Long-term outcome prediction by clinicopathological risk classification algorithms in node-negative breast cancer—comparison between Adjuvant!, St Gallen, and a novel risk algorithm used in the prospective randomized Node-Negative-Breast Cancer-3 (NNBC-3) trial

Schmidt, M. ; Victor, A. ; Bratzel, D. ; Boehm, D. ; Cotarelo, C. ; Lebrecht, A. ; Siggelkow, W. ; Hengstler, J. G. ; Elsäßer, A. ; Gehrmann, M. ; Lehr, H. -A ; Koelbl, H. ; von Minckwitz, G. ; Harbeck, N. ; Thomssen, C.

In: Annals of Oncology, 2008, vol. 20, no. 2, p. 258-264

Ajouter à la liste personnelle
    Summary
    Background: Defining risk categories in breast cancer is of considerable clinical significance. We have developed a novel risk classification algorithm and compared its prognostic utility to the Web-based tool Adjuvant! and to the St Gallen risk classification. Patients and methods: After a median follow-up of 10 years, we retrospectively analyzed 410 consecutive node-negative breast cancer patients who had not received adjuvant systemic therapy. High risk was defined by any of the following criteria: (i) age <35 years, (ii) grade 3, (iii) human epithelial growth factor receptor-2 positivity, (iv) vascular invasion, (v) progesterone receptor negativity, (vi) grade 2 tumors >2 cm. All patients were also characterized using Adjuvant! and the St Gallen 2007 risk categories. We analyzed disease-free survival (DFS) and overall survival (OS). Results: The Node-Negative-Breast Cancer-3 (NNBC-3) algorithm enlarged the low-risk group to 37% as compared with Adjuvant! (17%) and St Gallen (18%), respectively. In multivariate analysis, both Adjuvant! [P = 0.027, hazard ratio (HR) 3.81, 96% confidence interval (CI) 1.16-12.47] and the NNBC-3 risk classification (P = 0.049, HR 1.95, 95% CI 1.00-3.81) significantly predicted OS, but only the NNBC-3 algorithm retained its prognostic significance in multivariate analysis for DFS (P < 0.0005). Conclusion: The novel NNBC-3 risk algorithm is the only clinicopathological risk classification algorithm significantly predicting DFS as well as OS