
IMA Journal of Numerical Analysis(2009)29, 158−179
doi:10.1093/imanum/drm044
Advance Access publication on March 11, 2008

Sparse convolution quadrature for time domain boundary integral
formulations of the wave equation

W. HACKBUSCH AND W. KRESS†

Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22,
D-04103 Leipzig, Germany

AND

S. A. SAUTER

Institut für Mathematik, Universiẗat Zürich, Winterthurerstrasse 190,
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Many important physical applications are governed by the wave equation. The formulation as time do-
main boundary integral equations involves retarded potentials. For the numerical solution of this problem,
we employ the convolution quadrature method for the discretization in time and the Galerkin boundary
element method for the space discretization. We introduce a simplea priori cut-off strategy where small
entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by ana
priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect
of additional perturbations such as panel clustering and numerical integration on the overall discretization
error. This method reduces the storage complexity for time domain integral equations from O(M2N) to

O
(

M2N
1
2 log M

)
, whereN denotes the number of time steps andM is the dimension of the boundary

element space.
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1. Introduction

Boundary-value problems governed by the wave equation

∂2
t u−Δu = f

arise in many physical applications such as electromagnetic wave propagation or the computation of
transient acoustic waves. Since such problems are typically formulated in unbounded domains, the
method of integral equations is an elegant tool to transform this partial differential equation to an integral
equation on the bounded surface of the scatterer.

Although this approach goes back to the early 1960s (cf.Friedman & Shaw, 1962), the development
of fast numerical methods for integral equations in the field of hyperbolic problems is still in its infancies
compared to the vast of fast methods for elliptic boundary integral equations (cf.Sauter & Schwab, 2004,
and references therein). Existing numerical discretization methods include collocation methods with
some stabilization techniques (cf.Birgissonet al., 1999; Bluck & Walker, 1996; Davies, 1994, 1997;
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Davies & Duncan, 2004; Miller , 1987; Rynne & Smith, 1990) and Laplace–Fourier methods coupled
with Galerkin boundary elements in space (Bamberger & Ha-Duong, 1986; Costabel, 1994; Ding et al.,
1989; Ha-Duong, 2003). Numerical experiments can be found, e.g. inHa-Duonget al. (2003).

In Erginet al.(2000), a fast version of the ‘marching-on-in-time’ (MOT) method is presented which
is based on a suitable plane wave expansion of the arising potential. The advantage of this approach is
that the computational complexity is reduced to O(N M) operations. However, the class of applications
for which MOT is applicable is smaller compared to the direct discretization of the retarded bound-
ary integral equations, e.g. the sources of the incoming waves have to be properly separated from the
scatterer ‘and’ the observation points and the signals must be bandlimited. In addition, a stability and
convergence analysis which takes into account the effect of the various perturbations (such as plane
wave expansions) on the ‘overall’ discretization error is not available in a rigorous mathematical way.

We here employ the convolution quadrature method for the time discretization and a Galerkin bound-
ary element method in space. The convolution quadrature method for the time discretization has been
developed inLubich(1988a,b, 1994) andLubich & Schneider(1992). It provides a straightforward way
to obtain a stable time-stepping scheme using the Laplace transform of the kernel function. A straight-
forward implementation results in an algorithm with a storage complexity of O(N M2) and a computa-
tional complexity of O(N2M2). In Haireret al.(1985), FFT techniques have been introduced where the
computational complexity is reduced to O(N log2 N M2), while the storage costs stay unchanged.

Note that also the classical Galerkin discretization of the retarded boundary integral equations (see
Bamberger & Ha-Duong, 1986; Ha-Duong, 2003) leads to a block T̈oplitz system matrix where the
matrix blocksA j , 0 6 j 6 N, are of sizeM × M and sparse. More precisely, the number of nonzero
entries in the system matrixA is, for piecewise constant boundary elements, of order O(M2) and, for

piecewise linear boundary elements, of order O
(
M2+ 1

8
)

for this approach. The total cost for the compu-
tation of a full Galerkin approximation by using this approach sums up for piecewise constant boundary
elements to O(M2N) operations, while the operation count for piecewise linear boundary elements is
O(N2M3/2). A drawback of this approach, however, is that the numerical integrations for computing
the coefficients of the system matrix have to be carried out on the intersections of the boundary element
mesh with the discrete light cone. The stable handling of these intersections and the implementation is
especially complicated for curved panels.

In this paper, we introduce an alternative approach which is based on sparse matrix approximation.

We introduce a simple cut-off strategy which reduces the computational costs to O
(
N

3
2 M2 log M

)
,

while the focus is on the storage consumptions which are reduced to O
(
N

1
2 M2 log M

)
. Note that this

approach has been extended inKress & Sauter(2006), where the computational complexity is reduced to
O(N9/2 log11 M) and the storage cost to O(N7/2 log11 M). We emphasize that this analysis only shows
the ‘asymptotic’ behaviour of the complexity. For practical problems, the leading constants behind these
O(∙) estimates are essential and we are currently starting to implement our approach in order to compare
the different approaches for practical problem sizes.

In Tables1 and2, the asymptotic complexity of these methods is depicted. Note that the error anal-
ysis will show that the relationN ≈ Mm/4+3/8 between the number of time stepsN and the dimension
M of the boundary element space is balancing the spatial and temporal errors and we employ this re-
lation in both tables. As can be seen from these tables, our approach reduces the storage complexity
more significantly while the FFT approach has a better computational performance in most cases. The
direct Galerkin approximation of the retarded potentials also has a very good performance, while the
drawbacks are the complicated numerical integration and the fact that a general perturbation analysis
for the overall discretization is not available by now.
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TABLE 1 Storage requirements for the direct Galerkin discretization, the FFT approach,
the sparse approximation by cut-off and the panel clustering method. The case m= 0
corresponds to piecewise constant boundary elements, while m= 1 indicates piecewise
linear elements

Direct Galerkin FFT Cut-off strategy Panel clustering + cut-off

m= 0 O
(
N M1+ 5

8
)

O(N M2) O
(
N M1+ 13

16 log M
)

O
(
N M1− 1

16 log11 M
)

m= 1 O
(
N M1+ 1

2
)

O(N M2) O
(
N M1+ 11

16 log M
)

O
(
N M1+ 9

16 log11 M
)

TABLE 2 Computational complexity for the direct Galerkin approximation, the FFT approach,
the sparse approximation by cut-off and the panel clustering method. Again, the case m= 0
corresponds to piecewise constant boundary elements, while m= 1 indicates piecewise linear
elements

Direct Galerkin FFT Cut-off strategy Panel clustering + cut-off

m= 0 O(N M2) O(N M2(log2 N)) O
(
N M2+ 3

16 log M
)

O
(
N M2− 11

16 log11 M
)

m= 1 O(N M2) O(N M2(log2 N)) O
(
N M2+ 5

16 log M
)

O
(
N M2+ 3

16 log11 M
)

In this paper, we develop the theoretical framework for the analysis of the additional perturbations
in the space discretization for the convolution quadrature approach.

The remainder of the paper is structured into five sections. In Section2, we briefly introduce the
formulation of the wave equation as an integral equation and recall its stability properties. Section3
is devoted to the convolution quadrature method for the time discretization and the boundary element
method for the space discretization. We introduce oura priori cut-off strategy to replace small matrix
entries by zero and discuss some algorithmic aspects. In Section4, we analyse the effect of the pertur-
bation introduced by the cut-off strategy and prove the convergence of the corresponding solution. In
Section5, we discuss the complexity of our method. We show that the storage complexity in terms of the

numberM of unknowns in space is reduced fromM2 to N−
1
2 M2. Finally, in Section6, we summarize

the results and give an outlook onto future research.
We emphasize that our simple cut-off strategy reduces the storage complexity of the method while

the computational complexity is not reduced. However, this paper paves the way to introduce and analyse
further perturbations in the space–time discretization. Forthcoming papers will be devoted to panel
clustering techniques for the retarded potential boundary integral equation which will also reduce the
dependence of the computational complexity onM (cf. Hackbuschet al., 2007; Kress & Sauter, 2006;
Banjai & Sauter, 2007).

2. Integral formulation of the wave equation

Let Ω ⊂ R3 be a Lipschitz domain with boundaryΓ . In this paper, we present efficient methods for
numerically solving the homogeneous wave equation

∂2
t u = Δu inΩ × (0, T), (2.1a)

with initial conditions

u(∙, 0) = ∂t u(∙, 0) = 0 inΩ (2.1b)
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and boundary conditions

u = g onΓ × (0, T) , (2.1c)

on a time interval(0, T) for someT > 0. For its solution, we employ an ansatz as a ‘single-layer
potential’

u(x, t) =
∫ t

0

∫

Γ
k(x − y, t − τ)φ(y, τ )dΓy dτ, (x, t) ∈ Ω × (0, T), (2.2)

wherek(z, t) is the fundamental solution of the wave equation,

k(z, t) =
δ(t − ‖z‖)

4π‖z‖
, (2.3)

δ(t) being the Dirac delta distribution. The ansatz (2.2) satisfies the homogeneous equation (2.1a) and
the initial conditions (2.1b). The extensionx → Γ is continuous and hence, the unknown densityφ in
(2.2) is determined via the boundary conditions (2.1c), u(x, t) = g(x, t). This results in the boundary
integral equation forφ:

(Vφ)(x, t) :=
∫ t

0

∫

Γ
k(x − y, t − τ)φ(y, τ )dΓy dτ = g(x, t) ∀ (x, t) ∈ Γ × (0, T). (2.4)

Existence and uniqueness results for the solution of the continuous problem are proven inLubich(1994).
To recall them, we introduce appropriate norms and spaces. We define the Sobolev spaceHs(Γ ), s> 0,
in the usual way (see, e.g.Hackbusch, 1992, or McLean, 2000). The range ofs for which Hs(Γ ) is
defined may be limited, depending on the global smoothness of the surfaceΓ . Throughout, we let
[−k, k] denote the range of Sobolev indices for whichHs(Γ ) is defined with the negative-order spaces
defined by duality in the usual way. The norm is denoted by‖∙‖Hs(Γ ).

For realr ands ∈ [−k, k], the anisotropic Sobolev spaceHr (R; Hs(Γ )) is given by

Hr (R; Hs(Γ )) :=
{

g: Γ × R→ R:
∫ ∞

−∞
(1+ |ω|)2r ‖Fg(∙, ω)‖2Hs(Γ ) dω <∞

}
,

whereF denotes the Fourier transform with respect to the time variablet ∈ R. The norm in this space
is given by

‖ f ‖2Hr (R;Hs(Γ )) :=
∫ ∞

−∞
(1+ |ω|)2r ‖F f (∙, ω)‖2Hs(Γ ) dω.

The spaceHr
0 (0, T; H

s(Γ )) is defined by

Hr
0 (0, T; H

s(Γ )) := {g : [0, T ] × Γ → R : g = g?|[0,T ]

for someg? ∈ Hr (R, Hs(Γ )) with g? ≡ 0 on ]−∞, 0[}

and the norm‖∙‖Hr
0 (0,T;H

s(Γ )) is given by

‖g‖2Hr
0 (0,T;H

s(Γ )) := min
{
‖g?‖Hr

0 (R;H
s(Γ )) : g? ∈ Hr (R, Hs(Γ ))

with g = g?|[0,T ] andg? ≡ 0 on ]−∞, 0[
}
.
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THEOREM 2.1 Let g ∈ Hr+2(0, T; H1/2(Γ )) for somer ∈ R. Then, (2.4) has a unique solution
φ ∈ Hr (0, T; H−1/2(Γ )) with

‖φ‖Hr
0 (0,T;H

−1/2(Γ )) 6 CT‖g‖Hr+2
0 (0,T;H1/2(Γ )).

For r > 5/2, the pointwise estimate

‖φ(∙, t)‖H−1/2(Γ ) 6 CT‖g‖Hr+2
0 (0,T;H1/2(Γ ))

holds for allt ∈ [0, T ].

For a proof, we refer toBamberger & Ha-Duong(1986, Proposition 3), respectively,Lubich (1994,
(2.23), (2.24)).

3. Numerical discretization

3.1 Time discretization via convolution quadrature

For the time discretization, we employ the convolution quadrature approach which has been developed
by Lubich (1988a,b, 1994) andLubich & Schneider(1992). We do not recall the theoretical framework
here but directly apply the approach to the wave equation.

We split the time interval [0, T ] into N + 1 time steps of equal lengthΔt = T/N and compute an
approximate solution at the discrete time levelstn = nΔt . The continuous convolution operatorV is
replaced by the discrete convolution operator

(VΔtφΔt )n(x) :=
n∑

j=0

∫

Γ
ωΔt

n− j (x − y)φ j
Δt (y)dΓy, (3.1)

for n = 1, . . . , N. The convolution weightsωΔt
n (x) will be defined below (see (3.6)). The semidiscrete

problem is given by

(VΔtφΔt )n(x) = gn
Δt (x), n = 1, . . . , N, x ∈ Γ, (3.2)

wheregn
Δt (x) is some approximation tog(x, tn), or g(x, tn) itself.

Following the approach inLubich(1988a,b, 1994), the convolution quadrature method is based on a
linear multistep method which, for an ordinary differential equationu′(t) = f (u(t)), can be formulated
as

k∑

j=0

α j u
n+ j−k = Δt

k∑

j=0

β j f (un+ j−k), (3.3)

whereun ≈ u(tn). Let

γ (ζ ) :=

∑k
j=0 α j ζ

k− j

∑k
j=0 β j ζ k− j

be the quotient of the generating polynomials of the linear multistep method (3.3).
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DEFINITION 3.1 The convolution weightsωΔt
n (x − y) of the convolution quadrature method (3.2) are

given by the coefficients of the power series of the Laplace transformk̂(z, γ (ζ )/Δt) = (4π‖z‖)−1

exp
(
− γ (ζ )

Δt ‖z‖
)

of (2.3), i.e.

k̂

(
z,
γ (ζ )

Δt

)
=
∞∑

n=0

ωΔt
n (z)ζ n. (3.4)

We employ the second-order accurate,A-stable BDF2 scheme which is given by

αBDF2
0 =

1

2
, αBDF2

1 = −2, αBDF2
2 =

3

2
, βBDF2

0 = 1,

i.e.

γ BDF2(ζ ) =
1

2
(ζ 2− 4ζ + 3). (3.5)

Because the kernel function only depends on the distanced = ‖x − y‖, we write k̂(d, ∙) andωΔt
n (d)

short fork̂(x − y, ∙) andωΔt
n (x − y). The coefficients of the power series (3.4) can be obtained by the

Taylor expansion of̂k
(
d, γ (ζ )Δt

)
aboutζ = 0,

ωΔt
n (d) =

1

n!

∂nk̂
(
d, γ (ζ )Δt

)

∂ζ n

∣
∣
∣
∣
∣
ζ=0

=
1

n!

1

4πd

∂n e−
γ (ζ )
Δt d

∂ζ n

∣
∣
∣
∣
∣
ζ=0

.

Using the formula for multiple differentiation of composite functions (see, e.g.Gradshteyn & Ryzhik,
1965), we obtain the explicit representation

ωΔt
n (d) =

1

n!

1

4πd

(
d

2Δt

)n/2

e−
3d

2Δt Hn

(√
2d

Δt

)

, (3.6)

whereHn are the Hermite polynomials.

3.2 Space discretization. Galerkin boundary element methods

In Section3.1, we have derived the semidiscrete problem: Forn = 1, 2, . . . , N, find φn
Δt ∈ H−1/2(Γ )

such that
n∑

j=0

∫

Γ
ωΔt

n− j (x − y)φ j
Δt (y)dΓy = gn

Δt (x), n = 1, . . . , N, x ∈ Γ. (3.7)

For the space discretization, we employ a Galerkin boundary element method. LetG be a regular (in
the sense ofCiarlet, 1987) boundary element mesh onΓ consisting of shape regular, possibly curved
triangles. For a triangleτ ∈ G , the (regular) pullback to the reference triangleτ̂ := conv

{(0
0

)
,
(1
0

)
,
(0
1

)}

is denoted byχτ : τ̂ → τ . The space of piecewise constant, discontinuous functions is

S−1,0 := {u ∈ L∞(Γ ) : ∀ τ ∈ G : u|τ ∈ P0},
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and, alternatively, we consider the space of continuous, piecewise linear functions

S0,1 := {u ∈ C0(Γ ) : ∀ τ ∈ G : (u ◦ χτ )|τ ∈ P1},

for the space discretization. As a basis forS−1,0, we choose the characteristic functions for the panels
τ ∈ G , while the basis forS0,1 consists of the standard hat functions, lifted to the surfaceΓ . The general
notation isS for the boundary element space and(bi )

M
i=1 for the basis. The mesh width is given by

h := max
τ∈G

hτ , wherehτ := diamτ.

For the space–time discrete solution at timetn, we employ the ansatz

φn
Δt,h(y) =

M∑

i=1

φn,i bi (y), (3.8)

whereφφφn = (φn,i )
M
i=1 ∈ R

M are the nodal values of the discrete solution at time steptn. The collection

of these solution vectors is denoted by
−→
φφφ N := (φφφi )

N
i=0 ∈ R

(N+1)M . Note that we always includeφφφ0 in
this vector although it is always zero.

For the Galerkin boundary element method, we replaceφ
j
Δt in (3.7) by someφ j

Δt,h ∈ Sand impose
the integral equation not pointwise but in a weak form: Findφn

Δt,h ∈ Sof the form (3.8) such that

n∑

j=0

M∑

i=1

φ j,i

∫

Γ

∫

Γ
ωΔt

n− j (x − y)bi (y)bk(x)dΓy dΓx =
∫

Γ
gn
Δt (x)bk(x)dΓx (3.9)

for all 16 k 6 M andn = 1, . . . , N. This can be written as a linear system

n∑

j=0

An− jφφφ j = gn, n = 1, . . . , N, (3.10)

with

(An)k,i :=
∫

Γ

∫

Γ
ωΔt

n (x − y)bi (y)bk(x)dΓy dΓx

and

(gn)k =
∫

Γ
gn
Δt (x)bk(x)dΓx.

3.3 Algorithmic realization and sparse approximation

The linear systems in (3.10) can be written in the compact block form

−→
A N
−→
φφφ N := −→g N, (3.11)
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where the block matrix
−→
A N ∈ R(N+1)M × R(N+1)M and the vector−→g N ∈ R(N+1)M are defined by

−→
A N :=


















A0 0 ∙ ∙ ∙ 0

A1 A0
. . .

...

A2 A1
. . .

... A2
. . .

. . .

. . .
. . .

. . . 0

AN ∙ ∙ ∙ A2 A1 A0


















and −→g N :=









g0

g1

...

gN








. (3.12)

The matricesA j have dimensionM × M and are fully populated. The straightforward procedure for
solving this system is given by the following recursion.

Forn = 1, 2, . . ., one computes

wn := gn −
n−1∑

i=0

An−iφφφi (3.13)

and then solves the system

A0φφφn = wn. (3.14)

If we assume that a fast iterative procedure is employed which solves (3.14) in O(M2) operations, the
total amount of work is given by

O(N2M2)
︸ ︷︷ ︸

(3.13)

+O(N M2)
︸ ︷︷ ︸

(3.14)

.

The quadratic growth of the computational complexity with respect toN andM would make the numer-
ical solution of time domain boundary integral equations prohibitively expensive. Hence, a fast solution
method of the block-triangular system (3.11) which is based on FFT has been proposed inHaireret al.
(1985). This reduces the computational complexity to O(M2N log2 N) while the storage complexity is
O(N M2).

In this paper, we present an alternative method which avoids the use of FFT but employs a sparse
approximation of the system matricesAn.

We recall the definition of the matrixAn,

(An)i, j =
∫

supp(bi )

∫

supp(bj )
ωΔt

n (x − y)bi (x)bj (y)dΓy dΓx, (3.15)

where supp(bi ) denotes the support of the basis functionbi . The matricesAn are full matrices. However,
it turns out that a substantial part of the matrix entries is small and can be replaced by zero. In Section
4.3, we derive that for the interval

I Δt
n,ε := [tn − cΔt

n,ε, tn + cΔt
n,ε] ∩ [0, diamΓ ],

with

cΔt
n,ε = 3

√
Δt
√

tn log
1

ε
, (3.16)
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we have

|ωΔt
n (d)| 6

ε

4πd
∀ d /∈ I Δt

n,ε. (3.17)

LetPn
ε ⊂ {1, . . . ,M} × {1, . . . ,M} be defined by

Pn
ε := {(i, j ) : ∃ (x, y) ∈ suppbi ∩ suppbj : ‖x − y‖ ∈ I Δt

n,ε}. (3.18)

This induces a sparse approximationÃn by

(Ãn)i, j :=

{
(An)i, j , if (i, j ) ∈Pn

ε ,

0, otherwise.
(3.19)

In summary, the space–time discretization with sparse matrix approximation is given by replacing
the matricesAn in (3.12) by the sparse versions (3.19) and plugging the corresponding solution
(φ̃φφ0, φ̃φφ1, . . . , φ̃φφN)

T into the basis representation

φ̃n
Δt,h :=

M∑

i=1

φ̃n,i bi . (3.20)

The following procedure is the algorithmic formulation of our sparse method for solving (3.11).

procedure blocktriang;
begin

for n := 0 to N do begin
s := gn;
for i := 0 to n− 1 do

for (k, l ) ∈Pn−i
ε do sk := sk − (Ãn−i )k,l φ̃i,l

solveÃ0φ̃φφn = s;
end;

end;

The solution of the system̃A0φ̃φφn = sshould be realized by means of an iterative solver which takes
into account the sparsity of̃A0.

4. Convergence analysis

The convergence analysis consists of three parts. In Section4.1, the analysis of the space–time dis-
cretization without sparse matrix approximation is given. The sparse approximation of the matricesAn

induces a perturbation in the space discretization and in Section4.2, we analyse the effect of such per-
turbations on the overall discretization error. The size of the perturbation depends on the smallness of
the functionωΔt

n outside the intervalI Δt
n,ε. In Section4.3, we determine the intervalI Δt

n,ε such that the
arising perturbation error is in balance with the overall discretization error.

4.1 Error estimates for the space–time discretization without sparse matrix approximation

For the semidiscrete solutionφn
Δt of (3.2), the following theorem holds (Lubich, 1994).
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THEOREM 4.1 For smooth compatible datag, for 06 Δt 6 Δt∗,Δt∗ arbitrary, the error satisfies

(

Δt
N∑

n=0

‖φn
Δt (∙)− φ(∙, tn)‖

2
H−1/2(Γ )

)1/2

6 CΔt∗Δt2‖g‖H5
0 (0,T;H

1/2(Γ )).

The A-stability of the linear multistep method is inherited to the convolution quadrature method,
i.e. allΔt∗ are permitted in the above estimate.

Let (φn
k,h)

N
n=0 be the sequence of solutions of (3.9) at the time levelstn, n = 0, 1, . . . , N. We quote

from Lubich (1994) the following convergence theorem.

THEOREM 4.2 For smooth compatible datag, the fully discrete method (3.9) (Galerkin in space, op-
erational quadrature in time) is unconditionally stable and the solutionφn

Δt,h ∈ Sm−1,m, 0 6 n 6 N,
m ∈ {0, 1}, satisfies the error estimate

‖φ(∙, tn)− φ
n
Δt,h(∙)‖H−1/2(Γ ) 6 Cg

(
Δt2+ hm+ 3

2

)
.

As an immediate consequence of this theorem, we see that the spatial and temporal errors are
balanced if

Δt2 ∼ hm+ 3
2 . (4.1)

4.2 Perturbations in the space discretization

In this section, we study the influence of replacing the matricesAn by the sparse approximatioñAn.
Our perturbation analysis is based on the theory which was developed inLubich (1994). For this, we
introduce the time continuous, space discrete problem which is given by: Findφh : [0, T ] → S such
that

∫ t

0

∫

Γ

∫

Γ
k(x − y, t − τ)φh(y, τ )ψh(x)dΓy dΓx dτ =

∫

Γ
g(x, t)ψh(x)dΓx ∀ψh ∈ S. (4.2)

We recall the definition of the one-sided Laplace transform

f̂ (s) := (L f )(s) :=
∫ ∞

0
e−st f (t)dt.

(Convention: if a function depends on space and time variables, the Laplace transform is always applied
to the time variable.) Applying this transformation to (4.2) and using the rule for the Laplace transform
of convolutions, we obtain (cf.Lubich, 1994)

∫

Γ

∫

Γ
k̂(x − y, s)φ̂h(y, s)ψh(x)dΓy dΓx =

∫

Γ
ĝ(x, s)ψh(x)dΓx ∀ψh ∈ S, ∀ s ∈ Iσ , (4.3)

whereIσ := {σ + iu: u ∈ R} for someσ > 0. The Laplace transform ofk is given by

k̂(z, s) =
e−s‖z‖

4π ‖z‖
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andφ̂h is the Laplace transform ofφh. Fors ∈ Iσ , we define the operatorVh(s): S→ Sby

(Vh(s)ϕh, ψh)L2(Γ ) :=
∫

Γ

∫

Γ
k̂(x − y, s)ϕh(y)ψh(x)dΓy dΓx ∀ϕh, ψh ∈ S.

Let Ph: H1/2(Γ )→ Sdenote the orthogonal projection, i.e.

(Ph f, ψh)L2(Γ ) := ( f, ψh)L2(Γ ) ∀ψh ∈ S.

With these notations at hand, the time continuous, spatially discrete problem (4.3) can be written in the
compact form: Find̂φh : Iσ → Ssuch that

(Vh(s)φ̂h(s), ψh)L2(Γ ) = (Phĝ(∙, s), ψh)L2(Γ ) ∀ψh ∈ S, ∀ s ∈ Iσ .

The time discretization can be described by replacings in Vh(s) by γ (e−sΔt )/Δt : Find φ̂Δt,h: Iσ → S
such that

(VΔt,h(s)φ̂Δt,h(s), ψh)L2(Γ ) = (Phĝ(∙, s), ψh)L2(Γ ) ∀ψh ∈ S, ∀ s ∈ Iσ , (4.4)

whereVΔt,h(s) := Vh(γ (e−sΔt )/Δt).

REMARK 4.3 The solutionφn
Δt,h at time steptn = nΔt (cf. (3.8)) can be written by means of the inverse

Laplace transform as

φn
Δt,h = (L

−1φ̂Δt,h)(tn).

Next, we express the solutioñφn
Δt,h of (3.20) in a similar fashion. Our cut-off strategy is based on

the approximation of the coefficientsωΔt
n (d) in the power series

k̂

(
d,
γ (ζ )

Δt

)
=
∞∑

n=0

ωΔt
n (d)ζ n

by

ω̃Δt
n (d) :=

{
ωΔt

n (d), d ∈ I Δt
n,ε,

0, d /∈ I Δt
n,ε.

(4.5)

Let

G(d, s) := k̂

(
d,
γ (e−sΔt )

Δt

)
=
∞∑

n=0

ωΔt
n (d)e−sΔtn,

G̃(d, s) :=
∞∑

n=0

ω̃Δt
n (d)e−sΔtn.

(4.6)

Fors ∈ Iσ , let ṼΔt,h (s) : S→ Sbe the operator defined by

(ṼΔt,h(s)ϕh, ψh)L2(Γ ) :=
∫

Γ

∫

Γ
G̃(‖x − y‖, s)ϕh(y)ψh(x)dΓy dΓx ∀ϕh, ψh ∈ S.
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Consider the problem: Find̃̂φΔt,h(s) ∈ Ssuch that

(ṼΔt,h(s)̂φ̃Δt,h(s), ψh)L2(Γ ) = (Phĝ(∙, s), ψh)L2(Γ ) ∀ψh ∈ S, ∀ s ∈ Iσ . (4.7)

Then, the solutioñφn
Δt,h of (3.20) can be expressed by means of the inverse Laplace transform

φ̃n
Δt,h := (L −1̂̃φΔt,h)(tn).

By combining (4.4) and (4.7), we see that the Laplace transform of the erroreΔt,h := φ̃Δt,h − φΔt,h

satisfies

(VΔt,h(s)êΔt,h(s), ψh)L2(Γ ) = ((VΔt,h(s)− ṼΔt,h(s))
̂̃φΔt,h(s), ψh)L2(Γ ) ∀ψh ∈ S, ∀ s ∈ Iσ .

This leads to the estimate

‖êΔt,h(s)‖H−1/2(Γ ) 6 ‖V
−1
Δt,h(s)‖H−1/2(Γ )←H1/2(Γ )‖(VΔt,h(s)− ṼΔt,h(s))

̂̃φΔt,h(s)‖H1/2(Γ ) (4.8)

for all s ∈ Iσ .
In order to estimate the terms in (4.8), we need the following estimate of‖V−1(s)‖H−1/2(Γ )←H1/2(Γ )

(cf. Lubich, 1994, (2.20)): Letσ > 0, then there existsM(σ ) such that

‖V−1(s)‖H−1/2(Γ )←H1/2(Γ ) 6 M(σ )|s|2 ∀ Re(s) > σ. (4.9)

LEMMA 4.4 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
Then, forσ > 0 there existscσ > 0 independent of the discretization parametersΔt, h such that

‖V−1
Δt,h(s)Ph‖H−1/2(Γ )←H1/2(Γ ) 6 cσ

1

Δt2
∀ s ∈ Iσ . (4.10)

Proof. FromLubich (1994, (5.17)), we deduce the estimate

‖V−1
Δt,h(s)Ph‖H−1/2(Γ )←H1/2(Γ ) = ‖V

−1
h (γ (e−sΔt )/Δt)Ph‖H−1/2(Γ )←H1/2(Γ )

6 M(σ0)

∣
∣
∣
∣
γ (e−sΔt )

Δt

∣
∣
∣
∣

2

∀ s ∈ Iσ , (4.11)

for σ0 such that Re
(
γ (e−sΔt )
Δt

)
> σ0 for all s ∈ Iσ . σ0 can be chosen independently ofΔt . The estimate

now follows due to the boundedness of|γ (e−sΔt )|. �
Next, we turn to the second factor in the right-hand side of (4.8). For the following lemma, we need

an inverse inequality which holds for our boundary element spaces (cf.Dahmenet al., 2004), while
the constant depends on the quasiuniformity of the mesh. LetCinv > 0 denote the smallest constant
such that

‖ψh‖L2(Γ ) 6 Cinvh−1/2‖ψh‖H−1/2(Γ ) ∀ψh ∈ S (4.12)

holds.
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LEMMA 4.5 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
Then,

‖(VΔt,h(s)− ṼΔt,h(s))
̂̃φΔt,h(s)‖H1/2(Γ ) 6

cΔεh−1

1− e−σΔt
‖̂̃φΔt,h(s)‖H−1/2(Γ ) ∀ s ∈ Iσ . (4.13)

The constantcΔ is associated with the Laplace operator andCinv is independent of the discretization
parametersΔt andh.

Proof. For anyφh ∈ S, the difference(VΔt,h(s)− ṼΔt,h(s))φ̂h(s) can be written in the form

‖(VΔt,h(s)− ṼΔt,h(s))φ̂h(s)‖H1/2(Γ ) = sup
ϕh∈S\{0}

‖ϕh‖H−1/2(Γ )=1

∣
∣
∣
∣

∫

Γ

∫

Γ
δ(‖x − y‖)φ̂h(y, s)ϕh(x)dΓy dΓx

∣
∣
∣
∣,

where (cf. (4.6))

δ(d) :=
∞∑

n=0

(ωΔt
n (d)− ω̃Δt

n (d))e−sΔtn.

From the construction of our cut-off strategy (cf. (3.17)), we deduce that

|δ(d)| 6
ε

4πd

∞∑

n=0

e−σΔtn =
ε

4πd(1− e−σΔt )
.

By using the well-knownL2-continuity of the single-layer potential for the Laplacian, we obtain

‖(VΔt,h(s)− ṼΔt,h(s))φ̂h(s)‖H1/2(Γ ) 6
ε

1− e−σΔt
sup

ϕh∈S\{0}
‖ϕh‖H−1/2(Γ )=1

∫

Γ

∫

Γ

|φ̂h(y, s)||ϕh(x)|

4π‖x − y‖
dΓy dΓx

6
Cεh−

1
2

1− e−σΔt
‖φh‖L2(Γ )

6
cΔεh−1

1− e−σΔt
‖φh‖H−1/2(Γ ).

�

REMARK 4.6 Note that the previous lemma holds under the more general assumption

|ωΔt
n (d)− ω̃Δt

n (d)| 6
ε

4πd
. (4.14)

Finally, we investigate the existence and boundedness of the solutionφ̃Δt,h. We do not employ
the possible smoothness ofφ̃Δt,h with respect to time since only the constants in the convergence and
complexity estimates would be improved but not the rates.
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LEMMA 4.7 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
Then givenσ > 0, for all cut-off parametersε in (3.19) with 0 < ε < 1−e−σΔt

2cΔcσ
hΔt2, the solutionφ̃Δt,h

in (3.20) exists and satisfies the stability estimate

‖̂̃φΔt,h(s)‖H−1/2(Γ ) 6 2cσΔt−2‖ĝ(s)‖H1/2(Γ ) ∀ s ∈ Iσ .

Proof. We start with the splitting

ṼΔt,h(s) = VΔt,h(s)(I − X(s)) with X(s) := V−1
Δt,h(s)(VΔt,h(s)− ṼΔt,h(s)).

Lemmata4.4and4.5 imply

‖X(s)‖H−1/2(Γ )←H−1/2(Γ ) 6 cΔcσ
1

Δt2

εh−1

1− e−σΔt
.

By choosing 0< ε < 1−e−σΔt

2cΔcσ
hΔt2, we obtain‖X(s)‖H−1/2(Γ )←H−1/2(Γ ) < 1/2 uniformly for all

s ∈ Iσ . This directly implies the stability estimate

‖Ṽ−1
Δt,h(s)Ph‖H1/2(Γ )←H−1/2(Γ ) 6 2‖V−1

Δt,h(s)Ph‖H1/2(Γ )←H−1/2(Γ ) 6 2cσΔt−2.

�
The combination of Lemmata4.4, 4.5 and 4.7 leads to the convergence estimate of the solution

φ̃Δt,h.

THEOREM 4.8 Let the time discretization be based on convolution quadrature with the BDF2 scheme.
We assume that the exact solutionφ(∙, t) is in Hm+1(Γ ) for any t ∈ [0, T ]. Then, for all cut-off
parametersε in (3.19) with 0 < ε < 1−e−σΔt

2cΔcσ
hΔt2, the solutionφ̃Δt,h in (3.20) exists and satisfies the

error estimate

‖φ̃n
Δt,h − φ(∙, tn)‖H−1/2(Γ ) 6 Cg(tn)

(
εh−1Δt−5+Δt2+ hm+ 3

2

)
,

whereCg depends on the right-hand sideg and onσ .

Proof. We employ the splitting

φ̃n
Δt,h − φ(tn) = en

Δt,h + (φ
n
Δt,h − φ(tn)).

The estimate (Lubich, 1994, Theorem 5.4) implies, for the second summand,

‖φn
Δt,h − φ(tn)‖H−1/2(Γ ) 6 Chm+ 3

2 .

The first summand can be estimated by combining Lemmata4.4, 4.5and4.7

‖êΔt,h(s)‖H−1/2(Γ ) 6 2c2
σcΔh−1Δt−4 ε

1− e−σΔt
‖ĝ(∙, s)‖H1/2(Γ )

6Cσ εh
−1Δt−5‖ĝ(∙, s)‖H1/2(Γ ) ∀ s ∈ Iσ .

From this, the estimate of the perturbationφ̃Δt,h − φΔt,h in the original time space follows from the
Laplace inversion formula. �
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COROLLARY 4.9 Let the assumptions as in Theorem4.8be satisfied. Let

Δt2 ∼ hm+ 3
2

and choose

ε ∼ h
7m
2 +

25
4 .

Then, the solutioñφn
Δt,h exists and converges with optimal rate

‖φ̃n
Δt,h − φ(∙, tn)‖H−1/2(Γ ) 6 Cg(tn)h

m+ 3
2 ∼ Cg(tn)Δt2.

4.3 Approximation ofωn by cut-off

In this section, we analyse the approximation of the convolution functions

ωΔt
n (d) =

1

n!

∂n

∂ζ n

e−γ (ζ )
d
Δt

4πd

∣
∣
∣
∣
∣
ζ=0

,

where

γ (ζ ) =
1

2
(ζ 2− 4ζ + 3).

We recall the explicit formula as in (3.6)

ωΔt
n (d) =

1

n!

1

4πd

(
d

2Δt

)n/2

e−
3d

2Δt Hn

(√
2d

Δt

)

, (4.15)

whereHn are the Hermite polynomials. Forn = 0, we have

ωΔt
0 (d) =

e−
3
2

d
Δt

4πd
,

with a singularity atd = 0, and forn = 1,

ωΔt
1 (d) =

1

Δt

e−
3
2

d
Δt

2π
.

In Fig. 1, we plotωΔt
n (d) for Δt = 1 and differentn. The convolution functions are approximately

scaled and translated versions of each other. To find an estimate forωΔt
n (d), we employ the ansatz

|ωΔt
n (d)| 6

1

4πd
σnΩn( f Δt

n (d)),

with some scaling factorsσn, some translation functionsf Δt
n (d) and a functionΩn(x) that converges

towards a functionΩ(x) asn→∞.
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FIG. 1. The convolution weightsωΔt
n (d) for Δt = 1 and different values ofn.

LEMMA 4.10 Forn > 1, let

Ωn(x) =
(

x
√

n
+ 1

)n/2

e−
x
√

n
2 and σn =

k

(2πn)
1
4

with k ≈ 1.086435. Then,

|ωΔt
n (d)| 6

1

4πd
σnΩn

(
d − tn√
Δt
√

tn

)

.

Proof. To obtain an estimate for|ωΔt
n (d)|, we use the following estimate (cf.Abramowitz & Stegun,

1972, (22.14.17)):

|Hn(x)| < ex2/2k2n/2
√

n!
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with k ≈ 1.086435. Applying this to (4.15) yields

|ωΔt
n (d)| 6

k

4πd

( d
Δt

)n/2 e−
d

2Δt

√
n!

.

Forn > 1, Stirling’s formula leads to 1√
n!
6

(
e
n

)n/2

(2πn)
1
4

and we obtain

|ωΔt
n (d)| 6

k

4πd

en/2
( d

tn

)n/2

(2πn)
1
4

e−
d

2Δt =
k

4πd

1

(2πn)
1
4

Ωn

(
d − tn√
Δt
√

tn

)

.

This estimate is illustrated in Fig.2. �

LEMMA 4.11 There holds

lim
n→∞

Ωn(x) = e−x2/4.

Proof. The logarithm ofΩn can be written as

logΩn(x) =
n

2
log

(
1+

x
√

n

)
−

x
√

n

2

=
n

2

∞∑

k=1

(−1)k+1

k

(
x
√

n

)k

−
x
√

n

2

= −
1

4
x2+

∞∑

k=3

1

3

(−1)k+1

2k

(
xk

n
k
2−1

)
,

FIG. 2. Comparison ofω1
100(d) (solid line) and 1

4πd σnΩn (dashed line).
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from which we conclude that

lim
n→∞

logΩn(x) = −
1

4
x2

holds. Thus, the statement of the lemma follows. �

REMARK 4.12 Forx > 0,Ωn(x) is decreasing for increasingn. For−
√

n 6 x 6 0,Ωn(x) is increasing
for increasingn.

In Section3.3, we have introduced a sparse approximation ofAn by replacingωΔt
n (d) by zero

outside an intervalI Δt
n,ε = [tn − cΔt

n,ε, tn + cΔt
n,ε]. To determineI Δt

n,ε such that

|ωΔt
n (d)| 6

ε

4πd
∀ d /∈ I Δt

n,ε,

we first seek an interval̃In,ε such that

Ωn(x) 6 Cε ∀ x /∈ Ĩn,ε. (4.16)

Simple analysis shows thatΩn has one maximum atx = 0 and is strictly monotonously increasing
for x < 0 and strictly monotonously decreasing forx > 0. Due to Remark4.12, sufficient conditions

for Ωn(x) 6 Cε areΩ1(x) =
√

x + 1 e−
1
2 x 6 Cε for positivex and limn→∞Ωn(x) = e−

x2
4 6 Cε for

negativex. If we choose

c̃ = 3 log
1

ε
, (4.17)

inequality (4.16) is satisfied for allx /∈ Ĩn,ε := [−c̃, c̃] with C =
√

3 e−1/3.

LEMMA 4.13 Letn > 1 andcΔt
n,ε =

√
Δt
√

tnc̃ with c̃ as in (4.17). For I Δt
n,ε := [tn − cΔt

n,ε, tn + cΔt
n,ε],

there holds

|ωΔt
n (d)| 6

ε

4πd
∀ d /∈ I Δt

n,ε.

Forn = 0 andI Δt
0,ε :=

[
0, 2

3Δt log 1
ε

]
, there holds

|ωΔt
0 (d)| 6

ε

4πd
∀ d /∈ I Δt

0,ε.

Proof. We have

|ωΔt
n (d)| 6

k

4πd

1

(2πn)
1
4

Ωn

(
d − tn√
Δt
√

tn

)

6
ε

4πd

since d−tn√
Δt
√

tn
/∈ [−c̃, c̃] and k

(2πn)
1
4

√
3 e−1/3 < 1. Forn = 0, we have

ωΔt
0 (d) =

e−
3
2

d
Δt

4πd

and the conditiond > 2
3Δt log 1

ε implies

e−
3
2

d
Δt

4πd
6

ε

4πd
.

�
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5. Complexity estimates

First, we determine the storage requirements for the matricesÃn. For the boundary element mesh, we
assume that the dimension of the boundary element space satisfies

c1h−2 6 M 6 C1h−2. (5.1)

A further assumption is related to the surfaceΓ and the meshG . We assume that there is a moderate
constantC such that for any 16 i 6 M , the subset

Pn
i := { j ∈ {1, . . . ,M} : (i, j ) ∈Pn

ε },

withPn
ε as in (3.18), satisfies

]Pn
i 6 C max





1,

√
Δt t

3
2
n

h2
log M





. (5.2)

This assumption can be derived from two assumptions, namely, that the area of

Ri,n := {y ∈ Γ : ∃ x ∈ suppbi : ‖x − y‖ ∈ I Δt
n,ε}

satisfies|Ri,n| 6 C
√
Δt t

3
2
n | log(ε)| and thatch2 6 suppbj 6 Ch2. Choosingε for the cut-off such that

it is balanced with the discretization error, we have

| logε| ∼ log M .

THEOREM 5.1 The number of nonzero entries in the sparse approximationÃn is bounded from above
by

] nonzero entries6 C M max

{
1, N−

1
2 t

3
2
n M log M

}
.

Proof. The number of nonzero matrix entries inÃ can be estimated by using (5.2),

M∑

i=1

]Pn
i 6 C M max

{
1,
√
Δt t

3
2
n h−2 log M

}
. (5.3)

The theorem immediately follows when replacingΔt andh by N−1 andM−
1
2 , respectively. �

Using relation (4.1), the following result is obtained.

COROLLARY 5.2 Under the assumption (4.1), the number of nonzero entries in the sparse approxima-
tion Ãn is bounded from above

• for piecewise constant boundary elements by

Ct
3
2
n M1+ 13

16 log M. (5.4a)

For the first time steps,tn = qΔt , whereq = O(log M), we obtain the improved upper bound

C M1+ 1
4 log

5
2 M. (5.4b)
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• for piecewise linear boundary elements by

Ct
3
2
n M1+ 11

16 log M. (5.4c)

For the first time steps,tn = qΔt , whereq = O(log M), the improved upper bound is

C M. (5.4d)

Note that the solution of (3.11) requires thatN linear systems of the form

A0φφφn = r.h.s.

have to be solved. If the dimensionM is large, iterative methods have to be employed for this purpose
which require a matrix–vector multiplication in each iteration step. In this light, the improved estimates
(5.4b) and (5.4d) of the number of nonzero matrix entries forÃ0 accelerate this solution process.

Next, we will discuss the computational complexity for procedure blocktriang from Section3.3.

THEOREM 5.3 The number of arithmetic operations needed in procedure blocktriang is bounded by

] operations6 C N
3
2 M2 log M.

Proof. By using the estimate (5.3), the number of arithmetic operations for performing the nested loop
over i, j, k, ` in procedure blocktriang can be estimated by

2
N∑

i=0

i−1∑

j=0

]P i− j
ε 6 2

N∑

i=0

i−1∑

j=0

M∑

`=1

]P
i− j
` 6 C M

N∑

i=0

i−1∑

j=0

max

{
1, N−

1
2 t

3
2

i− j M log M

}

6 C M
N−1∑

j=0

N− j∑

`=1

max
{
1, `

3
2 N−2M log M

}

6 C M N max
{

N, N
1
2 M |log M |

}

6 C N
3
2 M2 log M.

Note that the matrixA0 is positive definite (cf.Sauter & Schwab, 2004, Theorem 3.5.4) and its condition
number behaves likeh−1 (cf. Sauter & Schwab, 2004, Section 4.5). FromSauter & Schwab(2004,
Theorem 6.1.7), we deduce that O

(
h−

1
2 logh

)
iterations of a cg-algorithm suffice to compute a solution

so that the overall convergence rate is preserved. Due to the sparsity ofA0 (cf. Theorem5.3), the amount
of work is given by

C
(
h−

1
2 logh

)
N M1+ 1−m

4 log M 6 C N

{
M1+ 1

2 log2 M, m= 0,

M1+ 1
4 log2 M, m= 1.

Due to (4.1), this is bounded by the operations necessary for the nested loop. Thus, the assertion
follows. �
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6. Conclusions

In this paper, we have followed the convolution quadrature approach by Lubich and combined it with
a Galerkin boundary element method for solving the retarded potential boundary integral formulation
of the wave equation. We have presented a simplea priori cut-off strategy where the number of matrix
elements which have to be computed is substantially reduced and a significant portion of the matrix is
replaced by zero. A perturbation analysis established the stability of the perturbed problem.

The analysis in this paper paves the way for further complexity reductions. InHackbuschet al.
(2007) andBanjai & Sauter(2007), we develop a variant of the panel clustering method for the wave
equation in order to further reduce the storage requirements and also reduce the computational costs.
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