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Larval Drosophila offer a study case for behavioral neurogenetics that is simple enough

to be experimentally tractable, yet complex enough to be worth the effort. We provide

a detailed, hands-on manual for Pavlovian odor-reward learning in these animals.

Given the versatility of Drosophila for genetic analyses, combined with the evolutionarily

shared genetic heritage with humans, the paradigm has utility not only in behavioral

neurogenetics and experimental psychology, but for translational biomedicine as well.

Together with the upcoming total synaptic connectome of the Drosophila nervous

system and the possibilities of single-cell-specific transgene expression, it offers enticing

opportunities for research. Indeed, the paradigm has already been adopted by a number

of labs and is robust enough to be used for teaching in classroom settings. This has

given rise to a demand for a detailed, hands-on manual directed at newcomers and/or

at laboratory novices, and this is what we here provide.

The paradigm and the present manual have a unique set of features:

• The paradigm is cheap, easy, and robust;

• The manual is detailed enough for newcomers or laboratory novices;

• It briefly covers the essential scientific context;

• It includes sheets for scoring, data analysis, and display;

• It is multilingual: in addition to an English version we provide German, French,

Japanese, Spanish and Italian language versions as well.

The present manual can thus foster science education at an earlier age and enable

research by a broader community than has been the case to date.
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Predictive, associative learning enables animals to decipher many
aspects of the causal structure of the world and to behave
accordingly (Dickinson, 2001). It is therefore a ubiquitous
faculty across the animal kingdom. Indeed, following the
pioneering work of Ebbinghaus, Pavlov, and Thorndike, research
has uncovered remarkable conservation in the mechanisms of
learning and memory (Kandel et al., 2014). Because of the
feasibility of genetic screens combined with robust behavioral
protocols, Drosophila has been one of the workhorses for these
endeavors (Benzer, 1967; Dudai et al., 1976; Heisenberg et al.,
1985; Tully and Quinn, 1985; reviews include Heisenberg, 2003;
Gerber et al., 2014; Guven-Ozkan and Davis, 2014; Harris and
Littleton, 2015; Owald and Waddell, 2015; Gerber and Aso,
in press). The field received a further boost when versatile
methods for transgene expression were introduced (Rubin
and Spradling, 1982; O’Kane and Gehring, 1987; Brand and
Perrimon, 1993), opening up the possibility for experimental
manipulation with cellular specificity at the single-neuron
level (Pfeiffer et al., 2010; Jenett et al., 2012; Aso et al.,
2014a,b). These and related techniques (reviews include Venken
et al., 2011; Sivanantharajah and Zhang, 2015) now make it
relatively straightforward to express any transgene, in any cell
or group of cells, at any time. Thus, Drosophila has become
a model system for understanding learning and memory not
“only” at the molecular level, but also for understanding the
function of molecules within behaviorally meaningful circuitry—
as envisioned by Hotta and Benzer (1970).

With a slight delay (befitting their shuffling gait, as we
hesitate to add), Drosophila larvae entered the stage as the
subjects of behavioral neurogenetics (e.g., Aceves-Piña and
Quinn, 1979; Rodrigues, 1980), receiving renewed attention
since the mid-1990s (Stocker, 1994; Cobb, 1999; Sokolowski,
2001; Gerber and Stocker, 2007; Gomez-Marin and Louis, 2012;
Keene and Sprecher, 2012; Diegelmann et al., 2013). Larvae
possess 10 times fewer neurons than adult flies, and in many
cases appear to lack cellular redundancy altogether. Even so,
they feature fundamental adult-like circuit motifs (e.g., in the
olfactory pathways: Vosshall and Stocker, 2007; Stocker, 2008)
and exhibit fundamental faculties of behavior, including learning
andmemory (see below). Last but not least, a synapse-by-synapse
connectome of the larval nervous system seems within reach, and
driver strains for transgenic manipulation can now be established
to cover the neurons of the larva, one at a time (Li et al., 2014;
Ohyama et al., 2015; Berck et al., 2016; Fushiki et al., 2016;
Jovanic et al., 2016; Schlegel et al., 2016; Schneider-Mizell et al.,
2016; Zwart et al., 2016). Taken together, the possibilities for
research into the behavioral neurogenetics of larval Drosophila
appear enticing, given the combination of analytical power, ease,
elegance, and completeness.

The current contribution deals with Pavlovian odor-reward
learning in larval Drosophila (Scherer et al., 2003; Neuser et al.,
2005; Figure 1). In brief, the larvae are free to move about
an agarose-filled Petri dish; the agarose substrate can either
be supplemented with sugar reward, or can be used as plain
substrate, not containing reward. An odor A (gray cloud in
Figure 1) is presented together with a reward-supplemented
substrate (+; indicated by green color in Figure 1). Then the

FIGURE 1 | (A) Principle of the behavioral paradigm. In a Petri-dish assay,

different groups of larvae receive odor A (gray cloud) paired with a sugar

reward (green circle), alternated with presentations of another odor B (white

cloud) without a reward (A+/B training); a second group of larvae is trained

reciprocally (A/B+). Then, for both groups the preference of the animals

(Continued)

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 April 2017 | Volume 11 | Article 45

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Michels et al. Maggot Learning Manual

FIGURE 1 | Continued

between odors A and B is measured as the number of animals located on the

A-side minus the number of animals located on the B-side, divided by the total

number of animals (including the ones located on the middle stripe). The

Performance Index is calculated as the difference in preference between the

A+/B versus A/B+ trained groups of larvae (divided by 2 to yield scores

between –1 and 1). The Performance Index thus represents associative

memory, averaging-out effects of innate odor preference, odor exposure,

reward exposure, or handling. Note that the sequence of trials is alternated

across repetitions of the experiment (i.e., B/A+ and B+/A). Various sugars,

aspartic acid, or low-concentration salt can alternatively be used as a taste

reward; as taste punishment, quinine, or high-concentration salt can be used.

(B) Example data from a non-academic setting. For the Preference scores (left)

and the associative Performance Indices (right) the box plots show the median

as the middle line, the 25/75% quantiles as box boundaries, and the 10/90%

quantiles as whiskers. For the Preference scores *refers to P < 0.05 in a

Mann-Whitney U-test (N = 16, 16); for the associative Performance Indices

based on these Preference scores *refers to P < 0.05 in a one-sample

sign-test. If the odor pairs, or the concentrations of the odors in a pair, are

chosen such that one of them is more strongly attractive than the other, the

Preference scores of both reciprocally trained groups will be shifted along the

y-axis, i.e., will be “asymmetrically” different from zero. This does not affect the

interpretation of the Performance Index as reflecting associative memory,

however, because the Performance Index is based on the difference in

Preference scores between the reciprocally trained groups (for more detail see

Supplemental Material 1). (C) A class of 8th grade high school students

performing odor-reward learning in larval Drosophila in a 1-day course at the

Gymnasium Stettensches Institut, Augsburg, Germany. The histogram at the

bottom shows the median Performance Indices from 11 such experiments in

various non-academic settings, with sample sizes in the range of N = 12–20

each. (D) Side-view of a 3D print of the larval body (top; image courtesy of R.

Blumenstein, LIN) and schematic overview of the internal organs of a larva

(bottom; modified from Demerec and Kaufmann, 1972). (E) Simplified circuit

diagram showing the processing of odor and taste reward. AL, antennal lobe;

MBINs, mushroom body input neurons; LP, lateral protocerebrum; MB-KC,

mushroom body Kenyon cells; MBONs, mushroom body output neurons;

OSN, olfactory sensory neurons; PN, projection neurons. SEZ, subesophageal

zone. The pink color indicates an MBIN activated by reward; the light pink

color indicates an MBIN activated by punishment. The star indicates

presynaptic plasticity in the MB-KC to MBON connection; the ∼symbol

indicates that the pathway from the MBONs toward motor control is

susceptible to modulation, including modulation by the testing situation. For

more details, see text. Images taken from Gerber et al. (2010) (C) and

Demerec and Kaufmann (1972) (D). The following copyright holders kindly

granted permission to use these figures: Cold Spring Harbor Laboratory Press

(C) and The Carnegie Institution (D).

larvae are transferred to a second Petri dish, this time with
the plain substrate, and exposed to a different odor B (white
cloud in Figure 1). After repeating this A+/B procedure two
more times, the animals are transferred to a test Petri dish
and are offered a choice between the two odors. A second
set of larvae is trained reciprocally (A/B+) and is likewise
tested for its preference between the two odors. If the larvae
systematically prefer the previously rewarded odor relative to the
previously non-rewarded odor, the conclusion is that an odor-
sugar associative memory has been formed. In other words, the
odor-reward association established in training guides the larvae’s
search for reward during the test (Gerber and Hendel, 2006;
Schleyer et al., 2011, 2015a,b).

The working hypothesis as to how this type of learning comes
about has recently been reviewed (Diegelmann et al., 2013) and
is largely concordant with what has been suggested for adult flies

(Heisenberg, 2003; Gerber et al., 2014; Guven-Ozkan and Davis,
2014; Harris and Littleton, 2015; Owald and Waddell, 2015;
Gerber and Aso, in press) and other insects such as the honey
bee (Tedjakumala and Giurfa, 2013; Menzel, 2014). In brief,
larval olfactory sensory neurons are located in the dorsal organ
and project to the antennal lobe. Downstream of the antennal
lobe, the olfactory processing stream splits: one collateral of
the projection neurons targets the lateral protocerebrum, which
features premotor centers for innate olfactory behavior. The
other collateral takes a “detour” to the mushroom bodies.
According to the ligand profiles of the olfactory sensory neurons,
the cellular properties and the connectivity within this system,
including local circuitry within the antennal lobe, odors can thus
be coded across these ascending olfactory pathways.

Gustatory pathways originate from multiple larval cephalic
sense organs, bypass the brain, and target the subesophageal
zone and premotor centers (Apostolopoulou et al., 2015). Taste
pathways are thus linked relatively closely to the motor system.
Notably, a “detour” branch also splits off from the gustatory
pathway. From the subesophageal zone this sends information
about the reinforcing value of the food toward the brain. Through
an as yet unknown number of synaptic steps, this activates
octopaminergic as well as dopaminergic input neurons signaling
toward the Kenyon cells of the mushroom body (Schroll et al.,
2006; Rohwedder et al., 2016; regarding adultDrosophila, reviews
include Heisenberg, 2003; Gerber et al., 2014; Guven-Ozkan and
Davis, 2014; Owald andWaddell, 2015; Gerber and Aso, in press;
see also Hammer, 1993; Kreissl et al., 1994 on the bee).

Within the mushroom body Kenyon cells, a coincidence
can thus be detected between olfactory input in terms of an
odor-specific subset of activated Kenyon cells, and an internal
aminergic reinforcement signal. This coincidence modulates the
synapse between the odor-activated set of mushroom body
Kenyon cells and their output neurons, by processes taking
place presynaptically within the respective Kenyon cells. If a
trained odor is subsequently encountered, it is via this odor-
specific set of modulated synapses that the balance is shifted
between mushroom body output neurons favoring approach
and mushroom body output neurons mediating avoidance. By
analogy with what has been observed in adult Drosophila (for
reviews see Owald andWaddell, 2015; Gerber and Aso, in press),
learned approach may come about by a weakening of synapses
from Kenyon cells to those output neurons that are sufficient
for avoidance, resulting in net relative attraction. Note that the
pathway from the mushroom body output neurons carrying
learned valence signals toward motor control comprises an
as yet unknown number of synaptic steps and is susceptible
to modulation, including modulation by the testing situation
(Gerber and Hendel, 2006; Schleyer et al., 2011, 2015a,b).

Since its introduction this paradigm has made significant
advances possible, including the first application of
Channelrhodopsin-2 in a brain (Schroll et al., 2006), and
the discovery of memories specific to the kind of reward
(fructose vs. amino acid) and the kind of punishment (quinine
versus high-concentration salt; Schleyer et al., 2015a). It has been
adopted by a number of labs, including new groups entering the
field of learning and memory. Indeed, the paradigm is robust
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enough to be routinely used for undergraduate teaching and
in classroom settings. This has given rise to a demand for a
detailed, hands-on manual directed at newcomers in the field of
behavioral science and/or at laboratory novices, and this is what
we here provide (Supplemental Materials 1–16). The paradigm
and the presented manual have a unique set of features:

• The paradigm is cheap and easy to carry out, and
can be performed in classroom settings under “degraded”
experimental conditions;

• The manual is richly illustrated and detailed enough to allow
newcomers or laboratory novices, even at high school level, to
perform the experiment;

• It features brief “introduction” and “outlook” sections
covering the scientific context and guidelines for the display
and the analysis of the data;

• It includes data sheets for scoring, and customized excel sheets
for data analysis and display;

• Possibly most importantly for use in schools, we provide not
only an English version (Supplemental Materials 1–3),
but German (Supplemental Materials 4–6), French
(Supplemental Materials 7–9), Japanese (Supplemental

Material 10) Spanish (Supplemental Materials 11–13), and
Italian (Supplemental Materials 14–16) language versions as
well.

The current contribution can thus foster science education at
an earlier age and enable research by a broader community
than has been the case to date (Gerber et al., 2010, 2013;
Apostolopoulou et al., 2013). The paradigm allows experimental
access to a fascinating aspect of nervous system function: the
adaptive balance between robustness and flexibility of behavior.
Given the versatility ofDrosophila for genetic analyses, combined
with their evolutionarily shared genetic heritage with humans,
the paradigm has utility not only in behavioral science, genetics,
neurobiology, and experimental psychology, but for translational
biomedicine as well.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnbeh.
2017.00045/full#supplementary-material

Supplemental Materials 1–3 | A manual for odor-reward learning in larval

Drosophila (Supplemental Material 1), example of a table for data analysis

(Supplemental Material 2), and an empty table for entering and analyzing

one’s own data (Supplemental Material 3), in the English language.

Versions of this manual in the German, French, Japanese, Spanish, and Italian

languages can be found in Supplemental Materials 4–6, 7–9, 10, 11–13,

14–16, respectively.

Supplemental Materials 4–6 | A manual for odor-reward learning in larval

Drosophila (Supplemental Material 4), example of a table for data analysis

(Supplemental Material 5), and an empty table for entering and analyzing

one’s own data (Supplemental Material 6), in the German language.

Versions of this manual in the English, French, Japanese, Spanish, and Italian

languages can be found in Supplemental Materials 1–3, 7–9, 10, 11–13,

14–16, respectively.

Supplemental Materials 7–9 | A manual for odor-reward learning in larval

Drosophila (Supplemental Material 7), example of a table for data analysis

(Supplemental Material 8), and an empty table for entering and analyzing

one’s own data (Supplemental Material 9), in the French language. Versions

of this manual in the English, German, Japanese, Spanish, and Italian languages

can be found in Supplemental Materials 1–3, 4–6, 10, 11–13, 14–16,

respectively.

Supplemental Material 10 | A manual for odor-reward learning in larval

Drosophila in the Japanese language. Versions of this manual in the English,

German, French, Spanish, and Italian languages can be found in

Supplemental Materials 1–3, 4–6, 7–9, 11–13, 14–16, respectively. For a table

for data analysis and an empty table for entering and analyzing one’s own data,

please use the document in the English language (Supplemental Materials 2, 3,

respectively).

Supplemental Materials 11–13 | A manual for odor-reward learning in

larval Drosophila (Supplemental Material 11), example of a table for data

analysis (Supplemental Material 12), and an empty table for entering and

analyzing one’s own data (Supplemental Material 13), in the Spanish

language. Versions of this manual in the English, German, French, Japanese, and
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Italian languages can be found in Supplemental Materials 1–3, 4–6, 7–9, 10,

14–16, respectively.

Supplemental Materials 14–16 | A manual for odor-reward learning in

larval Drosophila (Supplemental Material 14), example of a table for data

analysis (Supplemental Material 15), and an empty table for entering and

analyzing one’s own data (Supplemental Material 16), in the Italian

language. Versions of this manual in the English, German, French, Japanese, and

Spanish languages can be found in Supplemental Materials 1–3, 4–6, 7–9, 10,

and 11–13, respectively.
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