate-
gies (e.g., soil conservation measures). Farmers
must have access to information about farm-
ing practices before they can consider adopting
them. Since extension services are one impor-
tant means for farmers to gain information on
this, access to extension (both government and

farmer-to-farmer) can be used as a measure
of access to information. Particularly relevant
in this setting is that farmers received infor-
mation on climate. Farmer head and farm
household’s characteristics (e.g., age, gender,
education,marital status, if the farmer head has
an off-farm job, farm household size), and the
presence of assets (e.g., machinery, animals)
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may in principle also affect the probability of
adaptation. Experience is approximated by age
and education.

In the second stage, we model the effect
of adaptation on food productivity via a
representation of the production technology.
We explored different functional forms. We
present the most robust: a quadratic specifi-
cation. It has been argued that single output
production functions do not capture the pos-
sibility of switching crops, and therefore the
estimated impact of climatic variables on pro-
duction is biased (Mendelsohn et al. 1994).This
can be particularly relevant when we look at
a fairly specialized agriculture such as in the
United States. However, in Ethiopia agricul-
ture is characterised by high crop diversifica-
tion. Each farm grows a relatively large number
of different cereal crops. Considering the total
yields of cereal crops implicitly deals with these
alternatives.

The simplest approach to examine the
impact of adaptation to climate change on
farm households’ food productivity would be
to include in the food productivity equation
a dummy variable equal to 1 if the farm-
household adapted to climate change,and then,
to apply ordinary least squares (OLS). This
approach, however, might yield biased esti-
mates because it assumes that adaptation to cli-
mate change is exogenously determined while
it is potentially endogenous. The decision to
adapt or not to climate change is voluntary
and may be based on individual self-selection.
Farmers that adapted may have systematically
different characteristics from the farmers that
did not adapt, and they may have decided
to adapt based on expected benefits. Unob-
servable characteristics of farmers and their
farm may affect both the adaptation decision
and food productivity, resulting in inconsistent
estimates of the effect of adaptation on food
security. For example, if only the most skilled
or motivated farmers choose to adapt and we
fail to control for skills, then we will incur
upward bias.

We account for the endogeneity of the adap-
tation decision by estimating a simultaneous
equations model of climate change adapta-
tion and food productivity with endogenous
switching by full information maximum likeli-
hood (FIML). For the model to be identified
it is important to use as exclusion restric-
tions, thus as selection instruments, not only
those automatically generated by the nonlin-
earity of the selection model of adaptation
(1) but also other variables that directly affect

the selection variable but not the outcome
variable.

In our case study, we use as selection instru-
ments in the productivity function the variables
related to the information sources (e.g., gov-
ernment extension, farmer-to-farmer exten-
sion, information from radio, neighborhood
and, if received, information in particular on
climate).We establish the admissibility of these
instruments by performing a simple falsifica-
tion test: if a variable is a valid selection instru-
ment, it will affect the adaptation decision but
it will not affect the quantity produced per
hectare among farm households that did not
adapt.6 TableA2 of the appendix shows that the
information sources can be considered as valid
selection instruments: they are jointly statisti-
cally significant drivers of the decision to adapt
or not to climate change (Model 1, χ2 = 71.93;
p = 0.00) but not of the quantity produced per
hectare by the farm households that did not
adapt (Model 2, F-stat. = 1.20, p = 0.35).

To account for selection biases we adopt
an endogenous switching regression model
of food productivity where farmers face two
regimes (1) to adapt, and (2) not to adapt
defined as follows:

Regime 1: y1i = X1iβ1 + ε1i if Ai = 1(2a)

Regime 2: y2i = X2iβ2 + ε2i if Ai = 0(2b)

where yi is the quantity produced per hectare
in regimes 1 and 2, and Xi represents a vec-
tor of inputs (e.g., seeds, fertilizers, manure,
labor), and of the farmer head’s and the farm
household’s characteristics, soil’s characteris-
tics, assets, and the climatic factors included
in Z.

Finally, the error terms in equations (1),
(2a), and (2b) are assumed to have a trivari-
ate normal distribution, with zero mean and
covariance matrix �, i.e., (η, ε1, ε2)

′ ∼ N(0, �)

with � =
⎡
⎣σ 2

η ση1 ση2

σ1η σ 2
1 .

σ2η . σ 2
2

⎤
⎦

where σ 2
η is the variance of the error term in the

selection equation (1), which can be assumed
to be equal to 1, since the coefficients are
estimable only up to a scale factor (Maddala
1983, p. 223), σ 2

1 and σ 2
2 are the variances of the

6 We thank an anonymous reviewer for this useful suggestion.
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error terms in the productivity functions (2a)
and (2b), and σ1η and σ2η represent the covari-
ance of ηi and ε1i and ε2i.7 Since y1i and y2i are
not observed simultaneously the covariance
between ε1i and ε2i is not defined (reported as
dots in the covariance matrix �, Maddala 1983,
p. 224). An important implication of the error
structure is that because the error term of the
selection equation (1) ηi is correlated with the
error terms of the productivity functions (2a)
and (2b) (ε1i and ε2i), the expected values of ε1i
and ε2i conditional on the sample selection are
nonzero:

E[ε1i|Ai = 1] = σ1η

φ(Ziα)

�(Ziα)

= σ1ηλ1i, and

E[ε2i|Ai = 0] = −σ2η

φ(Ziα)

1 − �(Ziα)

= σ2ηλ2i,

where φ(.) is the standard normal probabil-
ity density function, �(.) the standard normal
cumulative density function, and λ1i = φ(Ziα)

�(Ziα)
,

and λ2i = − φ(Ziα)

1−�(Ziα)
. If the estimated covari-

ances σ̂1η and σ̂2η are statistically significant,
then the decision to adapt and the quantity
produced per hectare are correlated, that is
we find evidence of endogenous switching and
reject the null hypothesis of the absence of sam-
ple selectivity bias. This model is defined as a
“switching regression model with endogenous
switching” (Maddala and Nelson 1975).

An efficient method to estimate endogenous
switching regression models is full information
maximum likelihood estimation (Lee andTrost
1978).8 The logarithmic likelihood function

7 For notational simplicity, the covariance matrix � does not
reflect the clustering that we will implement in the empirical
analysis. In addition, as an anonymous reviewer emphasized, con-
straining the variance term in a single equation to equal one is
not the same as deriving the proper form of the posterior or
even the sampling distribution of the cross-equation correlation
matrix. However, the same criticism could be levelled at previously
published, respectable empirical work (see, e.g., Maddala 1983 or
Bellemare and Barrett 2006). This problem—the one of constrain-
ing a single quantity in an inverted-Wishart-distributed covariance
matrix—is important in multinomial settings and has generated
some interest in Bayesian circles (Linnardakis and Dellaportas
2003; Nobile 2000; Smith and Hocking 1972).

8 An alternative estimation method is the two-step procedure
(see Maddala 1983, p. 224 for details). However, this method is
less efficient than FIML, it requires some adjustments to derive
consistent standard errors (Maddala 1983, p. 225), and it poorly
performs in cases of high multicollinearity between the covariates
of the selection equation (1) and the covariates of the food produc-
tivity equations (2a) and (2b) (Hartman 1991; Nawata 1994; Nelson
1984).

given the previous assumptions regarding the
distribution of the error terms is

ln Li =
N∑

i=1

Ai

[
ln φ

(
ε1i

σ1

)
(3)

− ln σ1 + ln �(θ1i)

]

+ (1 − Ai)

[
ln φ

(
ε2i

σ2

)

− ln σ2 + ln(1 − �(θ2i))

]

where θji = (Ziα+ρjεji/σj)√
1−ρ2

j

, j = 1, 2, with ρj denot-

ing the correlation coefficient between the
error term ηi of the selection equation (1) and
the error term εji of equations (2a) and (2b),
respectively.9

Conditional Expectations, Treatment,
and Heterogeneity Effects

The endogenous switching regression model
can be used to compare the expected food pro-
ductivity of the farm households that adapted
(a) with respect to the farm households that
did not adapt (b), and to investigate the
expected food productivity in the counterfac-
tual hypothetical cases (c) that the adapted
farm households did not adapt, and (d) that
the nonadapted farm household adapted. The
conditional expectations for food productivity
in the four cases are presented in table 2 and
defined as follows:

E(y1i|Ai = 1) = X1iβ1 + σ1ηλ1i(4a)

E(y2i|Ai = 0) = X2iβ2 + σ2ηλ2i(4b)

E(y2i|Ai = 1) = X1iβ2 + σ2ηλ1i(4c)

E(y1i|Ai = 0) = X2iβ1 + σ1ηλ2i.(4d)

Cases (a) and (b) along the diagonal of
table 2 represent the actual expectations
observed in the sample. Cases (c) and (d) rep-
resent the counterfactual expected outcomes.

9 We also addressed the issue of possible technical inefficiency.
In this situation one can expect the expected value of the error
terms to be negative.We estimated a stochastic production frontier,
and we found no evidence that technical inefficiency is stochastic.
Therefore, technical inefficiency seems not to affect the empirical
analysis. Results are available from the authors upon request.
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Table 2. Conditional Expectations, Treatment, and Heterogeneity Effects

Decision stage
Treatment

Subsamples To adapt Not to adapt effects

Farm households that adapted (a) E(y1i|Ai = 1) (c) E(y2i|Ai = 1) TT
Farm households that did not adapt (d) E(y1i|Ai = 0) (b) E(y2i|Ai = 0) TU
Heterogeneity effects BH1 BH2 TH

Note: (a) and (b) represent observed expected production quantities per hectare; (c) and (d) represent counterfactual expected production quantities per hectare.
Ai = 1 if farm households adapted to climate change; Ai = 0 if farm households did not adapt;
Y1i : quantity produced if farm households adapted;
Y2i : quantity produced if farm households did not adapt;
TT: the effect of the treatment (i.e., adaptation) on the treated (i.e., farm households that adapted);
TU: the effect of the treatment (i.e., adaptation) on the untreated (i.e., farm households that did not adapt);
BHi : the effect of base heterogeneity for farm households that adapted (i = 1), and did not adapt (i = 2);
TH = (TT - TU), i.e., transitional heterogeneity.

In addition, following Heckman et al. (2001),
we calculate the effect of the treatment “to
adapt” on the treated (TT) as the difference
between (a) and (c),

TT = E(y1i|Ai = 1) − E(y2i|Ai = 1)(5)

= X1i(β1 − β2) + (σ1η − σ2η)λ1i

which represents the effect of climate change
adaptation on the food productivity of the farm
households that actually adapted to climate
change. Similarly, we calculate the effect of
the treatment on the untreated (TU) for the
farm households that actually did not adapt
to climate change as the difference between
(d) and (b),

TU = E(y1i|Ai = 0) − E(y2i|Ai = 0)(6)

= X2i(β1 − β2) + (σ1η − σ2η)λ2i.

We can use the expected outcomes described
in equations (4a)–(4d) to calculate also the het-
erogeneity effects. For example, farm house-
holds that adapted may have produced more
than farm households that did not adapt
regardless of the fact that they decided to adapt
but because of unobservable characteristics
such as their skills. We follow Carter and Milon
(2005) and define as “the effect of base hetero-
geneity” for the group of farm households that
decided to adapt as the difference between (a)
and (d),

BH1 = E(y1i|Ai = 1) − E(y1i|Ai = 0)(7)

= (X1i − X2i)β1i + σ1η(λ1i − λ2i).

Similarly for the group of farm house-
holds that decided not to adapt, “the effect of
base heterogeneity” is the difference between

(c) and (b),

BH2 = E(y2i|Ai = 1) − E(y2i|Ai = 0)(8)

= (X1i − X2i)β2i + σ2η(λ1i − λ2i).

Finally, we investigate the “transitional het-
erogeneity” (TH), that is whether the effect of
adapting to climate change is larger or smaller
for farm households that actually adapted to
climate change or for farm households that
actually did not adapt in the counterfactual
case that they did adapt, that is the differ-
ence between equations (5) and (6) (i.e., TT
and TU).

Results

Table 3 reports the estimates of the endogenous
switching regression model estimated by full
information maximum likelihood with clus-
tered standard errors at the woreda level.10 The
first column presents the estimation by OLS of
the food productivity function with no switch-
ing and with a dummy variable equal to 1 if
the farm household decided to adapt to cli-
mate change,0 otherwise.The second,third and
fourth columns present, respectively, the esti-
mated coefficients of selection equation (1) on
adapting or not to climate change, and of the
food productivity functions (2a) and (2b) for
farm households that did and did not adapt to
climate change.

The results of the estimation of equation (1)
suggest that the main drivers of farm house-
holds’ decision to adopt some strategies in

10 We use the “movestay” command of STATA to estimate the
endogenous switching regression model by FIML (Lokshin and
Sajaia 2004).
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Table 3. Parameters Estimates of Climate ChangeAdaptation and Food Productivity Equations

(1) (2) (3) (4)

Endogenous switching regressiona

Adaptation = 1 Adaptation = 0
(farm households (farm households

Model OLS that adapted) that did not adapt)

Quantity Quantity Quantity
produced Adaptation produced produced

Dependent variable per hectare 1/0 per hectare per hectare

Adaptation 1/0 141.157
(126.077)

Climatic factors
Belg rainfall −1.239 0.001 −2.275 −0.091

(1.368) (0.004) (2.012) (0.986)
squared Belg rainfall/1000 1.176 −0.004 3.155 −1.067

(1.847) (0.005) (2.896) (1.748)
Meher rainfall 0.374 0.003 −1.458 1.666∗

(1.385) (0.003) (1.531) (0.919)
squared Meher rainfall/1000 −0.095 −0.001 0.695 −0.619∗

(0.594) (0.001) (0.655) (0.325)
average temperature 142.866 −0.944 561.815 −166.567

(266.694) (0.770) (355.619) (334.002)
squared average temperature −4.375 0.020 −15.608 4.502

(7.351) (0.020) (9.853) (8.201)
Soil characteristics
highly fertile 158.918∗∗ −0.211∗∗ 204.036∗∗ 70.425

(71.973) (0.099) (90.977) (64.179)
infertile −80.002 −0.011 −139.217∗∗ −6.276

(53.328) (0.118) (56.297) (58.533)
no erosion 9.312 0.126 35.644 −15.116

(64.942) (0.135) (86.769) (52.325)
severe erosion 28.536 −0.025 67.477 −35.219

(106.578) (0.099) (130.523) (90.780)
Assets
machinery −226.165 0.839 −254.164 −157.032

(131.425) (0.636) (170.539) (102.745)
animals 179.698∗∗ 0.009 187.609∗ 153.186∗∗

(82.289) (0.240) (104.578) (71.774)
Inputs
labor 3.088∗∗∗ 3.357∗∗∗ 3.731∗∗∗

(0.821) (1.088) (0.615)
squared labor /100 −0.124∗∗ −0.131∗ −0.409∗∗∗

(0.055) (0.073) (0.076)
seeds 1.900∗∗ 2.410∗∗∗ −0.020

(0.803) (0.940) (0.735)
squared seeds /100 0.073∗∗ 0.050 0.352∗∗

(0.033) (0.039) (0.145)
fertilizers 0.843∗∗ 0.644∗ 0.975∗∗∗

(0.331) (0.381) (0.326)
squared fertilizers/100 −0.014 −0.005 −0.026∗∗∗

(0.009) (0.009) (0.008)
manure 0.295∗∗∗ 0.278∗∗∗ 0.036

(0.073) (0.072) (0.162)
squared manure /100 −0.003∗∗∗ −0.003 0.003

(0.001) (0.001) (0.003)

(Continued)
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Table 3. Continued

(1) (2) (3) (4)

Endogenous switching regressiona

Adaptation = 1 Adaptation = 0
(farm households (farm households

Model OLS that adapted) that did not adapt)

Quantity Quantity Quantity
produced Adaptation produced produced

Dependent variable per hectare 1/0 per hectare per hectare

Farmer head and farm
household characteristics

literacy −72.337 0.092 −60.929 −109.925∗
(57.625) (0.120) (76.278) (60.081)

male 229.001∗ 0.149 147.881 390.360∗∗∗
(114.000) (0.288) (161.671) (61.563)

married −79.523 −0.235 68.143 −380.746∗∗∗
(106.112) (0.359) (120.501) (97.915)

age −2.982 0.007 −3.324∗ −3.201
(1.801) (0.004) (2.000) (2.080)

household size −9.561 0.052∗ −8.592 1.375
(13.514) (0.030) (17.111) (9.615)

off-farm job 187.408∗∗ 0.223 180.602∗ 16.133
(82.762) (0.143) (95.119) (73.289)

relatives 0.196 0.004 0.316 −0.492
(0.281) (0.004) (0.277) (2.293)

access to credit −96.900 0.246∗ −55.334 −275.524∗∗∗
(77.491) (0.142) (102.894) (56.882)

gold −128.807 0.050 −116.193 −26.010
(83.427) (0.170) (95.757) (39.374)

flood experience −51.911 0.107 −40.965 161.961
(80.824) (0.165) (88.327) (160.036)

drought experience −94.552 0.137 −153.134∗ −84.851
(80.366) (0.226) (78.900) (136.433)

Information sources
government extension 0.457∗∗∗

(0.109)
farmer-to-farmer extension 0.404∗∗∗

(0.144)
radio information 0.325

(0.215)
neighborhood information −0.127

(0.150)
climate information 0.465∗∗

(0.213)
constant −843.590 7.563 −3, 578.829 1, 178.673

(2, 046.697) (7.454) (2, 798.254) (3, 332.793)
σi 1145.401∗∗∗ 583.255∗∗∗

(134.830) (67.989)
ρj −0.074 −0.196

(0.194) (0.271)

Note: aEstimation by full information maximum likelihood at the plot level.
Sample size: 2,807 plots. Robust standard errors clustered at the woreda level in parentheses. σi denotes the square-root of the variance of the error terms εji in
the outcome equations (2a) and (2b), respectively; ρj denotes the correlation coefficient between the error term ηi of the selection equation (1) and the error
term εji of the outcome equations (2a) and (2b), respectively. ∗Significant at the 10% level; ∗∗Significant at the 5% level; ∗∗∗Significant at the 1% level.
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response to long term changes in mean tem-
perature and rainfall are represented by the
provision of climate information both from for-
mal and informal institutions, and access to
credit (table 3, column (2)). Farm households
with access to credit are found to be more likely
to adapt to climate change. The role of infor-
mation also seems very important. We find that
farmers that were informed about the climate
are more likely to adapt. Moreover, informa-
tion provided by extension services also plays
an important role in determining farmers’ deci-
sion to adapt. Both formal agricultural exten-
sion through government extension officers
and farmer-to-farmer extension increase the
probability of adaptation. The results on access
to credit and information highlight that farmers
may need both information on the adaptation
strategies and financial resources to implement
them. To further investigate the relative impor-
tance of these two variables we restrict the
analysis to the sub sample of credit constrained
farm households.We find that information pro-
vision still has a strong significant positive
effect on the probability of adapting (table A3
of the appendix). This may indicate that lack of
access to extension services may be the most
crucial obstacle to adaptation.

We also find that farm households with
highly fertile soils are less likely to implement
some adaptation strategies. Current climatic
variables seem to play no role in determining
the probability of adaptation. Rainfall in the
long rainy season displays an inverted U-shape
behavior. A similar pattern is identified when
we look at the rainfall level during the Belg
short rainy season. However, the coefficients
are not statistically significant since adaptation
is highly clustered at the woreda level.

We now turn on the productive implications
of adaptation. The simplest approach to inves-
tigate the effect of adaptation on food produc-
tivity consists in estimating an OLS model of
food productivity that includes a dummy vari-
able equal to 1 if the farm household adapted,0
otherwise (table 3, column (1)). This approach
would lead us to conclude that there is no dif-
ference in the quantity produced per hectare by
farm households that adapted with respect to
the quantity produced by farm households that
did not adapt (the coefficient of the dummy
variable adaptation is positive but insignifi-
cant). This approach, however, assumes that
adaptation to climate change is exogenously
determined while it is a potentially endogenous
variable. The estimation via OLS would yield
biased and inconsistent estimates. In addition,

OLS estimates do not explicitly account for
potential structural differences between the
productivity function of farm households that
adapted to climate change and the productivity
function of farm households that did not adapt.

The estimates presented in the last two
columns of table 3 account for the endogenous
switching in the food productivity function.
Both the estimated coefficients of the correla-
tion terms ρj are not significantly different from
zero (table 3, bottom row). Although we could
not have known it a priori, this implies that the
hypothesis of absence of sample selectivity bias
may not be rejected.

However, the differences in the coefficients
of the food productivity equation between the
farm households that adapted and those that
did not adapt illustrate the presence of hetero-
geneity in the sample (table 3, columns (3) and
(4)). The food productivity function of farm
households that adapted to climate change
is significantly different (at the 1% statistical
level) from the productivity function of farm
households that did not adapt. Consistent with
predictions of economic theory, inputs such
as seeds, fertilizers, manure and labor are sig-
nificantly associated with an increase in the
quantity produced per hectare by the farm
households that adapted to climate change.
However, mainly labor and fertilizers seem to
significantly affect the food productivity of the
farm households that did not adapt.11

Another interesting difference between the
farm households that did and those that did not
adapt concerns the effect of temperature and
rainfall on the quantity produced per hectare.
Differently from the existing literature,we ana-
lyze the impact of climatic variables for the two
different groups. When we distinguish between
farm households that adapted versus farm
households that did not adapt and we control
for the different rainy seasons, we can unearth
very interesting and distinct patterns. We find
that while mean temperature and rainfall do
not affect the productivity of farm households
that adapted to climate change, the relation-
ship between productivity and mean rainfall
in the Meher season is inverted U-shaped for

11 We also investigate the potential endogeneity of access to
credit in the productivity function and the associated negative sign.
We reject the endogeneity at the 1% statistical level. We use as
instrument the average proportion of farm households with access
to credit in the woreda. This instrument is a strong predictor of
access to credit (at the 1% statistical level). The negative sign asso-
ciated with access to credit can be explained by the fact that the
farm households that access to credit are those with a productivity
level lower than those that do not access to credit.
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Table 4. Average Expected Production per Hectare; Treatment and Heterogeneity Effects

Decision stage

Sub-samples To adapt Not to adapt Treatment effects

Farm households that adapted (a) 1,133.895 (c) 952.629 TT = 181.266∗∗∗
(16.507) (21.040) (14.213)

Farm households that did not adapt (d) 1,161.785 (b) 862.838 TU = 298.947∗∗∗
(18.384) (13.343) (12.981)

Heterogeneity effects BH1 = −27.890 BH2 = 89.791∗∗∗ TH = −117.681∗∗∗
(27.527) (32.623) (22.910)

See note of table 2. Standard errors in parentheses. ∗∗∗Significant at the 1% level.

farm households that did not adapt to cli-
mate change. This seems to indicate that the
implementation of the adaptation strategies
successfully made the farm households that
adapted more resilient to the most important
rainfall season, Meher.

Table 4 presents the expected quantity pro-
duced per hectare under actual and counter-
factual conditions. Cells (a) and (b) represent
the expected quantity produced per hectare
observed in the sample. The expected quan-
tity produced per hectare by farm households
that adapted is about 1,134 kg, while it is
about 863 kg for the group of farm house-
holds that did not adapt. This simple compar-
ison, however, can be misleading and drive
the researcher to conclude that on average
the farm households that adapted produced
about 271 kg (that is 31%) more than the farm
households that did not adapt.

The last column of table 4 presents the
treatment effects of adaptation on food pro-
ductivity. In the counterfactual case (c), farm
households who actually adapted would have
produced about 181 kg (that is about 20%) less
if they did not adapt. In the counterfactual case
(d) that farm households that did not adapt
adapted, they would have produced about
299 kg (that is about 35%) more if they had
adapted. These results imply that adaptation
to climate change significantly increases food
productivity; however, the transitional hetero-
geneity effect is negative, that is, the effect is
significantly smaller for the farm households
that actually did adapt relative to those that
did not adapt.

In addition, the last row of table 4, which
adjusts for the potential heterogeneity in the
sample, shows that farm households who actu-
ally adapted would have produced significantly
more than the farm households that did not
adapt in the counterfactual case (c). This high-
lights that there are some important sources of
heterogeneity that makes the adapters “better

producers” than the nonadapters irrespective
to the issue of climate change. Nevertheless the
farm households who adapted are still better
off adapting than not adapting. Finally, in the
counterfactual case (d) that the nonadapted
farm households had adapted, they would have
produced the same as the farm household that
actually adapted.

Conclusions

The objectives of this paper were to analyse
the driving forces behind farm households’
decision to adapt to climate change, and to
investigate the productive implications of this
decision.We used a unique database,where cli-
matic information was disaggregated per sea-
son and available at the farm level to estimate
a simultaneous equations model with endoge-
nous switching to account for unobservable
factors that influence food productivity and the
decision to adapt.

The analysis of the determinants of adapta-
tion highlighted very interesting results. Both
access to credit and information provision have
a positive effect on the probability of adap-
tation. Developing credit markets allow farm
households to make important investments
(e.g., soil conservation strategies) that can sup-
port food productivity. Information on climate
change and extension services also play an
important role in determining farm house-
holds’ decisions to adapt. Both formal agri-
cultural extension through government officers
and farmer-to-farmer extension increase the
probability of adaptation. In addition, rainfall
displays an inverted U-shape behavior in the
Meher season among farm households that did
not adapt while it does not affect the productiv-
ity of farm households that adapted.This result
may indicate that the adaptation made the farm
households that adapted more resilient during
the most important rainfall season, Meher.
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Finally, we can draw three main conclusions
from the results of this study on the effects
of climate change adaptation on food secu-
rity. First, the group of farm households that
did adapt has systematically different charac-
teristics than the group of farm households
that did not adapt. These differences represent
sources of variation between the two groups
that the estimation of an OLS model includ-
ing a dummy variable for adapting or not to
climate change cannot take into account.

Second, adaptation to climate change
increases food productivity. When we ana-
lyze this result for the two different groups
of farm households, “adapters” and “non-
adapters,” interesting patterns emerge. Farm
households who actually adapted tend to pro-
duce more than farm households that did not
adapt in the counterfactual case that they did
not adapt. Farm households belonging to the
group of the “adapters” have some character-
istics (e.g., unobserved skills) that would make
them more food secure even without the imple-
mentation of the adaptation strategies. This
might explain our third finding. Interestingly,
we also found that the impact of adaptation
on food productivity is smaller for the farm
households that actually did adapt than for
the farm households that did not adapt in
the counterfactual case that they adapted. It
seems, therefore, that while both groups of
farm households would benefit from the imple-
mentation of adaptation strategies, the farm
households that did not adapt would bene-
fit the most from adaptation. This beneficial
effect of adaptation is found to be large. If
the farm households that did not adapt had
adapted, they would have produced the same
as the farm households that actually adapted.
Therefore, adaptation strategies seem to be
particularly important for the most vulnera-
ble farm households, those who have already
the least capability to produce food, by helping
them to close the productive gap with the less
vulnerable farm households.

These results are particularly important to
design policies for effective adaptation strate-
gies to cope with the potential impacts of
climate change. Public policies can play an
important role in helping farm households
to adapt. The facilitation of the access to
credit and the dissemination of climate change
information and extension services are of
paramount importance in determining the
implementation of adaptation strategies,which
could result in more food security for all
farmers irrespective of their unobservable

characteristics. The availability of information
on climate change may raise farmers’ aware-
ness of the threats posed by the changing
climatic conditions. Extension services provide
an important source of information and edu-
cation, for instance, on changing crops and
specific soil conservation measures that can
deliver food productivity gains. Access to the
credit market can offer the necessary finan-
cial resources to adopt the technologies and
acquire seeds of crops that are better suited
to the changing climatic conditions.

In addition, to disentangle the relative
importance of the information sources with
respect to access to credit, we restricted
the analysis to the sub-sample of credit-
constrained farm households. The results
reported in table A3 show that information
sources are still strong significant drivers of the
decision to adapt. This seems to indicate that
lack of information may be a crucial obstacle
to adaptation, and that information provision
may be an effective policy to induce farm
households to adapt. Future research is needed
to better understand the behavioral dimension
of the adaptation process. More research effort
should also be allocated into the distinction of
the role of different adaptation strategies and
the identification of the most successful ones.
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Appendix

Table A1. Variables definition

Variable name Definition

Dependent variables
adaptation dummy = 1 if the farm household adapted to climate change,

0 otherwise
quantity produced per hectare quantity produced per hectare (kg)
Explanatory variables
Climatic factors
Belg rainfall rainfall rate in Belg, short rain season (mm)
Meher rainfall rainfall rate in Meher, long rain season (mm)
average temperature average temperature (◦C)
Soil characteristics
high fertility dummy = 1 if the soil has a high level of fertility, 0 otherwise
infertile dummy = 1 if the soil is infertile, 0 otherwise
no erosion dummy = 1 if the soil has no erosion, 0 otherwise
severe erosion dummy = 1 if the soil has severe erosion, 0 otherwise
Assets
machinery dummy = 1 if machineries are used, 0 otherwise
animals dummy = 1 if farm animal power is used, 0 otherwise
Inputs
labor labor use per hectare (adult days)
seeds seeds use per hectare (kg)
fertilizers fertilizers use per hectare (kg)
manure manure use per hectare (kg)
Farmer head and farm

household characteristics
literacy dummy = 1 if the household head is literate, 0 otherwise
male dummy = 1 if the household head is male, 0 otherwise
married dummy = 1 if the household head is married, 0 otherwise
age age of the household head
household size household size
off-farm job dummy = 1 if the household head took an off-farm job, 0 otherwise
relatives number of relatives in the woreda
access to credit dummy = 1 if the farm household has access to formal credit,

0 otherwise
gold dummy = 1 if the farm household has gold
flood experience dummy = 1 if the farm household experienced a flood during the

last 5 years
drought experience dummy = 1 if the farm household experienced a drought during the

last 5 years
Information sources
government extension dummy = 1 if the household head got information/advice from

government extension workers, 0 otherwise
farmer-to-farmer extension dummy = 1 if the household head got information/advice from

farmer-to-farmer extension, 0 otherwise
radio information dummy = 1 if the household head got information from radio,

0 otherwise
neighborhood information dummy = 1 if the household head got information from the

neighborhood, 0 otherwise
climate information dummy = 1 if extension officers provided information on expected

rainfall and temperature, 0 otherwise
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Table A2. Parameter Estimates – Test on the Validity of the Selection Instruments

Model 1 Model 2

Quantity produced per
hectare by farm households

Adaptation 1/0 that did not adapt

Information sources
government extension 0.455∗∗∗ (0.114) 70.687 (80.121)
farmer-to-farmer extension 0.413∗∗∗ (0.139) 4.693 (130.241)
radio information 0.327 (0.219) 5.163 (96.343)
neighborhood information −0.099 (0.150) −165.042∗ (85.374)
climate information 0.458∗∗ (0.224) 111.998 (138.529)
constant 7.648 (7.543) 2,596.864 (3,652.768)
Wald test on information sources χ2 = 72.97∗∗∗ F-stat. = 1.20
Sample size 2,807 872

Note: Model 1: Probit model (Pseudo R2 = 0.386); Model 2: ordinary least squares (R2 = 0.331). Estimation at the plot level. Standard errors clustered at the
woreda level in parentheses. ∗Significant at the 10% level; ∗∗Significant at the 5% level; ∗∗∗Significant at the 1% level. Parameters for all the other variables are
not reported. The full table is available in the supplementary online appendix on the Oxford University Press website.

Table A3. Probit Model of Climate Change Adaptation for Credit Constrained Farm
Households

Parameter

Information sources
government extension 0.480∗∗ (0.197)
farmer-to-farmer extension 0.266 (0.180)
radio information 0.249 (0.240)
neighborhood information −0.140 (0.166)
climate information 0.660∗∗∗ (0.246)
constant 6.956 (6.991)
Wald test on information sources χ2 = 42.59∗∗∗
Sample size 2,096

Note: Estimation at the plot level for sub-sample of farm households without access to credit. Standard errors clustered at the woreda level in parentheses.
Pseudo R2 = 0.379. ∗∗Significant at the 5% level; ∗∗∗Significant at the 1% level. Parameters for all the other variables are not reported. The full table is available
in the supplementary online appendix on the Oxford University Press website.
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