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We give explicit versions of Helfgott’s Growth Theorem for SL2, as well as of the

Bourgain–Gamburd argument for the expansion of Cayley graphs modulo primes of sub-

groups of SL2(Z) which are Zariski-dense in SL2.

1 Introduction

Our main goal in this paper is to prove the following result, which is an explicit version

of a theorem of Bourgain and Gamburd [1]:

Theorem 1.1. Let S ⊂ SL2(Z) be a finite symmetric set such that the subgroup gener-

ated by S is Zariski-dense in SL2(Z). Let P be the set of primes such that Sp = S (mod p)

generates SL2(Fp), which contains all but finitely many primes. Then the family of Cay-

ley graphs (C(SL2(Fp), Sp))p∈P is an expander family, and one can write down explicit

bounds for the spectral gap, given the set S.

In particular, if S generates a free group of rank |S|/2, the spectral gap (This is

the spectral gap of the normalized Laplace operator Δ= Id − M, where M is the Markov

averaging operator of the graph; thus the spectrum of Δ is a subset of the interval [0,2].)

satisfies

λ1(C(SL2(Fp), Sp))≥ 2−235γ−1
(1.1)
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for all p large enough, where

γ =
log

(
2√
3

√|S|
)

log maxs∈S ‖s‖ ,

the norm ‖s‖ being the operator norm of the matrix s, with respect to the euclidean

metric on C2. �

We can specify what “p large enough” means, but we defer a statement to

Section 4.3 since this involves a series of inequalities which are awkward to state (and

unenlightening), but easy to check for a given concrete set of matrices S.

A crucial ingredient in the argument of Bourgain and Gamburd is Helfgott’s

Growth Theorem [11] for SL2, which has considerable independent interest. We thus

require an explicit version of it, and we will prove the following:

Theorem 1.2. Let p be a prime number, H ⊂ SL2(Fp) a symmetric generating subset of

SL2(Fp) containing 1. Then the triple product set H (3) = H · H · H satisfies either H (3) =
SL2(Fp) or

|H (3)| ≥ |H |1+δ,

where δ= 1
3024 . �

Here is a simple corollary, which is (as far as the author is aware) also the first

explicit result of this kind for almost simple linear groups:

Corollary 1.3 (Explicit solution to Babai’s conjecture for SL2(Fp)). For any prime num-

ber p and any symmetric generating set S of SL2(Fp), we have

diam C(SL2(Fp), S)≤ 3(log |SL2(Fp)|)C

with C = 3323. �

Another corollary of Helfgott’s Theorem and of intermediate results used in the

proof of Theorem 1.1 is a better diameter bound for Zariski-dense subgroups:

Corollary 1.4 (Diameter bounds for Zariski-dense subgroups of SL2). Let S ⊂ SL2(Z) be

a finite symmetric set such that the subgroup generated by S is Zariski-dense in SL2(Z)

and is a free group of rank |S|/2. Let P be the set of primes such that Sp = S (mod p)

generates SL2(Fp).
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Let δ > 0 be as in Helfgott’s Theorem and define

τ−1 = log max
s∈S

‖s‖> 0.

Then for p∈P and p> exp(2/τ), we have

diam(C(SL2(Fp), S))≤ 3A(log |SL2(Fp)|)

where

A= log(8τ−1(|S| − 1)−1)

log(1 + δ)
. �

Remark 1.5. Using the well-known bound

λ1(Γp)≥ 1

|S|diam(Γp)2

(see, e.g., [18, Theorem 13.23]), these diameter bounds can be used to obtain lower

bounds for spectral gaps for “medium” primes. Note the huge discrepancy however at

the end of the range. �

Combining Theorem 1.1 with the second corollary, we can give explicit state-

ments for the motivating example of the Lubotzky group.

Corollary 1.6 (The Lubotzky group). Let

S =
{(

1 ±3

0 1

)
,

(
1 0

±3 1

)}
⊂ SL2(Z),

and let Γp = C(SL2(Fp), Sp). Then we have

λ1(Γp)≥ 2−236
(1.2)

if p≥ 2246
, and

diam(Γp)≤ 25572(log |SL2(Fp)|)

for all p 	= 3. �
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The original papers of Bourgain and Gamburd [1] and Helfgott [11] are effective,

and thus it is not surprising that one can obtain explicit versions. What is less clear is

how good the constants may be, and how much work may be required to provide them.

This paper gives a first indication in that respect.

The bounds we derive are very unlikely to be anywhere near sharp, and not only

because we often use rather rough estimates to simplify the shape and constants appear-

ing in various inequalities. (In some cases, one can easily extract better bounds from the

proof, e.g., one can replace 1
3024 by 1

1513 for all H large enough in Theorem 1.2.) Indeed,

when the Hausdorff dimension of the limit set of the subgroup G generated by S is large

enough, Gamburd [8] has shown quite good spectral gaps for the hyperbolic Laplace

operator on G\H, which strongly suggest that the corresponding combinatorial spec-

tral gap would also be relatively large. But this computation has not been done, to the

author’s knowledge, and our version of Theorem 1.1 gives the first fully explicit spec-

tral gap for infinite-index subgroups of SL2(Z), with Corollary 1.6 being a nice concrete

example (it is also known that the “Lubotzky group” is too small for Gamburd’s result to

apply).

In view of the direct link between the spectral gap of families of Cayley graphs

of quotients of “thin” (or sparse) subgroups of arithmetic groups and quantitative appli-

cations of sieve methods to these groups, it is natural to wish for a better understanding

of these issues. (Indeed, this question was asked by J-P. Serre during the author’s Bour-

baki lecture [15].) A first step towards effective versions of these applications of “sieve in

orbit” would be to extend Theorem 1.1 to an effective spectral gap for SL2(Z/qZ), where

q is a squarefree modulus (as originally proved by Bourgain, Gamburd, Sarnak [2]), and

we hope to come back to this.

As a final remark, the reader can also see this paper as presenting a complete

proof of the qualitative forms of Theorems 1.1 and 1.2 and their corollaries. When read

in this light, ignoring the fussy technical details arising from trying to have explicit

bounds, it may in fact be useful as a self-contained introduction to this area of research.

Notation. As usual, |X| denotes the cardinality of a set. Given a group G, and a

symmetric generating set S, we denote by C(G, S) the Cayley graph of G with respect to

S, which is |S|-regular. Moreover, we say that a symmetric set S ⊂ G freely generates G

if representatives of S modulo the relation s ∼ s−1 form a free generating set of G, that

is, G is a free group of rank |S|/2.

For a subset H ⊂ G of a group G, we write H (n) for the n-fold product set

H (n) = {x ∈ G | x = h1 · · · hn for some hi ∈ H}.
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Note the immediate relations

(H (n))(m) = H (nm), H (n+m) = H (n) · H (m)

for n, m ≥ 0 and (H (n))−1 = H (n) if H is symmetric. In addition, if 1 ∈ H , we have H (n) ⊂
H (m) for all m ≥ n. In particular, the diameter of a Cayley graph C(G, H), when H = H−1,

is the smallest n≥ 1 such that H̃ (n) = G, where H̃ = H ∪ {1}.
We denote by trp(H) the “tripling constant” of a subset H ⊂ G, defined by

trp(H)= |H (3)|
|H | .

2 Explicit multiplicative combinatorics

Another ingredient of Theorem 1.1 is the relation between subsets of a finite group

with small “multiplicative energy” and sets with small tripling constant, or approxi-

mate subgroups. This was obtained by Tao [24], in good qualitative form, but without

explicit dependency of the various quantities involved. In this section, we state a suit-

ably explicit version.

We recall first the definitions involved. For a finite group G and A, B ⊂ G, one

defines the multiplicative energy by

E(A, B)= |{(a1,a2,b1,b2) ∈ A2 × B2 | a1b1 = a2b2}|.

It is also convenient to denote by

e(A, B)= |E(A, B)|
(|A||B|)3/2

the normalized multiplicative energy, which is ≤ 1. Following Tao (see [24,

Definition 3.8]), for a finite group G and any α ≥ 1, a subset H ⊂ G is an α-approximate

subgroup if 1 ∈ H, H = H−1 and there exists a symmetric subset X ⊂ H(2) of order at most

α such that

H · H ⊂ X · H, (2.1)

which implies also H · H ⊂ H · X. Then we have:

Theorem 2.1. Let G be a finite group and α ≥ 1. If A and B are subsets of G such that

e(A, B)≥ α−1, there exist constants β1, β2, β3, β4 ≥ 1, a β1-approximate subgroup H ⊂ G
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and elements x, y∈ G such that

|H| ≤ β2|A| ≤ β2α
2|B|,

|A∩ xH| ≥ 1

β3
|A|, |B ∩ Hy| ≥ 1

β3
|B|,

trp(H)≤ β4,

and moreover βi ≤ c1α
c2 for some absolute constants c1, c2 > 0. In fact, one can take

β1 ≤ 21861α720, β2 ≤ 2325α126, β3 ≤ 22516α973, β4 ≤ 2930α360. (2.2)
�

Except for the values of the constants, this is proved in [24, Theorem 5.4, (i)

implies (iv)] and quoted in [26, Theorem 2.48]. Since this is obtained by following line by

line the arguments of Tao, we defer a proof to the Appendix.

3 Growth for SL2

We prove here Theorem 1.2. The argument we use is basically the one sketched by Pyber

and Szabó in [21, Section 1.1] (which is expanded in their paper to cover much more

general situations). It is closely related to the one of Breuillard, Greenand, Tao [4], and

many ingredients are already visible in Helfgott’s original argument [11].

3.1 Elementary facts and definitions

We begin with an important observation, which applies to all finite groups, and goes

back to Ruzsa: to prove that the tripling constant of a generating set H is at least a

small power of |H |, it is enough to prove that the growth ratio after an arbitrary (but

fixed) number of products is of such order of magnitude.

Proposition 3.1 (Ruzsa). Let G be a finite group, and let H ⊂ G be a symmetric

nonempty subset.

(1) Denoting αn = |H (n)|/|H |, we have

αn ≤ αn−2
3 = trp(H)n−2 (3.1)

for all n≥ 3.
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(2) We have trp(H (2))≤ trp(H)4 and for k≥ 3, we have

trp(H (k))≤ trp(H)3k−3. �

Proof. The first part is well known (see, e.g., [11, Proof of Lemma 2.2]). For (2), we have

trp(H (k))= α3k

αk
.

Since αk ≥ α3 for k≥ 3, we obtain trp(H (k))≤ α3k−3
3 for k≥ 3 by (1), while for k≥ 2,

we simply use α2 ≥ 1 to obtain trp(H (2))≤ α4
3. �

We first use Ruzsa’s Lemma to show that Helfgott’s Theorem holds when |H | is

small, in the following sense:

Lemma 3.2. Let G be a finite group and let H be a symmetric generating set of G con-

taining 1. If H (3) 	= G, we have |H (3)| ≥ 21/2|H |. �

Proof. If the triple product set is not all of G, it follows that H (3) 	= H (2). We fix some

x ∈ H (3) − H (2), and consider the injective map

i :

{
H → G

h �→ hx.

The image of this map is contained in H (4) and it is disjoint with H since x /∈ H (2).

Hence H (4), which contains H and the image of i, satisfies |H (4)| ≥ 2|H |. Hence, by Ruzsa’s

Lemma, we obtain

trp(H)≥
( |H (4)|

|H |
)1/2

≥ 21/2. �

Remark 3.3. In fact, as the referee pointed out, a better result is known (and is elemen-

tary): if H ⊂ G generates G, then |H (2)| ≥ 3
2 |H | (see [25]). �

The following version of the orbit-stabilizer theorem will be used to reduce the

proof of lower-bounds on the size a set to an upper-bound for another.

Proposition 3.4 (Helfgott). Let G be a finite group acting on a nonempty finite set X. Fix

some x ∈ X and let K ⊂ G be the stabilizer of x in G. For any nonempty symmetric subset
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H ⊂ G, we have

|K ∩ H (2)| ≥ |H |
|H · x| ,

where H · x = {h · x | h∈ H}. �

(Note that since H is symmetric, we have 1 ∈ K ∩ H (2).)

Proof. As in the classical proof of the orbit-stabilizer theorem, we consider the orbit

map, but restricted to H

φ :

{
H → X,

h �→ h · x.

Using the fibers of this map to count the number of elements in H , we obtain

|H | =
∑

y∈φ(H)
|φ−1(y)|.

But the image of φ is φ(H)= H · x, and we have

|φ−1(y)| ≤ |K ∩ H (2)|

for all y (indeed, if y= φ(h0) with h0 ∈ H , then all elements h∈ H with φ(h)= y satisfy

h−1
0 h∈ K ∩ H (2)). Therefore, we obtain

|H | ≤ |H · x||K ∩ H (2)|,

as claimed. �

Finally, a last lemma shows that if a subset H has a small tripling constant “in

a subgroup”, then H itself has small tripling (in the language of approximate groups, it

is a special case of the fact that the intersection of two approximate groups is still one).

Lemma 3.5. Let G be a finite group, K ⊂ G a subgroup, and H ⊂ G an arbitrary sym-

metric subset. For any n≥ 1, we have

|H (n+1)|
|H | ≥ |H (n) ∩ K|

|H (2) ∩ K| . �

Proof. Let X ⊂ G/K be the set of cosets of K intersecting H :

X = {xK ∈ G/K | xK ∩ H 	= ∅}.
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We can estimate the size of this set from below by splitting H into its

intersections with cosets of K: we have

|H | =
∑

xK∈X

|H ∩ xK|.

But for any xK ∈ X, fixing some g0 ∈ xK ∩ H , we have g−1g0 ∈ K ∩ H (2) if g ∈ x

K ∩ H , and hence

|xK ∩ H | ≤ |K ∩ H (2)|.

This gives the lower bound

|X| ≥ |H |
|K ∩ H (2)| .

Now take once more some xK ∈ X, and fix an element xk= h∈ xK ∩ H . Then

all the elements xkg are distinct for g ∈ K, and they are in xK ∩ H (n+1) if g ∈ K ∩ H (n),

so that

|xK ∩ H (n+1)| ≥ |K ∩ H (n)|

for any xK ∈ X, and (cosets being disjoint)

|H (n+1)| ≥ |X||K ∩ H (n)|,

which gives the result when combined with the lower bound for |X|. �

We will use classical structural definitions and facts about finite groups of Lie

type. In particular, a regular semisimple element g ∈ G = SL2(F̄p) is a semisimple element

with distinct eigenvalues. The centralizer of such an element is a maximal torus in G.

For any subset H ⊂ G, we write Hreg for the set of the regular semisimple elements in H .

A maximal torus T ⊂ G = SL2(Fp) is the intersection G ∩ T, where T is a maximal torus

of G which is stable under the Frobenius automorphism σ . Here are the basic properties

of regular semisimple elements and their centralizers; these are all standard facts, and

we omit the proofs. (For general facts about finite groups of Lie type, one may look at [6]

or [5, Chapters 1 and 3], and for conjugacy classes in SL2(Fp), one may look for instance

at [7, p. 70]; another source for SL2 is [23, Chapter 6]).
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Proposition 3.6. Fix a prime number p and let G = SL2(Fp), G = SL2(F̄p).

(1) A regular semisimple element x ∈ G is contained in a unique maximal torus

T, namely its centralizer T = CG(x). In particular, if T1 	= T2 are two maximal

tori, we have

T1,reg ∩ T2,reg = ∅. (3.2)

(2) If T ⊂ G is a maximal torus, we have

|Tnreg| = |T − Treg| = 2.

(3) For any maximal torus T, the normalizer NG(T) contains T as a subgroup

of index 2. Similarly, for any maximal torus T ⊂ G, NG(T) contains T as a

subgroup of index 2, and, in particular,

2(p− 1)≤ |NG(T)| ≤ 2(p+ 1).

(4) The conjugacy class Cl(g) of a regular semisimple element g ∈ G is the set

of all x ∈ G such that Tr(x)= Tr(g). The set of elements in G which are not

regular semisimple is the set of all x ∈ G such that Tr(x)2 = 4. �

Finally, (a variant of) the following concept was introduced under different

names and guises by Helfgott, Pyber–Szabó, and Breuillard–Green–Tao. We chose the

name from the last team.

Definition 3.7 (A set involved with a torus). Let p be a prime number, H ⊂ SL2(Fp) a

finite set and T ⊂ SL2(F̄p) a maximal torus. Then H is involved with T, or T with H , if and

only if T is σ -invariant and H contains a regular semisimple element of T with nonzero

trace, that is, H ∩ Tsreg 	= ∅ where the superscript “sreg” restricts to regular semisimple

elements with nonzero trace. �

Remark 3.8. The twist in this definition, compared with the one in [21] or [4], is that

we insist on having nonzero trace. This will be helpful later on, as it will eliminate a

whole subcase in the key estimate (the proof of Proposition 3.12), and lead to a shorter

proof, with better explicit constants. However, this restriction is not really essential in

the greater scheme of things, and it would probably not be a good idea to do something

similar for more general groups. �
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The alternative H (3) = SL2(Fp) in Helfgott’s growth theorem will be obtained as a

corollary of the Gowers–Nikolov–Pyber “quasi-random groups” argument (see [10, 19]).

Proposition 3.9. For a prime p≥ 3, if a subset H ⊂ SL2(Fp) satisfies

|H | ≥ 2|SL2(Fp)|8/9,

we have H (3) = SL2(Fp). �

For a proof, see, for example, [16, Section 4.5].

3.2 Escape from subvarieties and nonconcentration lemmas

Two important tools in the proof of growth theorems for linear groups are estimates

for escape from subvarieties and for nonconcentration in subvarieties. We state and

prove in this section the special cases which we need for the explicit proof of Helfgott’s

Theorem. The reader may wish to look only at the statements and skip afterwards to the

next section to see how they are used.

Lemma 3.10 (Escape). Let p≥ 7 be a prime number and let H ⊂ SL2(Fp) be a symmetric

generating set with 1 ∈ H . Then H (3)
sreg 	= ∅, that is, the 3-fold product set H (3) contains

a regular semisimple element x with nonzero trace. In particular, there exists a torus

T = CG(x) involved with H (3). (The condition p≥ 7 is sharp, see [16, Example 4.6.13] for

an example). �

The general nonconcentration inequalities are now often called “Larsen–Pink

inequalities”, since the first versions appeared in the work of Larsen and Pink [17]

on finite subgroups of linear groups. “Approximate” versions occur in the work of

Hrushovski [12] and Breuillard–Green–Tao [4], with closely related results found in that

of Pyber and Szabó [21].

Theorem 3.11 (Nonconcentration inequality). Let p≥ 3 be a prime number and let g ∈
SL2(Fp)= G be a regular semisimple element with nonzero trace. Let Cl(g)⊂ SL2(F̄p)= G

be the conjugacy class of g. If H ⊂ G is a symmetric generating set containing 1, we have

|Cl(g) ∩ H | ≤ 7α2/3|H |2/3, (3.3)
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where α= trp(H) is the tripling constant of H , unless

α > |H |1/28. (3.4)

�

From this last fact, we will deduce the following dichotomy, which is the precise

tool used in the next section to prove Helfgott’s Theorem.

Proposition 3.12 (Involving dichotomy). (1) For all prime number p, all subsets H ⊂
SL2(Fp) and all maximal tori T ⊂ SL2(F̄p), if T and H are not involved, we have

|H ∩ T| ≤ 4.

(2) If p≥ 3 and H ⊂ SL2(Fp)= G is a symmetric generating set containing 1, we

have
|Treg ∩ H (2)| ≥ 14−1α−4|H |1/3 (3.5)

for any maximal torus T ⊂ SL2(F̄p) which is involved with H , where α= trp(H), unless

α ≥ |H |1/168. (3.6)

�

Proof. (1) is obvious, since |T − Treg| ≤ 2 and there are also at most two elements of

trace 0 in T (as one can check quickly).

For (2), we apply the orbit-stabilizer theorem. Let T = T ∩ G be a maximal torus

in G. Fixing any g ∈ Treg, we have T = CG(g), the stabilizer of g in G for its conjugacy

action on itself. We find that

|T ∩ H (2)| ≥ |H |
|{hgh−1 | h∈ H}| (3.7)

for any symmetric subset H . Since H is involved with T, we can select g in Tsreg ∩ H in

this inequality, and the denominator on the right-hand side becomes

|{hgh−1 | h∈ H}| ≤ |H (3) ∩ Cl(g)| ≤ |H (3) ∩ Cl(g)|,

where Cl(g) is the conjugacy class of g in G. Applying the Larsen–Pink inequality to H (3),

with tripling constant bounded by α6 (by Ruzsa’s Lemma), we obtain the lower bound

|T ∩ H (2)| ≥ |H |
|H (3) ∩ Cl(g)| ≥ 7−1α−4|H |1/3,
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unless α= trp(H)≥ |H |1/168. In the first case, we obtain

|Treg ∩ H (2)| ≥ 14−1α−4|H |1/3,

unless

7−1α−4|H |1/3 ≤ 2

since there are only two elements of T ∩ H (2) which are not regular. This last alternative

gives

α ≥ 1
2 |H |1/12

which we see is a stronger conclusion than (3.6) (precisely, it is strictly stronger if |H |>
213, but in the other case the lower bound trp(H)≥ √

2 from Lemma 3.2 is already a

better result.) Hence Proposition 3.12 is proved. �

Now we prove the escape and nonconcentration results.

Proof of Lemma 3.10. The basic point that allows us to give a quick proof is that the

set N ⊂ SL2(Fp) of elements which are not regular semisimple is invariant under SL2(Fp)-

conjugation, and is the set of all matrices with trace equal to 2 or −2. It is precisely the

union of the two central elements ±1 and the four conjugacy classes of

u=
(

1 1

0 1

)
, v=

(
−1 1

0 −1

)
, u′ =

(
1 ε

0 1

)
, v′ =

(
−1 ε

0 −1

)
,

(where ε ∈ F×
p is a fixed nonsquare) while elements of trace 0 are the conjugates of

g0 =
(

0 1

−1 0

)

(these are standard facts, which can be checked on the list of conjugacy classes in

[7, p. 70], for instance.)

We next note that, if the statement of the lemma fails for a given H , it also fails

for every conjugate of H , and that this allows us to normalize at least one element to a

specific representative of its conjugacy class. It is convenient to argue by contradiction,

though this is somewhat cosmetic. So we assume that H (3)
nreg is empty and p≥ 7, and will

derive a contradiction.
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We distinguish two cases. In the first case, we assume that H contains one ele-

ment of trace ±2 which is not ±1. The observation above shows that we can assume that

one of u, v, u′, v′ is in H . We deal first with the case u∈ H .

Since H is a symmetric generating set, it must contain some element

g =
(

a b

c d

)
,

with c 	= 0, since otherwise, all elements of H would be upper-triangular, and H would

not generate SL2(Fp). Then H (3) contains ug, u2g, u−1g, and u−2g, which have traces,

respectively, equal to Tr(g)+ c, Tr(g)+ 2c, Tr(g)− c, Tr(g)− 2c. Since c 	= 0, and p is not

2 or 3, we see that these traces are distinct, and since there are four of them, one at least

is not in {−2,0,2}, which contradicts our assumption.

If v ∈ H , the argument is almost identical. If u′ (or similarly v′) is in H , the set of

traces of (u′) jg for j ∈ {−2,−1,0,1,2} is

{Tr(g)+ 2c,−Tr(g)− c,Tr(g),−Tr(g)+ c,Tr(g)− 2c},

and one can check that for p≥ 5, one of these is not 0, −2 or 2, although

some could coincide (for instance, if Tr(g)= 2, the other traces are {2 + 2c,−2 −
c,−2 + c,2 − 2c}, and if c − 2 = 2, we obtain traces {2,−6,10}, but −6 /∈ {0,2,−2} for

p≥ 5).

In the second case, all elements of H except ±1 have trace 0. We split in two

subcases, but depending on properties of Fp.

The first one is when −1 is not a square in Fp. Conjugating again, we can

assume that g0 ∈ H . Because H generates SL2(Fp), there exists g ∈ H which is not ±1,

±g0. If

g =
(

a b

c −a

)
∈ H

is such an element, we have a 	= 0, since otherwise b = −c−1 and the trace of g0g is

c + c−1, which is not in {−2,0,2} (nonzero because −1 is not a square in our first sub-

case), so H (2)
nreg 	= ∅, contrary to the assumption. Moreover, we can find g as above with

b 	= c: otherwise, it would follow that H is contained in the normalizer of a nonsplit

maximal torus, again contradicting the assumption that H is a generating set.
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Now we argue with g as above (i.e., a 	= 0, b 	= c). We have

g0g =
(

c −a

−a −b

)
∈ H (2),

with nonzero trace t = c − b. Moreover, if t = 2 , that is, c = b + 2, the condition

det(g0g)= 1 implies

−2b − b2 − a2 = 1

or (b + 1)2 = −a2. Similarly, if t = −2, we obtain (b − 1)2 = −a2. Since a 	= 0, it follows in

both cases that −1 is a square in Fp, which contradicts our assumption in the first

subcase.

Now we come to the second subcase when −1 = z2 is a square in Fp. We can

then diagonalize g0 over Fp, and conjugating again, this means we can assume that H

contains

g′
0 =

(
z 0

0 −z

)

as well as some other matrix

g′ =
(

a b

c −a

)

(the values of a, b, and c are not the same as before; we are still in the case when every

element of H has trace 0 except for ±1).

Now the trace of g′
0g′ ∈ H (2) is 2za. But we can find g′ with a 	= 0, since otherwise

H would again not be a generating set, being contained in the normalizer of the diagonal

(split) maximal torus, and so this trace is nonzero.

The condition 2za= ±2 would give za= ±1, which leads to −a2 = 1. But since

1 = det(g′)= −a2 − bc, we then obtain bc = 0 for all elements of H . Finally, if all elements

of H satisfy b = 0, the set H would be contained in the subgroup of upper-triangular

matrices. So we can find a matrix in H with b 	= 0, hence c = 0. Similarly, we can find

another

g′′ =
(

a 0

c −a

)

in H with c 	= 0. Taking into account that z2 = −1, computing the traces of g′g′′ and of

g′
0g′g′′ gives

bc − 2, bcz,
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respectively. If bc = 2, the third trace (of an element in H (3)) is 2z /∈ {0,2,−2} since p 	= 2,

and if bc = 4, it is 4z /∈ {0,2,−2} since p 	= 5. And of course if bc /∈ {2,4}, the first trace is

already not in {−2,0,2}. So we are done. �

For the proof of Theorem 3.11, we will use the method suggested by Larsen and

Pink at the beginning of [17, Section 4]. We consider the map

φ

⎧⎨
⎩Cl(g)× Cl(g)× Cl(g)−→ G × G,

(x1, x2, x3) �→ (x1x2, x1x3)

and we note that for (x1, x2, x3) ∈ (Cl(g) ∩ H)3, we have φ(x1, x2, x3) ∈ H (2) × H (2). We then

hope that the fibers φ−1(y1, y2) of φ are all finite with size bounded independently of

(y1, y2) ∈ G × G, say of size at most c1 ≥ 1. The reason behind this hope is that Cl(g)3

and G2 have the same dimension, and hence unless something special happens, we

would expect the fibers to have dimension 0, which corresponds to having fibers of

bounded size since everything is defined using polynomial equations.

If this hope turns out to be justified, we can count |Cl(g) ∩ H | by summing accord-

ing to the values of φ: denoting Z = (Cl(g) ∩ H)3 and W = φ(Z)= φ((Cl(g) ∩ H)3), we have

|Cl(g) ∩ H |3 = |Z | =
∑

(y1,y2)∈W

|φ−1(y1, y2) ∩ Z |

which—under our optimistic assumption—leads to the estimate

|Cl(g) ∩ H |3 ≤ c1|W| ≤ c1|H (2)|2 ≤ c1α
2|H |,

which has the form we want.

To implement this—and solve the complications that arise—we are led to ana-

lyze the fibers of the map φ. The resulting computations were explained to the author by

R. Pink, and start with an easy observation:

Lemma 3.13. Let k be any field, and let G = SL2(k). Let C ⊂ G be a conjugacy class, and

define

φ

⎧⎨
⎩C 3 −→ G2,

(x1, x2, x3) �→ (x1x2, x1x3).
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Then for any (y1, y2) ∈ G × G, we have a bijection

C ∩ y1C −1 ∩ y2C −1 −→ φ−1(y1, y2),

x1 �→ (x1, x−1
1 y1, x−1

1 y2).

In particular, if k= F̄p and C is a regular semisimple conjugacy class, we have a

bijection

φ−1(y1, y2)−→ C ∩ y1C ∩ y2C . �

Proof. Taking x1 as a parameter, any (x1, x2, x3) with φ(x1, x2, x3)= (y1, y2) can certainly

be written (x1, x−1
1 y1, x−1

1 y2). Conversely, such an element in SL2(k)3 really belongs to

C 3 (hence to the fiber) if and only if x1 ∈ C , x−1
1 y1 ∈ C , x−1

1 y2 ∈ C , that is, if and only if

x1 ∈ C ∩ y1C −1 ∩ y2C −1, which proves the first part.

For the second part, we need only notice that if C is a regular semisimple conju-

gacy class, say that of g, then C = C −1 because g−1 has the same characteristic polyno-

mial as g, hence is conjugate to g. �

We are now led to determine when an intersection of the form C ∩ y1C ∩ y2C can

be infinite. The answer is as follows, and it is one place where the use of the infinite

group SL2(F̄p) is significant:

Lemma 3.14 (Pink). Let k be an algebraically closed field of characteristic not equal to

2, and let g ∈ SL2(k) be a regular semisimple element, C the conjugacy class of g. For

y1, y2 ∈ G, the intersection X = C ∩ y1C ∩ y2C is finite, containing at most two elements,

unless one of the following cases holds:

(1) We have y1 = 1, or y2 = 1 or y1 = y2.

(2) There exists a conjugate B = xB0x−1 of the subgroup

B0 =
{(

a b

0 a−1

)}
⊂ SL2(k)

and an element t ∈ B ∩ C such that

y1, y2 ∈ U ∪ t2U, (3.8)
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where

U = xU0x−1, U0 =
{(

1 b

0 1

)}
⊂ B0.

In that case, we have X ⊂ C ∩ B.

(3) The trace of g is 0. �

The proof will be given at the end of this section: it is mostly computational.

Before coming back to the proof of Theorem 3.11, we state and prove another preliminary

lemma, which is another case of nonconcentration inequalities.

Lemma 3.15. For a prime p and γ ∈ F̄×
p , define

Cγ =
{(
γ t

0 γ−1

)
| t ∈ F̄p

}
.

For any p≥ 3, any γ ∈ F̄×
p , any x ∈ SL2(F̄p) and any symmetric generating set H of

SL2(Fp) containing 1, we have

|H ∩ xCγ x−1| =
∣∣∣∣∣H ∩ x

{(
γ t

0 γ−1

)∣∣∣∣∣ t ∈ F̄p

}
x−1

∣∣∣∣∣≤ 2α2|H |1/3,

where α= trp(H). �

Proof. We first deal with the fact that x and γ are not necessarily in SL2(Fp). We

have xCγ x−1 ∩ SL2(Fp)⊂ xB0x−1 ∩ SL2(Fp), and there are three possibilities for the lat-

ter: either xB0x−1 ∩ SL2(Fp)= 1, or xB0x−1 ∩ SL2(Fp)= T is a nonsplit maximal torus of

SL2(Fp), or xB0x−1 ∩ SL2(Fp)= B is an SL2(Fp)-conjugate of the group B0 = B0 ∩ SL2(Fp)

of upper-triangular matrices (this is once more a standard property of linear algebraic

groups over finite fields; the most direct argument in this special case is probably to

observe that we only need to know that xB0x−1 ∩ SL2(Fp) is a subset of a maximal torus,

or of a conjugate of B, which follows from the fact that this intersection is a solvable

subgroup of SL2(Fp)).

In the last case, we can assume that x ∈ SL2(Fp) and γ ∈ Fp. In the first, of course,

there is nothing to do. And as for the second, note that γ and γ−1 are the eigenvalues of

any element in SL2(Fp) ∩ xCγ x−1, and there are at most two elements in a maximal torus

with given eigenvalues. A fortiori, we have |H ∩ xCγ x−1| ≤ 2 ≤ 2α2|H |1/3 in that case.
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Thus, we are left with the situation where x ∈ SL2(Fp). Using SL2(Fp)-conjugation,

it is enough to deal with the case x = 1. Then either the intersection is empty (and the

result is true) or we can fix

g0 =
(
γ t0

0 γ−1

)
∈ H ∩ Cγ ,

and observe that for any g ∈ H ∩ Cγ , we have

g−1
0 g ∈ H (2) ∩ C1,

hence

|H ∩ Cγ | ≤ |H (2) ∩ C1| = |H (2) ∩ U0|,

which reduces further to the case γ = 1.

In that case, we have another case of the Larsen–Pink nonconcentration inequal-

ity, in that case in a one-dimensional variety. Here also, we can give a rather short proof:

we fix any element h∈ H such that h is not in B0, that is,

h=
(

a b

c d

)

with c 	= 0. This element exists, because otherwise H ⊂ B ∩ SL2(Fp) would not be a gen-

erating set of SL2(Fp).

Now, consider the multiplication map

ψ :

⎧⎨
⎩U∗ × U∗ × U∗ −→ G,

(u1,u2,u3) �→ u1hu2h−1u3,

where U∗ = U0 − 1 (we explain below why we do not use U3
0 as the domain).

Note that since h∈ H , we have ψ((U∗ ∩ H (2))3)⊂ H (8). Crucially, we claim that for

any x ∈ G, the fiber ψ−1(x) is either empty or reduced to a single element! If this is true,

we obtain as before

|U∗ ∩ H (2)|3 ≤ |H (8)| ≤ α6|H |,

and therefore

|U0 ∩ H (2)| = |U∗ ∩ H (2)| + 1 ≤ 2α2|H |1/3,

which is the result.
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To check the claim, we compute. Precisely, if

ui =
(

1 ti

0 1

)
∈ U∗,

a matrix multiplication leads to

ψ(u1,u2,u3)=
(

1 − t1t2c2 − t2ac �

−t2c2 �

)
,

and in order for this to be a fixed matrix x, we see that t2 (i.e., u2) is uniquely determined

(since c 	= 0). Since u2 is in U∗, it is not 1, and this means that t2 	= 0 (ensuring this is

the reason that ψ is defined using U∗ instead of U0). Thus t1 (i.e., u1) is also uniquely

determined, and finally

u3 = (u1hu2h−1)−1x

is uniquely determined. �

Proof of Theorem 3.11. We have g regular semisimple with Tr(g) 	= 0. We define as

above the map φ and denote

Z = (Cl(g) ∩ H)3, W = φ(Z)= φ((Cl(g) ∩ H)3),

so that

|Cl(g) ∩ H |3 =
∑

(y1,y2)∈W

|φ−1(y1, y2) ∩ Z | = S0 + S1 + S2, (3.9)

where Si denotes the sum restricted to a subset Wi ⊂ W, W0 being the subset where the

fiber has order at most 2, while W1 and W2 correspond to those (y1, y2) where cases (1)

and (2) of Lemma 3.14 hold. Precisely, we do not put into W2 the (y1, y2) for which both

cases (1) and (2) are valid, for example, y1 = 1, and we add to W1 the cases where y1 = −1,

which may otherwise appear in Case (2). We will prove:

S0 ≤ 2|H (2)|2 ≤ 2α2|H |2, S1 ≤ 4|H (2)|2 ≤ 4α2|H |2, S2 ≤ 32α34/3|H |5/3.

Assuming this, we immediately obtain

|Cl(g) ∩ H | ≤ 62/3α2/3|H |2/3 + 25/3α34/9|H |5/9
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from (3.9). Now either the second term is smaller than the first, and we obtain (3.3) (since

2 · 62/3 < 7), or

25/3α34/9|H |5/9 > 62/3α2/3|H |2/3 > 25/3α2/3|H |2/3,

which gives
α > |H |1/28,

the second alternative (3.4) of Theorem 3.11, which is therefore proved.

We now check the bounds on Si. The case of S0 follows by the fact that the fibers

over W0 have at most two elements, hence also their intersection with Z , and that |W0| ≤
|W| ≤ |H (2)|2.

The case of S1 splits into four almost identical subcases, corresponding to y1 = 1,

y1 = −1 (remember that we added this, borrowing it from Case (2)), y2 = 1 or y1 = y2. We

deal only with the first, say S1,1: we have

S1,1 ≤
∑

y2∈H (2)

|φ−1(1, y2) ∩ Z |.

But using Lemma 3.13, we have

|φ−1(1, y2) ∩ Z | = |{(x1, x−1
1 , x−1

1 y2) ∈ (Cl(g) ∩ H)3}| ≤ |H (3)|

for any given y2 ∈ H (2), since x1 ∈ H determines the triple (x1, x−1
1 , x−1

1 y2). Therefore,

S1,1 ≤ |H (2)||H | ≤ |H (2)|2,

and similarly for the other three cases.

Now for S2. Here also we sum over y1 first, which is 	= ±1 (by our definition of W2).

The crucial point is then that an element y1 	= ±1 is included in at most two conjugates

of B0. Hence, up to a factor 2, the choice of y1 fixes that of the relevant conjugate B for

which Case (2) applies. Next we observe that CB = Cl(g) ∩ B is a conjugate of the union

Cα ∪ Cα−1 ,

where, as in Lemma 3.15, we define

Cα =
{(

α t

0 α−1

)∣∣∣∣∣ t ∈ F̄p

}
,
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and α is such that α + α−1 = Tr(g). Given y1 ∈ H (2) and B containing y1, we have by (3.8)

y2 ∈ (H (2) ∩ U) ∪ (H (2) ∩ t2U)

for some t ∈ CB. We note that t2U is itself conjugate to Cα2 or Cα−2 .

Then the size of the fiber φ−1(y1, y2) ∩ Z is determined by the number of possi-

bilities for x1. As the latter satisfies

x1 ∈ CB ∩ H,

we see that we must estimate the size of intersections of the type

H ∩ Cγ , H (2) ∩ Cγ

for some fixed γ ∈ F×
p , as this will lead us to estimates for the number of possibilities for

y2 as well as x1. Using Lemma 3.15 twice, we obtain

|{y2 | (y1, y2) ∈ W2}| ≤ 8 trp(H (2))2|H (2)|1/3 ≤ 8α25/3|H |1/3,

(the factor 8 accounts for the two possible choices of B and the two “components” for y2,

and the factor 2 in the lemma) and

|φ−1(y1, y2) ∩ Z | ≤ 4α2|H |1/3.

This gives
S2 ≤ 32α31/3|H |2/3|H (2)| ≤ 32α34/3|H |5/3,

as claimed. �

There now only remains to prove Lemma 3.14.

Proof of Lemma 3.14. It will be convenient to compute the intersection C ∩ y−1
1 C ∩

y−1
2 C instead of C ∩ y1C ∩ y2C , a change of notation which is innocuous.

The computation is then based on a list of simple checks. We can assume that

the regular semisimple element g is

g =
(
α 0

0 α−1

)
,
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where α4 	= 1, because α = ±1 implies that g is not regular semisimple, and α a fourth

root of unity implies that Tr(g)= 0, which is the third case of the lemma (recall that k is

assumed to be algebraically closed). Thus, the conjugacy class C is the set of matrices

of trace equal to t = α + α−1.

The only trick involved is that, for any y1 ∈ SL2(k) and x ∈ SL2(k), we have

C ∩ (xy1x−1)−1C = x(x−1C ∩ y−1
1 x−1C )= x(C ∩ y−1

1 C )x−1

since x−1C = C x−1, by definition of conjugacy classes. This means that we can compute

C ∩ y−1
1 C , up to conjugation, by looking at C ∩ (y′

1)
−1C for any y′

1 in the conjugacy class of

y1. In particular, of course, determining whether C ∩ y−1
1 C is infinite or not only depends

on the conjugacy class of y1.

The conjugacy classes in SL2(k) are well known. We will run through rep-

resentatives of these classes in order, and determine the corresponding intersection

C ∩ y−1
1 C . Then, to compute C ∩ y−1

1 C ∩ y−1
2 C , we take an element x in C ∩ y−1

1 C , com-

pute y2x, and C ∩ y−1
1 C ∩ y−1

2 C corresponds to those x for which the trace of y2x is also

equal to t.

We assume y1 	= ±1. Then we distinguish four cases:

y1 =
(

1 1

0 1

)
, y1 =

(
−1 1

0 −1

)
,

y1 =
(
β 0

0 β−1

)
, β 	= ±1, β 	= α±2,

y1 =
(
α2 0

0 α−2

)
.

(3.10)

We claim that D = C ∩ y−1
1 C is then given, respectively, by the sets containing

all matrices of the following forms, parameterized by an element a∈ k (with a 	= 0 in the

third case):

(
α a

0 α−1

)
or

(
α−1 a

0 α

)
, (3.11)

(
a (−a2 + at − 1)/(2t)

2t t − a

)
,
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1

β + 1

(
t (β − α2)a

−(β − α−2)a−1 tβ

)
, (3.12)

(
α−1 a

0 α

)
or

(
α−1 0

a α

)
. (3.13)

Let us check, for instance, the third and fourth cases (cases (1) and (2) are left as

exercise), which we can do simultaneously, taking y1 as in (3.10) but without assuming

β 	= α±2. For

x =
(

a b

c d

)
∈ C ,

we compute

y1x =
(
βa βb

β−1c β−1d

)
.

This matrix belongs to C if and only if βa + β−1d= t = a + d. This means that

(a,d) is a solution of the linear system

a + d= t,

βa + β−1d= t,

of determinant β−1 − β 	= 0, so that we have

a= t

β + 1
, d= βt

β + 1
.

Write c = c′/(β + 1), b = b′/(β + 1); then the condition on c′ and b′ to have

det(x)= 1 can be expressed as

−c′b′ = (β − α2)(β − α−2).

This means that either β is not one of α2, α−2 (the third case), and then c and d

are nonzero, and we can parametrize the solutions as in (3.12), or else (the fourth case)

c or d must be zero, and then we obtain upper or lower-triangular matrices, as described

in (3.13).

Now we intersect D (in the general case again) with y−1
2 C . We write

y2 =
(

x1 x2

x3 x4

)
.
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We consider the first of our four possibilities now, so that x ∈ D is upper-

triangular with diagonal coefficients α, α−1 (as a set), see (3.11). We compute the trace of

y2x, and find that is

ax3 + x1α + x4α
−1 or ax3 + x1α

−1 + x4α.

Thus, if x3 	= 0, there is at most one value of a for which the trace is t, that is,

D ∩ y−1
2 C has at most two elements (one for each form of the diagonal). If x3 = 0, we find

that x1 is a solution of

αx1 + α−1x−1
1 = t,

or

αx−1
1 + α−1x1 = t,

for which the solutions are among 1, α2, and α−2, so that y2 is upper-triangular with

diagonal coefficients (1,1), (α2, α−2), or (α−2, α2), and this is one of the instances of Case

(2) of Lemma 3.14.

Let us now consider the second of our four cases, leaving this time the third

and fourth to the reader. Thus, we take x as in (3.12), and compute the trace of y2x as a

function of a, which gives

Tr(y2x)= −x3

2t
a2 +

(
x1 − x4 + x3

2

)
a + (x4 + 2x2)t.

The equation Tr(y2x)= t has therefore at most two solutions, unless x3 = 0 and

x4 = x1. In that case, we have x4 = 1, and the constant term is equal to t if and only if x4 = 1

and x2 = 0 (so y2 = 1) or x4 = ±1 and x2 = 1 (and then y2 = y1). Each of these possibilities

corresponds to the exceptional situation of Case (1) of Lemma 3.14.

Checking similarly the remaining cases, we finish the proof. �

3.3 Proof of Helfgott’s Theorem

We now prove Theorem 1.2. If p≤ 5, one checks numerically that trivial bounds already

imply the theorem. So we assume that p≥ 7, which means that Lemma 3.10 is applicable.

We will show that

trp(H)≥ 2−1/2|H |1/1512 (3.14)
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for p≥ 7, unless H (3) = SL2(Fp), where the latter case will arise by applying Proposi-

tion 3.9. Then using Lemma 3.2, we derive

trp(H)≥ max(21/2,2−1/2|H |1/1512)≥ |H |1/3024,

which is the precise form of Helfgott’s Theorem we claimed.

We define H̃ = H (2), so that (by Lemma 3.10) there exists at least one maximal

torus T involved with H (3), hence a fortiori involved with L = H̃ (2) = H (4).

If, among all maximal tori involved with L, there is one for which the lower

bound (3.5) (applied to H = L) fails, we obtain from Proposition 3.12 the lower bound

trp(L)≥ |L|1/168 ≥ |H |1/168,

and since trp(L)≤ α9 by Ruzsa’s Lemma, we obtain

α ≥ |H |1/1512 ≥ 2−1/2|H |1/1512, (3.15)

which is (3.14).

Otherwise, we distinguish two cases.

Case (1). There exists a maximal torus T involved with L such that, for any g ∈ G,

the torus gTg−1 is involved with L.

As we can guess from (3.5) and (3.2), in that case, the set L will tend to be rather

large, so |L| is close to |G|, unless the tripling constant is itself large enough.

Precisely, writing T = T ∩ G, we note that the maximal tori

gTg−1 = (gTg−1) ∩ G

are distinct for g taken among representatives of G/NG(T). Then we have the inequalities

|L(2)| ≥
∑

g∈G/NG (T)

|L(2) ∩ gTregg−1| ≥ 7−1β−4|L|1/3 |G|
|NG(T)| ,

where β = trp(L), since each gTg−1 is involved with L and distinct regular semisimple

elements lie in distinct maximal tori (and we are in a case where (3.5) holds for all tori

involved with L).
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Now we unwind this inequality in terms of H and α = trp(H). We have L(2) = H (8),

so

|H | ≥ α−6|L(2)| ≥ 14−1α−6β−4(p− 1)2|L|1/3 ≥ 14−1α−6β−4(p− 1)2|H |1/3

by Ruzsa’s Lemma. Furthermore, we have

β = trp(L)= trp(H (4))≤ α9

by Ruzsa’s Lemma again, and hence the inequality gives the bound

|H | ≥ 14−3/2α−63(p− 1)3,

which for p≥ 5 implies |H | ≥ 100−1α−63|G|. But then either

trp(H)= α ≥ 200−1/63|G|1/567 ≥ 2−1/2|H |1/621, (3.16)

or else

|H | ≥ 2|G|8/9,

which (via Proposition 3.9) are versions of the two alternatives we are seeking (in par-

ticular, the first implies (3.14).)

Case (2). Since we know that some torus is involved with L, the complementary

situation to Case (1) is that there exists a maximal torus T involved with L = H (4) and

a conjugate gTg−1, for some g ∈ G, which is not involved with L. We are then going to

obtain growth using Lemma 3.5. There is a first clever observation (the idea of which

goes back to work of Glibichuk and Konyagin [9] on the “sum-product phenomenon”):

one can assume, possibly after changing T and g, that g is in H .

Indeed, to check this claim, we start with T and h as above. Since H is a gener-

ating set, we can write

g = h1 · · · hm

for some m ≥ 1 and some elements hi ∈ H . Now let i ≤ m be the smallest index such that

the maximal torus

T′ = (hi+1 · · · hm)T(hi+1 · · · hm)
−1
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is involved with L. Taking i = m means that T is involved with L, which is the case, and

therefore the index i exists. Moreover i 	= 0, again by definition. It follows that

(hihi+1 · · · hm)T(hihi+1 · · · hm)
−1

is not involved with L. But this means that we can replace (T, g) with (T′,hi), and since

hi ∈ H , this gives us the claim.

We now write h for the conjugator g such that L and the torus S = gTg−1 = hTh−1

are not involved. Apply Lemma 3.5 with (H, K)= (H̃ ,hTh−1 ∩ G) and n= 5. This gives

|H̃ (6)|
|H̃ | ≥ |H̃ (5) ∩ S|

|H̃ (2) ∩ S| .

But since L = H̃ (2) and S are not involved (by construction), we have |H̃ (2) ∩ S| ≤ 2,

by the easy part of the Key Proposition 3.12, and therefore

|H̃ (6)|
|H̃ | ≥ 1

2
|H̃ (5) ∩ S|.

However, L and T are involved, and moreover

h(H (8) ∩ T)h−1 ⊂ H (10) ∩ S = H̃ (5) ∩ S,

so that

|H̃ (5) ∩ S| ≥ |H (8) ∩ T | = |L(2) ∩ T | ≥ 14−1β−4|L|1/3,

where β = trp(L), by the Key Proposition 3.12 (again, because (3.5) holds for all tori

involved with L).

Thus,
|H̃ (6)|
|H̃ | ≥ 28−1β−4|H |1/3,

which translates to

α10|H | ≥ 28−1α−36|H |4/3,

by Ruzsa’s Lemma. This is a rather stronger bound for α than before, namely

α = trp(H)≥ 28−1/46|H |1/138 ≥ 2−1/2|H |1/138. (3.17)
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To summarize, we have obtained three possible lower bounds of the right kind

for α, namely (3.15), (3.16) and (3.17), one of which holds if H (3) 	= SL2(Fp). All imply (3.14),

and hence we are done.

3.4 Diameter bound

Corollary 1.3 is a well-known consequence of the growth theorem: by induction on j ≥ 1,

we see using Helfgott’s Theorem that given a symmetric generating set S ⊂ G = SL2(Fp),

either diam C(G, S)≤ 3 j, or

|H (3 j)| ≥ |H |(1+δ) j
,

where H = S ∪ {1}. For

j =
⌈

log log |G|
log(1 + δ)

⌉
,

the second alternative is impossible, and hence

diam C(G, S)≤ 3 j ≤ 3(log |G|)(log 3)/ log(1+δ),

which gives the result since (log 3)/ log(1 + 1
3024 )≤ 3323.

4 The Bourgain–Gamburd method

The method of Bourgain and Gamburd [1] leads, from Helfgott’s growth theorem, to a

proof that the Cayley graphs modulo primes of a Zariski-dense subgroup of SL2(Z) form

an expander family. Applying this method straightforwardly with explicit estimates (as

done in [16, Chapter 4]), one obtains explicit expansion bounds (either for the spectral

gap of the combinatorial Laplace operator, or for the discrete Cheeger constant). How-

ever, these constants are typically very small.

4.1 The L2-flattening inequality

This section applies—in principle—to all finite groups, and the basic expansion crite-

rion that we derive (Corollary 4.4, following essentially Bourgain and Gamburd) is also

of independent interest.

In rough outline—and probabilistic language—the idea is to show that if two

independent SL2(Fp)-valued symmetrically distributed random variables X1 and X2 are

not too concentrated, but also not very uniformly distributed on SL2(Fp), then their

product X1 X2 will be significantly more uniformly distributed, unless there are obvious
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reasons why this should fail to hold. These exceptional possibilities can then be handled

separately.

Applying this to some suitable step Xk of the random walk (where the initial

condition is obtained by different means), this result leads to successive great improve-

ments of the uniformity of the distribution for X2k, X4k, . . . , X2 jk, until the assumptions of

the lemma fail. In that situation, the index m = 2 jk is of size about log |G|, and P(X2m = 1)

gives a suitable upper-bound on the number of cycles to obtain expansion, by a vari-

ant of what might be called the Huxley–Sarnak–Xue method (see [13, 22]), as we now

recall.

Remark 4.1. In an earlier draft, we had claimed a much better bound (roughly expo-

nentially better) by using nondyadic steps, but this was due to a bad mistake which was

pointed out by the referee, which we heartily thank once more. �

For a finite group G, we denote by d(G) the minimal dimension of a nontriv-

ial irreducible unitary representation of G. Moreover, if X is a G-valued symmetrically

distributed random variable, we define the return probability rp(X) by

rp(X)= P(X1 X2 = 1),

where (X1, X2) are independent random variables with the same distribution as X, or

equivalently

rp(X)=
∑
g∈G

P(X = g)2.

Let S be a symmetric generating subset of G and Γ = C(G, S) the associated Cay-

ley graph. The Markov operator M acts on functions on G by

Mϕ(g)= 1

|S|
∑
s∈S

ϕ(gs),

and it is a self-adjoint operator. The spectral gap of G, as we normalize it, is equal to

1 − ρ+
Γ , where ρ+

Γ is the largest eigenvalue of M, and it is therefore ≥ 1 − ρΓ , where ρΓ is

the spectral radius of M.

By expressing spectrally the number of closed walks of length 2m from the ori-

gin in Γ , and relating the latter with the return probability rp(Xm), where (Xm) is the
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random walk on the graph governed by M, one obtains

∑
ρ

ρ2m = 1

|G|rp(Xm).

Using positivity and the fact that G acts without invariant vector on the ρΓ th

eigenspace of M, it follows that

d(G)ρ2m
Γ ≤ 1

|G|rp(Xm),

or in other words, we have a bound for the spectral radius in terms of the return proba-

bility: for any m ≥ 1, we have

1 − λ1(Γ )≤ ρΓ ≤
( |G|

d(G)
rp(Xm)

)1/(2m)

. (4.1)

We consider now two independent (not necessarily identically distributed) G-

valued random variables X1 and X2 and let

rp+(X1, X2)= max(rp(X1), rp(X2)).

We attempt to bound rp(X1 X2) in terms of rp+(X1, X2). To do this while still

remaining at a level of great generality, the following definition will be useful:

Definition 4.2 (Flourishing). For δ > 0, a finite group G is δ-flourishing if any symmetric

subset H ⊂ G, containing 1, which generates G and has tripling constant trp(H) < |H |δ
satisfies H (3) = G. �

In particular, Theorem 1.2 states that all groups SL2(Fp), for p prime, are 1
3024 -

flourishing.

We will prove a general L2-flattening theorem, which may be of general interest.

In order to somehow streamline the proof, we do not explicitly describe here what “G

large enough” means. However, all relevant steps where a condition on the size of G

occurs are clearly marked, and in the second part of Section 4.3, we will look back to

express these as explicit inequalities.
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Theorem 4.3 (L2-flattening conditions). Let G be a finite group which is δ-flourishing

for some δ with 0< δ ≤ 1. Let X1 and X2 be symmetric independent G-valued random

variables.

Let 0< γ < 1 be given, and assume that

P(X1 ∈ xH)≤ |G|−γ (4.2)

for all proper subgroups H ⊂ G and all x ∈ G.

Then for any ε > 0, there exists δ1 > 0 and c3 > 0, depending only on ε, δ, and γ ,

such that

rp(X1 X2)≤ c3 max
{

1

|G|1−ε ,
rp+(X1, X2)

|G|δ1

}
(4.3)

when |G| is large enough in terms of (ε, δ, γ ).

More precisely, one may take

δ1 = 1

2
min

(
δγ

2c2 + 1
,
ε

2c2

)
, (4.4)

where c2 = 973 is as in Theorem 2.1 and

c3 ≤ 214c1 ≤ 22530. �

Proof. By definition, we have

rp(X1 X2)=
∑
g∈G

P(X1 X2 = g)2.

We now decompose the ranges of the distribution functions

νi(x)= P(Xi = x)

into dyadic intervals. Consider a parameter I ≥ 1, to be chosen later, and decompose

[min P(X = x),max P(X = x)] ⊂ [0,1] = I0 ∪ I1 ∪ · · · ∪ II ,

where

Ii =
⎧⎨
⎩]2−i−1,2−i] for 0 ≤ i < I,

[0,2−I ] for i = I.
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This gives two partitions of G in subsets

Aj,i = {x ∈ G | ν j(x)= P(X j = x) ∈ Ii},

for j = 1, 2. We note that

|Aj,i| ≤ 2i+1 (4.5)

for j = 1, 2 and 0 ≤ i < I .

Using this decomposition into the formula above, and the fact that

P(X1 X2 = g, X1 ∈ A1,I or X2 ∈ A2,I )≤ P(X1 ∈ A1,I )+ P(X2 ∈ A2,I )≤ |G|
2I−1

,

we obtain

rp(X1 X2)=
∑
g∈G

⎛
⎝ ∑

0≤i, j≤I

P(X1 X2 = g, X1 ∈ A1,i, X2 ∈ A2. j)

⎞
⎠

2

≤ 8|G|32−2I + 2
∑
g∈G

⎛
⎝ ∑

0≤i, j<I

P(X1 X2 = g, X1 ∈ A1,i, X2 ∈ A2, j)

⎞
⎠

2

≤ 23−2I |G|3 + 2I 2
∑

0≤i, j<I

∑
g∈G

P(X1 X2 = g, X1 ∈ A1,i, X2 ∈ A2, j)
2

by the Cauchy–Schwarz inequality. Furthermore, the inner sum (say, B(A1,i, A2, j)) in the

second term is given by

B(A1,i, A2, j)=
∑
g∈G

P(X1 X2 = g, X1 ∈ A1,i, X2 ∈ A2, j)
2

=
∑
g∈G

⎛
⎜⎜⎝ ∑
(x,y)∈A1,i×A2, j

xy=g

P(X1 = x)P(X2 = y)

⎞
⎟⎟⎠

2

=
∑

x1,x2∈A1,i ,y1,y2∈A2, j
x1 y1=x2 y2

ν1(x1)ν1(x2)ν2(y1)ν2(y2)

≤ 2−2i−2 j|{(x1, x2, y1, y2) ∈ A2
1,i × A2

2, j | x1y1 = x2y2}|

= 2−2i−2 j E(A1,i, A2, j),

where E(A, B) denotes the multiplicative energy.
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Thus, we have proved that

rp(X1 X2)≤ 23−2I |G|3 + 2I 2
∑

0≤i, j<I

2−2(i+ j)E(A1,i, A2, j). (4.6)

We now want to obtain upper-bounds in terms of the return probability

rp+(X1, X2). This is done in different ways, depending on the size of the subsets A1,i

and A2, j. We recall first the “trivial” bounds

E(A, B)≤ min(|A|2|B|, |A||B|2). (4.7)

We claim that for all i and j, we have

2−2(i+ j)E(A1,i, A2, j)≤ 24rp+(X1, X2)e(A1,i, A2, j), (4.8)

and that, for all α ≥ 1, we have

2−2(i+ j)E(A1,i, A2, j)≤ α−1rp+(X1, X2) (4.9)

unless
|A1,i|

2i
≥ 1

2
√
α
,

|A2, j|
2 j

≥ 1

2
√
α
. (4.10)

To see (4.8), we remark that

rp+(X1, X2)≥ 1

2
(rp(X1)+ rp(X2))= 1

2

∑
g∈G

(P(X1 = g)2 + P(X2 = g)2)

≥ 1

2

( |A1,i|
22+2i

+ |A2, j|
22+2 j

)
≥ 1

4

(|A1,i||A2, j|)1/2
2i+ j

.

for any choice of i and j. Hence, we obtain

2−2(i+ j)E(A1,i, A2, j)= 2−2(i+ j)e(A1,i, A2, j)(|A1,i||A2, j|)3/2

≤ 4rp+(X1, X2)e(A1,i, A2, j)
|A1,i||A2, j|

2i+ j

≤ 16rp+(X1, X2)e(A1,i, A2, j)

by (4.5).



Explicit Growth and Expansion for SL2 5679

As for (4.9), if we assume that 2−2(i+ j)E(A1,i, A2, j) > α
−1rp+(X1, X2), then we write

simply

2−2(i+ j)|A1,i|2|A2, j| ≥ 2−2(i+ j)E(A1,i, A2, j)≥ α−1 |A2, j|
22+2 j

,

using (4.7), and obtain the first inequality of (4.10), the second being obtained symmet-

rically.

With these results, we now fix some parameter α ≥ 1, and let

Pα = {(i, j) | 0 ≤ i, j < I, |A1,i| ≥ 2i−1α−1 and |A2, j| ≥ 2 j−1α−1}.

For (i, j) /∈ Pα, we have

2−2(i+ j)E(A1,i, A2, j)≤ α−2rp+(X1, X2)

by (4.9) and (4.10), and thus from (4.6), we have shown that

rp(X1 X2)≤ 23−2I |G|3 + 2α−2rp+(X1, X2)I
4 + 32rp+(X1, X2)I

2
∑

(i, j)∈Pα

e(A1,i, A2, j)

(estimating the size of the complement of Pα by I 2). We select

I =
⌈

2 log 2|G|
log 2

⌉
≤ 3 log(3|G|),

and hence obtain

rp(X1 X2)≤ 1

|G| + 28rp+(X1, X2)(log 3|G|)2
⎧⎨
⎩ (log 3|G|)2

α2
+ 2

∑
(i, j)∈Pα

e(A1,i, A2, j)

⎫⎬
⎭ .

We apply this bound with α= |G|δ0 , where δ0 > 0 will be chosen later. Thus,

rp(X1 X2)≤ 1

|G| + 28rp+(X1, X2)(log 3|G|)4|G|−2δ0

+ 29(log 3|G|)2rp+(X1, X2)
∑

(i, j)∈Pα

e(A1,i, A2, j).

Let then

Rα = {(i, j) ∈ Pα | e(A1,i, A2, j)≥ α−1} ⊂ Pα,
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so that the contribution of those (i, j) ∈ Pα which are not in Rα, together with the middle

term, can be bounded by

213(log 3|G|)4
|G|δ0

rp+(X1, X2).

We can now analyze the set Rα; it turns out to be very restricted when δ0 is

chosen small enough. By Theorem 2.1, for each (i, j) ∈ Rα, there exists a β1-approximate

subgroup Hi, j and elements (xi, yj) ∈ A1,i × A2, j such that

|Hi, j| ≤ β2|A1,i|, |A1,i ∩ xiHi, j| ≥ β−1
3 |A1,i|, |A2, j ∩ Hi, j yj| ≥ β−1

3 |A2, j|,

and with tripling constant bounded by β4, where the βi are bounded qualitatively by

βi ≤ c1|G|c2δ0

for some absolute constants, which we take to be c1 = 22516, c2 = 973 using (2.2). We then

note first that if Hi, j denotes the “ordinary” subgroup generated by Hi, j, we have

P(X1 ∈ xi Hi, j)≥ P(X1 ∈ xiHi, j)

≥ P(X1 ∈ A1,i ∩ xiHi, j)

≥ 1

β3

|A1,i|
2i+1

≥ 1

4β3α

≥ 1

4c1|G|(1+c2)δ0
, (4.11)

where we used the definition of Pα. If δ0 is small enough that

(1 + c2)δ0 < γ, (4.12)

and if |G| is large enough, this is not compatible with (4.2), and we can therefore assume

that each Hi, j (if any!) generates the group G.

We next observe that Hi, j cannot be extremely small. Indeed, we have

|Hi, j| ≥ |xiHi, j ∩ A1,i| ≥ β−1
3 |A1,i|,
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on the one hand, and by applying (4.2) with H = 1, we can see that A1,i is not too small,

namely

|A1,i| ≥ P(X1 ∈ A1,i)

maxg∈G P(X1 = g)
≥ |G|γP(X1 ∈ A1,i)≥ |G|γ |A1,i|

2i+1
≥ |G|γ

4α

using again the definition of Pα.

This gives the lower bound

|Hi, j| ≥ |G|γ
4αβ3

≥ 1

4c1
|G|γ1 (4.13)

with γ1 = γ − δ0(1 + c2) (which is > 0 by (4.12)), and then leads to control of the tripling

constant, namely

trp(Hi, j)≤ β4 ≤ c1|G|c2δ0 ≤ c1(4c1)
2δ0γ

−1
1 |Hi, j|c2δ0γ

−1
1 . (4.14)

Since we assumed that G is δ-flourishing, we see from Definition 4.2 that if δ0 is

such that
c2δ0

γ1
= c2δ0

γ − (1 + c2)δ0
< δ, (4.15)

and again if |G| is large enough, the approximate subgroup Hi, j must in fact be very

large, especially, it must satisfy

Hi, j · Hi, j · Hi, j = G,

and, in particular,

|Hi, j| ≥ |G|
β4

≥ 1

c1
|G|1−c2δ0 .

Intuitively, this implies that X1 and X2 are already rather uniformly distributed

over G, and hence that rp+(X1, X2) is already too small to be significantly improved at

the level of X1 X2. To express this idea concretely, we go back to the first stage of the

argument, namely (4.6): the contribution to rp(X1 X2) coming from (i, j) was bounded by

2−2(i+ j)E(A1,i, A2, j)≤ |A1,i||A2, j|2
22(i+ j)

≤ 1

2i−3

by (4.5). But then we also have

2i+1 ≥ |A1,i| ≥ |Hi, j|
β2

≥ |G|
β2β4

≥ c−1
1 |G|1−c2δ0 ,
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(observe that β2β4 ≤ c1|G|c2δ0 ) and therefore

2−2(i+ j)E(A1,i, A2, j)≤ 16c1|G|−1+2c2δ0 .

Using again the trivial bound I 2 ≤ 9(log 3|G|)2 for the number of possible pairs

(i, j) to which this applies, the conclusion is an inequality

rp(X1 X2)≤ 1

|G| + 211c1
(log 3|G|)4
|G|1−c2δ0

+ 213 (log 3|G|)4
|G|δ0

rp+(X1, X2), (4.16)

which holds (under the assumptions that |G| is sufficiently large) for all δ0 small enough

so that (4.12) and (4.15) are satisfied. It is elementary that (4.15) is stronger than (4.12)

and is equivalent with

δ0 <
δγ

(1 + δ)c2 + δ
,

which holds when δ0 < δγ/(2c2 + 1) (since we assume δ ≤ 1).

Thus, we can apply this for

δ0 = min
(

δγ

2c2 + 1
,
ε

2c2

)
= 2δ1,

where δ1 is given by (4.4). Then for |G| large enough, (4.16) implies (4.3), and hence we

have finished the proof of Theorem 4.3. �

We can summarize all this as follows (with the same remark as before concerning

our handling of the conditions on the size of G):

Corollary 4.4 (The Bourgain–Gamburd expansion criterion). Let c = (c,d, δ, γ ) be a

tuple of positive real numbers, and let G(c) be the family of all finite connected Cay-

ley graphs C(G, S) for which the following conditions hold:

(1) We have d(G)≥ |G|d;

(2) The group G is δ-flourishing;

(3) For the random walk (Xn) on G with X0 = 1, we have that

P(Xk ∈ xH)≤ |G|−γ

for some k≤ c log |G| and all x ∈ G and proper subgroups H ⊂ G.
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Then, for any Γ ∈ G(c) with |Γ | large enough, the spectral gap of the normalized

Laplace operator of Γ satisfies

λ1(Γ )≥ 1 − exp
(

− d

4cj

)
,

where

j ≤ 8 max
(

2c2 + 1

δγ
,

16c2

7d

)
. �

Note that it is not clear at this point that this corollary is not an empty statement

(or one that applies at most to finitely many graphs with a bounded valency). But in the

next section, we will check that it applies to the situation of Theorem 1.1 to prove that

certain families of Cayley graphs are expanders.

Proof. Let Γ = C(G, S) be a graph in G(c). We will apply Theorem 4.3 with ε= d/2 so

that

δ1 = 1

2
min

(
δγ

2c2 + 1
,

d

4c2

)
.

When |G| is large enough, we can rephrase the conclusion using the simpler

inequality

rp(Y1Y2)≤ c3 max
(

1

|G|1−d/2
,

rp+(Y1,Y2)

|G|δ1

)
≤ max

(
1

|G|1−3d/4
,

rp+(Y1,Y2)

|G|δ1/2

)
, (4.17)

for random variables Y1 and Y2 which satisfy the assumptions of this theorem.

Let k= �c log |G|� be given by (3). We apply the theorem to Y1 = X2 jk and Y2 =
X2( j+1)kY−1

1 for j ≥ 0. These are indeed independent and symmetric random variables, and

Conditions (2) and (3) imply that we can indeed apply Theorem 4.3 to these random

variables for any j ≥ 2. Since Y1 and Y2 are identically distributed, we have

rp+(Y1,Y2)= rp(Y1)= rp(X2 jk).

Thus, applying the theorem, we obtain by induction

rp(X2 jk)≤ rp(Xk)|G|− jδ1/2 ≤ |G|− jδ1/2

when j is such that

|G|1−3d/4 > |G| jδ1/2,
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and for larger j, we obtain
rp(X2 jk)≤ |G|−1+3d/4.

In particular, we obtain this last inequality for

j =
⌈

2(1 − 3d/4)

δ1

⌉
≤ 4

δ1
≤ 8 max

(
2c2 + 1

δγ
,

4c2

d

)
,

which, by the “cycle-counting” inequality (4.1), gives

ρΓ ≤ (|G|1−drp(X2 jk))
1/(2 jk) ≤ exp

(
− d

2 j+3c

)
,

which thus proves the theorem. �

4.2 Expansion bounds for SL2

Theorem 1.1 will now be proved by applying the criterion of Corollary 4.4. Thus, we will

consider the groups G p = SL2(Fp) for p prime, for which Condition (1) of the Bourgain–

Gamburd criterion (which is purely a group-theoretic property) is given by

d(SL2(Fp))= p− 1

2

for p≥ 3 (a result of Frobenius), which gives a value of d arbitrarily close to 1
3 , for p large

enough. Condition (2) is given by Helfgott’s Theorem, with δ = 1
3024 . Note that it is purely

a property of the groups SL2(Fp).

Condition (3), on the other hand, depends on the choice of generating sets. The

symmetric generating sets Sp in Theorem 1.1 are assumed to be obtained by reduction

modulo p of a fixed symmetric subset S ⊂ SL2(Z). We will argue first under the additional

assumption that S ⊂ SL2(Z) generates a free group.

We begin with a classical proposition, the idea of which goes back to Margulis.

For the statement, recall that the norm of a matrix g ∈ GLn(C) is defined by

‖g‖ = max
v,w 	=0

|〈gv,w〉|
‖v‖‖w‖ ,

where 〈·, ·〉 is the standard inner product on Cn. This satisfies

‖g1g2‖ ≤ ‖g1‖‖g2‖, max
i, j

|gi, j| ≤ ‖g‖ for g = (gi, j), (4.18)

the latter because gi, j = 〈gei, ej〉 in terms of the canonical basis.
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Proposition 4.5 (Large girth for finite Cayley graphs). Let S ⊂ SL2(Z) be a symmetric

set, and let Γ = C(G, S) be the corresponding Cayley graphs. Let τ > 0 be defined by

τ−1 = log max
s∈S

‖s‖> 0, (4.19)

which depends only on S.

(1) For all primes p and all r < τ log(p/2), where G p = SL2(Fp), the subgraph Γr

induced by the ball of radius r in Γ maps injectively to C(G p, S).

(2) If G is freely generated by S, in particular, 1 /∈ S, the Cayley graph C(G p, S)

contains no cycle of length < 2τ log(p/2), that is, its girth girth(C(Gp,S)) is at least

2τ log(p/2). �

Proof. The main point is that if all coordinates of two matrices g1, g2 ∈ SL2(Z) are less

than p/2 in absolute value, a congruence g1 ≡ g2 (mod p) is equivalent to the equality

g1 = g2. And because G is freely generated by S, knowing a matrix in G is equivalent to

knowing its expression as a word in the generators in S.

Thus, let x be an element in the ball of radius r centered at the origin. By

definition, x can be expressed as

x = s1 · · · sm

with m ≤ r and si ∈ S. Using (4.18), we obtain

max
i, j

|xi, j| ≤ ‖x‖ ≤ ‖s1‖ · · · ‖sm‖ ≤ em/τ ≤ er/τ .

Applying the beginning remark and this fact to two elements x and y in the

ball B1(r) of radius r centered at 1, for r such that er/τ <
p
2 , it follows that x ≡ y(mod p)

implies x = y, which is (1).

Then (2) follows because any embedding of a cycle γ : Cm → C(G p, S) such that

γ (0)= 1 and such that

d(1, γ (i))≤ m/2< τ log(p/2)

for all i can be lifted to the cycle (of the same length) with image in the Cayley graph of

G with respect to S, and if S generates freely G, the latter graph is a tree. Thus, a cycle

of length m = girth(C(Gp,S)) must satisfy m/2 ≥ τ log(p/2). �
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We can now check Condition (3) in the Bourgain–Gamburd criterion, first for

cosets of the trivial subgroup, that is, for the probability that Xn be a fixed element

when n is of size c log p for some fixed (but small) c> 0. As we did earlier, we clearly

mark where we impose conditions on the size of p, and these will be made explicit in

Section 4.3.

Corollary 4.6 (Decay of probabilities). Let S ⊂ SL2(Z) be a symmetric set, G the sub-

group generated by S. Assume that S freely generates G. Let p be a prime such that

the reduction Sp of S modulo p generates G p = SL2(Fp), and let (Xn) be the random walk

on C(G p, Sp) with X0 = 1. Let

τ−1 = log max
s∈S

‖s‖> 0,

as in Proposition 4.5.

Fix a constant c with 0< c ≤ 1. If p is large enough, depending on c and S, then

for

n= c�τ log(p/2)�

and any x ∈ SL2(Fp), we have

P(Xn = x)≤ |G p|−cγ1 (4.20)

where

γ1 =
τ
(
log

(
2√
3

√|S|
))

8
. (4.21)

More precisely, this holds for all

p≥ max
(

17,2 exp
(

2

cτ

))
. (4.22)

�

The “extra” parameter c will be useful in the argument involving all proper sub-

groups H below.

Proof. There exists x̃ ∈ G such that x̃ reduces to x modulo p and x̃ is at the same dis-

tance to 1 as x, and by Proposition 4.5, (2), we have

P(Xn = x)= P(X̃n = x̃),



Explicit Growth and Expansion for SL2 5687

for n≤ τ log(p/2), where (X̃n) is the random walk starting at 1 on the |S|-regular tree

C(G, S). By a well-known result of Kesten [14], we have

P(X̃n = x̃)≤ r−n with r = |S|
2
√|S| − 1

,

for all n≥ 1 and all x̃ ∈ G. Since c ≤ 1, we have

n= c�τ log(p/2)� ≥ cτ log(p/2)− 1,

and we obtain

P(Xn = x)≤ r
( p

2

)−cτ log r
≤
( p

2

)− 1
2 cτ log r

,

for p≥ 2r2/(cτ log r). Using the inequality

p

2
≥ |G p|1/4

for p≥ 17, this becomes

P(Xn = x)≤ |G p|−cτ(log r)/8

for all p≥ max(17,2r2/(cτ log r)). Since r ≥ 2√
3

√|S|, we obtain the desired result. �

In order to deal with cosets of other proper subgroups of SL2(Fp), we will exploit

the fact that those subgroups are very well understood, and in particular, there is no

proper subgroup that is “both big and complicated”. Precisely, by results going back to

Dickson (see, e.g., the account in [23, Chapter 6] for PSL2(Fp), from which the result for

SL2(Fp) follows easily), one knows that for p≥ 5, if H ⊂ SL2(Fp) is a proper subgroup,

one of the following two properties holds:

(1) The order of H is at most 120;

(2) For all (x1, x2, x3, x4) ∈ H , we have

[[x1, x2], [x3, x4]] = 1. (4.23)

The first ones are “small”, and will be easy to handle using (4.20). The second

are, from the group-theoretic point of view, not very complicated (their commutator

subgroups are abelian). The following ad hoc lemma takes care of them (note that this
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is the only place where using prime fields Fp instead of arbitrary finite fields really

simplifies the argument, since (4.23) does not hold for proper subgroups of, say, SL2(Fp2)):

Proposition 4.7. Let k≥ 2 be an integer and let W ⊂ Fk be a subset of the free group on

k generators (a1, . . . ,ak) such that

[[x1, x2], [x3, x4]] = 1 (4.24)

for all (x1, x2, x3, x4) ∈ W. Then for any m ≥ 1, we have

|{x ∈ W | dT (1, x)≤ m}| ≤ (4m + 1)(8m + 1)≤ 45m2,

where T is the |S|-regular tree C(Fk, S), S = {a±1
i }. �

Proof. The basic fact we need is that the condition [x, y] = 1 is very restrictive in Fk:

precisely, for a fixed x 	= 1, we have [x, y] = 1 if and only if y∈ C Fk(x), which is an infinite

cyclic group. Denoting a generator by z, we find

|{y∈B1(m) | [x, y] = 1}| = |{h∈ Z | dTk(1, z
h)≤ m}| ≤ 2m + 1 (4.25)

since (a standard fact in free groups) we have dT (1, zh)≥ |h|.
Let W be a set satisfying the assumption (4.24), which we assume to be not

reduced to {1}. We denote Wm = W ∩ B1(m). First, if [x, y] = 1 for all x, y∈ Wm, then by

taking a fixed x 	= 1 in Wm, we obtain Wm ⊂ C Fk(x) ∩ B1(m), and (4.25) gives the result.

Otherwise, fix x0 and y0 in Wm such that a= [x0, y0] 	= 1. Then, for all y in Wm we

have [a, [x0, y]] = 1. Noting that dT (1, [x0, y])≤ 4m, it follows again from the above that the

number of possible values of [x0, y] is at most 8m + 1 for y∈ Wm.

Now for one such value b = [x0, y], we consider how many y1 ∈ Wm may satisfy

[x0, y1] = b. We have [x0, y] = [x0, y1] if and only if ϕ(y−1y1)= y−1y1, where ϕ(y)= x0yx−1
0

denotes the inner automorphism of conjugation by x0. Hence, y1 satisfies [x0, y1] = b if and

only if ϕ(y−1y1)= y−1y1, which is equivalent to y−1y1 ∈ C Fk(x0). Since y−1y1 is an element

at distance ≤ 2m of 1 if y and y1 are in B1(m), applying (4.25) gives

|{y1 ∈B1(m) | [x0, y1] = [x0, y]}| ≤ 4m + 1,

and hence we have |Wm| ≤ (4m + 1)(8m + 1) in that case, which proves the result. �
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Using Corollary 4.6, we finally verify fully Condition (3) in Corollary 4.4:

Corollary 4.8 (Decay of probabilities, II). Let S ⊂ SL2(Z) be a symmetric set, G the sub-

group generated by S. Assume that S freely generates G. Let p be a prime such that the

reduction Sp of S modulo p generates G p = SL2(Fp), and let (Xn) be the random walk on

C(G p, Sp) with X0 = 1. Let

τ−1 = log max
s∈S

‖s‖> 0,

as in Proposition 4.5.

If p is large enough, then for

n=
⌊ τ

32
log(p/2)

⌋
,

any x ∈ SL2(Fp) and any proper subgroup H ⊂ SL2(Fp), we have

P(Xn ∈ xH)≤ |G p|−γ (4.26)

where

γ =
τ
(
log

(
2√
3

√|S|
))

29
. (4.27)

�

Proof. We start by noting that

P(Xn ∈ xH)2 ≤ P(X2n ∈ H)

for all x ∈ G p and all subgroups H ⊂ G p.

Consider first the case where (4.23) holds for H . Let H̃ ⊂ G be the pre-image of

H under reduction modulo p. If 2n≤ τ log(p/2), then as in the proof of Corollary 4.6, we

obtain

P(X2n ∈ H)= P(X̃2n ∈ H̃).

Provided n also satisfies the stronger condition n≤ m = 1
16τ log(p/2), any com-

mutator

[[x1, x2], [x3, x4]]

with xi ∈ H̃ ∩ B1(n) is an element at distance at most τ log(p/2) from 1 in the tree C(G, S),

which reduces to the identity modulo p by (4.23), and therefore must be itself equal
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to 1. In other words, we can apply Proposition 4.7 to W = H̃ ∩ B1(m) to deduce the upper

bound

|H̃ ∩ B1(m)| ≤ 45 m2.

We now take

n= 1
32�τ log(p/2)�,

and we derive

P(X2n ∈ H)≤ |H̃ ∩ B1(m)|(max
x∈G p

P(X2n = x))≤ 45m2|G p|−γ1/16

(where γ1 is given by (4.21), as in Corollary 4.6), and hence

P(Xn ∈ xH)≤
√

45

16
τ(log p/2)|G p|−γ1/32 ≤ |G p|−γ1/64 (4.28)

provided p is large enough, which is the conclusion in that case.

On the other hand, if (4.23) does not hold, we have |H | ≤ 120, and for the same

value of n we obtain

P(Xn ∈ xH)≤ 120|G p|−γ1/32 ≤ |G p|−γ1/64 (4.29)

for p large enough, by Corollary 4.6 with c = 1
32 . This gives again the desired result. �

The following upper-bound on γ was suggested by the referee:

Lemma 4.9. With notation as in Corollary 4.8, we have

γ ≤ 2−5. �

Proof. For n≥ 1, the cardinality of the ball B1(n) is at least (|S| − 1)n, and is at most

∣∣∣∣
{

g ∈ M2(Z) | |gi, j| ≤
(

max
s∈S

‖s‖
)n

for 1 ≤ i, j ≤ 2
}

by (4.18). Thus, denoting Δ= maxs∈S ‖s‖, we find

log(|S| − 1)≤ 4 log(2Δ+ 1),
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and hence

γ = 2−9
log( 2√

3

√|S|)
log(Δ)

≤ 2−7 log(2Δ+ 1)

log(Δ)
.

Now we note that either Δ≥ 2, or S is contained in the finite set of matrices in

SL2(Z) where all coefficients are in {−1,0,1}. There are 20 such matrices, and all those

which are not of finite order are parabolic. For these, we have ‖s‖ ≥ √
2, and therefore

Δ≥ √
2 in all cases, and hence

γ ≤ 2−7 log(2
√

2 + 1)

log(
√

2)
≤ 2−5. �

4.3 Summary

We can now summarize how to obtain an explicit spectral gap, for large enough p, in

the situation of Theorem 1.1, finishing the proof. We then explain how to quantify the

condition on p.

We first consider the case where S ⊂ SL2(Z) freely generates a free group of

rank ≥ 2 (in which case it is automatically Zariski-dense in SL2).

Step 1 (when p is large enough). We have

d(G p)= p− 1

2

for p≥ 3. In particular, d(G p)≥ |G p|d for any d< 1
3 provided p is large enough in terms

of d. Moreover, by Theorem 1.2, those groups are δ-flourishing with δ = 1
3024 .

For the random walk (Xn) on G p associated to the generating set Sp, with X0 = 1,

we have

P(Xk ∈ xH)≤ |G|−γ

when

k=
⌊ τ

32
log

( p

2

)⌋
≤ τ

96
log(|G p|)

with

τ−1 = log max
s∈S

‖s‖, γ =
τ log

(
2√
3

√|S|
)

29
.
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by (4.19) and (4.27). Thus, in Corollary 4.4, we can take c = 1
96 . The number of times we

apply the basic L2-flattening inequality is bounded by

j ≤ 8 max
(

2c2 + 1

δγ
,

4c2

d

)
≤ 8 max

(
1947 · 3024

γ
,15000

)
= 47101824γ−1 ≤ 226γ−1

(using Lemma 4.9) and the spectral gap satisfies

λ1(Γ )≥ 1 − exp
(

− d

2 j+3c

)
= 1 − exp

(
− d

2 j+3c

)
≥ d

2 j+4c
,

for all p large enough. For p≥ 17, we take d= 1
4 , and this gives

λ1(Γ )≥ d

2 j+4c
≥ 3

2 j+1
≥ 2−226γ−1

.

Except that we incorporated the factor 29 from the current value of γ to the

constant factor (for esthetic reasons), this gives (1.1).

Step 2 (how large is “large enough”). We gather here, as a series of inequalities

to be satisfied by p, the conditions under which we can apply the previous lower bound.

These we gather from the proofs of the results of this section. First come inequalities

that make explicit the condition that |G| be large enough in Theorem 4.3, which are

easily translated into conditions on p since |SL2(Fp)| = p(p2 − 1).

• In order that (4.11) contradict (4.2), we must have

|G|γ−δ0(1+c2) > 4c1.

• In order that (4.14) contradicts the growth alternative of Helfgott’s Theorem,

it is enough that

|G|γ1 > 4c1{c1(4c1)
γ−1

1 }(δ−c2δ0γ
−1
1 )−1

,

where γ1 = γ − (1 + c2)δ0 (in view of (4.13)). (This is not the same γ1 that occurs

in the proof of the decay of probabilities.)

• In order that (4.16) give (4.3) when δ1 satisfies (4.4), it is enough that

|G|ε−2c2δ0 ≥ (log 3|G|)4,
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and that

|G|δ0 ≥ c−2
1 (log 3|G|)4.

• In order that (4.17) hold, we must have

min(|G|d/4, |G|δ1/2)≥ c3. (4.30)

Now we list the conditions needed to apply the Bourgain–Gamburd criterion in

the situation of Theorem 1.1, when S freely generates a free group of rank |S|/2 ≥ 2.

• We need

p≥ max
(

17,2 exp
(

2

cτ

))

by (4.22).

• In order that the last inequality in (4.28) hold, as well as (4.29), it is enough

that

|SL2(Fp)|γ ≥ max
(
120,

(
log

p

2

))
.

Remark 4.10. Below in Section 4.5 is found a straightforward PARI/GP [20] that com-

putes the lower-bound of Step 1 for the spectral gap, given the set of matrices S, and

that can also be used to determine for which p the bound is known to be applicable. �

We finally explain how to reduce the full statement of Theorem 1.1 to the case

where the given symmetric subset S ⊂ SL2(Z) generates a free group, which is the one

treated by the Bourgain–Gamburd method.

For a given S ⊂ SL2(Z) which generates a Zariski-dense subgroup G of SL2, the

intersection G ∩ Γ (2), where Γ (2) is the principal congruence subgroup modulo 2, is

a free subgroup of finite index in G. From a free generating set, one can extract two

generators s1, s2 ∈ G to obtain a free subgroup of rank 2 of G, say G1 (since G ∩ Γ (2) has

finite index in G, it is still Zariski-dense, and hence has rank at least 2). This subgroup is

still Zariski-dense. We can then compare the expansion for the Cayley graphs of SL2(Fp)

with respect to S and to S1 = {s±1
1 , s±1

2 }.
For p large enough so that G p = SL2(Fp) is generated both by S modulo p and S1

modulo p, we have

d(x, y)≤ C d1(x, y),
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where d1(·, ·) is the distance in the Cayley graph Γ1 = C(G p, S1 (mod p)), and d(·, ·) the

distance in Γ2 = C(G p, S (mod p)) and C is the maximum of the word length of s1 and s2

with respect to S. Hence, by a standard lemma (see, e.g., [16, Lemma 3.1.16], applied to

Γ1 and Γ2 with f the identity), the expansion constants satisfy

h(C(G p, S (mod p)))= h(Γ2)≥w−1h(C(G p, S1 (mod p)))

with

w= 4
�C �∑
j=1

|S| j−1.

In particular, using Theorem 1.1 for G1, we obtain the expansion property for G,

and we can bound the spectral gap explicitly once we know expressions for the genera-

tors s1 and s2 in terms of those in S.

As the referee pointed out, Breuillard and Gelander [3, Theorem 1.2] have proved

a strong uniform version of the Tits alternative which implies that there exists an abso-

lute constant N ≥ 1 such that, for any Zariski-dense subgroup G ⊂ SL2(Z), and for any

symmetric generating set S ⊂ G, the combinatorial ball of radius N in C(G, S) contains

two elements which generate a free subgroup of rank 2 of G. If a concrete value of N

was known (which does not seem to be the case yet), one could use the above argument

to state a version of the second part of Theorem 1.1 without the assumption of freeness.

4.4 Diameter bound

Now, we can also prove quickly Corollary 1.4. Let S1 = S ∪ {1}. By Proposition 4.5,

if we let

r =
⌊
τ log

p

2

⌋
,

where τ is defined by (4.19), the size of S1
(r) is at least the size of a ball of radius r in a

|S|-regular tree, which is well known to be at least sr, where s = |S| − 1.

For p≥ 17, this gives

S1
(r) ≥ s−1

( p

2

)r
≥ s−1|SL2(Fp)|τ(log r)/4,

and if p≥ exp(2τ−1), this becomes

S1
(r) ≥ |SL2(Fp)|δ2 ,
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where

δ2 = τ(log s)

8
> 0.

Now we apply repeatedly Helfgott’s Theorem with H = S1
(r). For j such that

j ≥ log(δ−1
2 )

log(1 + δ)
,

the 3 j-fold product of H must be equal to SL2(Fp), and hence we obtain

diam C(SL2(Fp), S)≤ 3 jr ≤ 3 j−1(log |SL2(Fp)|),

and taking

j =
⌈

log(δ−1
2 )

log(1 + δ)

⌉
,

this gives the bound

diam C(SL2(Fp), S)≤ 3log(δ−1
2 )/ log(1+δ)(log |SL2(Fp)|).

4.5 Script

Here is a PARI/GP [20] script that performs the computations needed to obtain an explicit

spectral for Theorem 1.1, given as input a set of matrices S which generate a free group

(this condition is not checked).

\\ Norm of a matrix
matnorm(m)=sqrt(sum(i=1,matsize(m)[1],sum(j=1,matsize(m)[2],m[i,j]ˆ2)))

\\ Spectral radius of random walk on k-regular tree
gapr(s)=local(k);k=length(s);k/2/sqrt(k-1)

\\ Growth constant in Helfgott’s Theorem
gapdelta(s)=1/3024

\\ Minimal dimension of irreducible, OK for p at least 17
gapd(s)=1/4

\\ Constant c_2 in explicit multiplicative combinatorics
gapc2(s)=973

\\ Logarithm of c_1, base 2
gaplogc1(s)=2516

\\ Logarithm of c_3, base 2
gaplogc3(s)=2530

\\ "tau" invariant
gaptau(s)=1/log(vecmax(vector(length(s),i,matnorm(s[i]))))
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\\ Value of gamma for p large enough

gapgamma(s)=gaptau(s)*log(2/sqrt(3)*sqrt(length(s)))/2ˆ9

\\ Bound for minus the logarithm in base 2 of spectral gap
\\ for p large enough

gaploggap(s)=2ˆ26/gapgamma(s)

\\ Value of delta_0
gapdelta0(s)=min(gapdelta(s)*gapgamma(s)/(2*gapc2(s)+1),gapd(s)/8/gapc2(s))

\\ Value of delta_1
gapdelta1(s)=1/2*min(gapdelta(s)*gapgamma(s)/(2*gapc2(s)+1),gapd(s)/8/gapc2(s))

\\ Value of gamma1 in lower-bound conditions
gapgamma1(s)=gapgamma(s)-gapdelta1(s)*(1+gapc2(s))

\\ First minimal value on log p, base 2
gaplogmin1(s)=(2+gaplogc1(s))/3/(gapgamma(s)-gapdelta1(s)*(1+gapc2(s)))

\\ Second minimal value on log p, base 2
gaplogmin2(s)=1/3/gapgamma1(s)*(2+gaplogc1(s)+1/(gapdelta(s)-gapc2(s)*gapdelta0(s)/gapgamma1(s))*

(gaplogc1(s)+1/gapgamma1(s)*(2+gaplogc1(s))))

\\ Is log(p)=lp larger than third minimal value on log p (base e)?
gapislogmin3(s,lp)=if(lp>=1/3/(gapd(s)/4-2*gapc2(s)*gapdelta0(s))*4*(log(log(3)+lp)),1,0)

\\ Is log(p) larger than fourth minimal value on log p (base e)?
gapislogmin4(s,lp)=if(lp>=1/3/gapdelta0(s)*(4*log(log(3)+lp)-2*log(2)*gaplogc1(s)),1,0)

\\ Fifth minimal values on log p, base 2
gaplogmin5(s)=gaplogc3(s)/min(gapd(s)/4,gapdelta1(s)/2)

\\ Constant c used in sixth minimal value
gapc(s)=gaptau(s)/96

\\ Sixth minimal value on log p, base 2
gaplogmin6(s)=max(log(17)/log(2), 1+(2/gaptau(s)/gapc(s))/log(2))

\\ Is log(p) larger than seventh minimal value on log p, base e
gapislogmin7(s,lp)=if(3*lp*gapgamma(s)>=log(lp-log(2)),1,0)

\\ Eighth minimal value on log p, base 2
gaplogmin8(s)=log(120)/log(2)/3/gapgamma(s)

\\ Minimum of log(p), base 2, for gapislogmin3
gapfind3(s)= {
local(j=2,i,k);
while(!gapislogmin3(s,j),j=2*j);
k=j/2;
i=ceil((j+k)/2);
while(i!=j,
if(!gapislogmin3(s,i),
k=i;i=ceil((j+k)/2),
j=i;i=ceil((j+k)/2)));
ceil(i/log(2));
}

\\ Minimum of log(p), base 2, for gapislogmin4
gapfind4(s)= {
local(j=2,i,k);
while(!gapislogmin4(s,j),j=2*j);
k=j/2;
i=ceil((j+k)/2);
while(i!=j,
if(!gapislogmin4(s,i),
k=i;i=ceil((j+k)/2),
j=i;i=ceil((j+k)/2)));
ceil(i/log(2));
}
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\\ Minimum of log(p), base 2, for gapislogmin7
gapfind7(s)= {
local(j=2,i,k);
while(!gapislogmin7(s,j),j=2*j);
k=j/2;
i=ceil((j+k)/2);
while(i!=j,
if(!gapislogmin7(s,i),
k=i;i=ceil((j+k)/2),
j=i;i=ceil((j+k)/2)));
ceil(i/log(2));
}

\\ Minimum value of log(p), base 2
gapmin(s)=ceil(vecmax([gaplogmin1(s),gaplogmin2(s),gapfind3(s),gapfind4(s),gaplogmin5(s),

gaplogmin6(s),gapfind7(s),gaplogmin8(s)]))

\\ Base 2 bound for gapmin(s)
gapminlog(s)=ceil(log(gapmin(s))/log(2))

\\ Generators of the Lubotzky group
ls=[[1,3;0,1],[1,-3;0,1],[1,0;3,1],[1,0;-3,1]]

\\ ? gaploggap(ls)
\\ gaploggap(ls)
\\
\\ ? log(gaploggap(ls))/log(2)
\\ log(gaploggap(ls))/log(2)
\\
\\ ? gapminlog(ls)
\\ gapminlog(ls)
\\
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A Appendix: proof of Theorem 2.1

In this appendix, we sketch the proof of Theorem 2.1, following essentially line-by-line

Tao’s paper [24]. The presentation is therefore highly condensed, though we use a “dia-

gram” notation which should make it relatively easy to check how the values of the

constants evolve.
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Below all sets are subsets of a fixed finite group G, and are all nonempty.

A.1 Diagrams

We will use the following diagrammatic notation:

(1) If A and B are sets with Ruzsa distance

d(A, B)= log
( |A · B−1|√|A||B|

)

such that d(A, B)≤ logα, we write

A •
α

• B.

(2) If A and B are sets with |B| ≤ α|A|, we write

B •
α

�� A,

and, in particular, if |X| ≤ α, we write X •
α

�� 1,

(3) If A and B are sets with e(A, B)≥ 1/α, we write

A •
α

•������ B.

(4) If A⊂ B, we also write A �� �� B.

The following rules are easy to check (in addition to some more obvious ones

which we do not spell out):

(1) From

A •
α

• B

we can obtain

A •
α2

�� B, B •
α2

�� A.
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(2) (Ruzsa’s triangle inequality) From

A •
α1

• B •
α2

• C

we obtain

A •
α1α2

• C .

(3) From

C •
α1

�� B •
α2

�� A

we obtain

C •
α1α2

�� A.

(4) (“Unfolding edges”) From

B •
α

��
•

β

•
A

we obtain

AB−1 •

√
αβ

�� A

(note that by the first point in this list, we only need to have

B •
β

• A

to obtain the full statement with α = β2, which is usually qualitatively equiv-

alent.)

(5) (“Folding”) From

AB−1 •
α

�� A •
β

�� B

we obtain

A •
αβ1/2

• B.
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Note that the relation A •
α

�� B is purely a matter of the size of A

and B, while the other arrow types depend on structural relations involving the sets

(for A �� �� B) and product sets (for A •
α

• B or A •
α

•������ B).

A.2 Proofs

First, we state the Ruzsa covering lemma [24, Lemma 3.6] in our language:

Theorem A.1 (Ruzsa). If

AB •
α

�� A,

there exists a set X which satisfies

X �� �� B, X •
α

�� 1, B �� �� A−1 AX,

and symmetrically, if

B A •
α

�� A,

there exists Y with

Y �� �� B, Y •
α

�� 1, B �� �� YAA−1. �

Next, we have the link between sets with small tripling and approximate sub-

groups [24, Theorem 3.9 and Corollary 3.10]:

Theorem A.2. Let A= A−1 with 1 ∈ A and

A(3) •
α

�� A.

Then H = A(3) is a (2α5)-approximate subgroup containing A. �
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Proof. We have first

H •
α

�� A, A �� �� H.

Then, by Ruzsa’s lemma 3.1, we obtain

AH (2) = A(7) •
α5

�� A,

and by the Ruzsa covering lemma there exists X with

X �� �� H (2), X •
α5

�� 1,

such that

H (2) �� �� A(2)X �� �� A(3)X = H X.

Taking X1 = X ∪ X−1, we obtain a symmetric set with

X1
�� �� H (2), X1 •

2α5

�� 1,

and

H (2) �� �� H X, H (2) �� �� XH,

which are the properties defining a (2α5)-approximate subgroup. �

The next result is the explicit form of [24, Theorem 4.6, (i) implies (ii)]:

Theorem A.3. Let A and B with

A •
α

• B−1.

Then there exists a γ -approximate subgroup H and a set X with

X •
γ1

�� 1, A �� �� XH, B �� �� H X, H •
γ2

�� A,
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where

γ ≤ 221α80, γ1 ≤ 228α108, γ2 ≤ 8α14.

Furthermore, one can ensure that

H (3) •
210α40

�� H. (A.1)

�

Proof. From

A •
1

��
•

α2

•
A,

we first obtain

AA−1 •
α2

�� A.

By [24, Proposition 4.5], we find a set S with 1 ∈ S and S = S−1 (the property

1 ∈ S is not explicitly stated in [24], but follows from the explicit definition used by Tao,

namely S = {x ∈ G | |A∩ Ax|> (2α2)−1|A|}) such that

A •
2α2

�� S, AS(n)A−1 •
2nα4n+2

�� A

for all n≥ 1. In particular, we obtain

AS−1 = AS •
2α6

�� A, S •
2α6

�� A.

We have

S(3) •
8α14

�� A •
2α2

�� S,

and Theorem A.2 says that H = S(3) is a γ -approximate subgroup containing S, with

γ = 2(16α16)5 = 221α80, and (as we see)

H •
8α14

�� A.



Explicit Growth and Expansion for SL2 5703

Moreover, we have

H (3) = S(9) �� �� AS(9)A−1 •
29α38

�� A •
2α2

�� S,

which gives (A.1).

Now from

AH = AS(3) •
8α14

�� A •
2α2

�� S •
1

�� H,

we see by the Ruzsa covering lemma that there exists Y with

Y �� �� A, Y •
16α16

�� 1, A �� �� YH H.

By definition of an approximate subgroup, there exists Z with

Z •
γ

�� 1, H H �� �� Z H,

and hence

A �� �� (YZ)H.

Now we go towards B. First, we have

AH−1 = AS(3) •
8α14

�� A •
2α2

�� H

which, again by folding, gives

A •
α1

• H

with α1 = 8
√

2α15. Hence, we can write

H •
α1

• A •
α

• B−1,
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and so

H •
αα1

• B−1.

In addition, we have

H •
8α14

�� A •
α2

�� B−1,

and therefore we obtain

H •
8α16

��
•

αα1

• B−1,

from which it follows by unfolding that

B−1 H−1 = B−1 H •
32α24

�� B−1 •
α2

�� A •
2α2

�� H.

Once more by the Ruzsa covering lemma, we find Y1 with

Y1
�� �� B−1, Y1 •

26α28

�� 1, B−1 �� �� Y1 H H �� �� (Y1 Z)H.

Now, we need only take X = (Y1 Z ∪ YZ), so that

X •
γ1

�� 1

with γ1 = γ (64α28 + 16α16), in order to conclude. Since

γ1 ≤ 228α108,

we are done. �

The next result is a version of the Balog–Gowers–Szemerédi Lemma found in [24,

Theorem 5.2].
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Theorem A.4. Let A and B with

A •
α

•������ B.

Then there exist A1 and B1 with

A1
�� �� A, B1

�� �� B,

as well as

A •
8
√

2α
�� A1, B •

8α
�� B1,

and

A1 •
α1

• B−1
1

where α1 = 223α9. �

This is not entirely spellt out in [24], but only the last two or three inequalities

in the proof need to be made explicit to obtain this value of α1. Finally, the next theorem

is just the “diagrammatic” version of Theorem 2.1, and therefore completes its proof.

It is an explicit version of [24, Theorem 5.4; (i) implies (iv)].

Theorem A.5. Let A and B with

A •
α

•������ B.

Then there exist a β-approximate subgroup H and x, y∈ G, such that

H •
β2

�� A, A •
β1

�� A∩ xH, B •
β1

�� B ∩ Hy,

where

β ≤ 21861α720, β1 ≤ 22516α973, β2 ≤ 2325α126.
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Moreover, one can ensure that

H (3) •
β3

�� H,

where β3 = 2930α360. �

Proof. By the Balog–Gowers–Szemerédi Theorem, we obtain A1 and B1 with

A1
�� �� A, B1

�� �� B,

as well as

A •
8
√

2α
�� A1, B •

8α
�� B1,

and

A1 •
α1

• B−1
1

where α1 = 223α9. Applying Theorem A.3 to A1 and B1, we obtain a β-approximate sub-

group H and a set X with

H •
8α14

1

�� A1 •
1

�� A

and

X •
γ

�� 1, A1
�� �� XH, B1

�� �� H X,

where

β = 221α80
1 = 21861α720, γ = 228α108

1 = 22512α972,

and moreover

H (3) •
β3

�� H

where β3 = 210α40
1 = 2930α360.
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Applying the pigeonhole principle, we find x such that

A •
8
√

2α
�� A1 •

γ

�� A1 ∩ xH �� �� A∩ xH

and y with

B •
8α

�� B1 •
γ

�� B1 ∩ Hy �� �� B ∩ Hy.

This gives what we want with

β1 ≤ 8
√

2αγ ≤ 22516α973, β2 = 8α14
1 = 2325α126. �
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