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Escape rate of active particles in the effective equilibrium approach
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The escape rate of a Brownian particle over a potential barrier is accurately described by the Kramers theory.
A quantitative theory explicitly taking the activity of Brownian particles into account has been lacking due to the
inherently out-of-equilibrium nature of these particles. Using an effective equilibrium approach [Farage et al.,
Phys. Rev. E 91, 042310 (2015)] we study the escape rate of active particles over a potential barrier and compare
our analytical results with data from direct numerical simulation of the colored noise Langevin equation. The
effective equilibrium approach generates an effective potential that, when used as input to Kramers rate theory,
provides results in excellent agreement with the simulation data.
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The escape of a Brownian particle over a potential barrier
is a thermally activated process. Kramers theory accurately
describes the escape process by taking into account the
force acting on a particle due to the confining potential and
solvent-induced Brownian motion. Kramers showed that in
the limit of vanishing particle flux across the barrier, the
escape rate decreases exponentially with increasing barrier
height [1]. In contrast to Brownian particles, active particles
undergo both Brownian motion and a self-propulsion, which
requires a continual consumption of energy from the local
environment [2–5]. Due to self-propulsion, active particles are
expected to escape a potential barrier at a higher rate than
their passive counterparts. However, a quantitative description
of their escape rate, explicitly taking the activity into account
has been lacking. Active particles, in general, have coupled
orientational and positional degrees of freedom [6,7]. This
makes the theoretical treatment of escaping active particles
over a potential barrier a difficult problem as shown in Ref. [8],
in which the authors explicitly considered the orientational
diffusion of self-propelled particles.

In this paper we show that a Kramers-like rate expression
can be obtained for a closely related model system of active
particles in which the velocities are represented by a stochastic
variable and the orientations are not considered explicitly.
For small activity the steady-state properties obtained from
this model exhibit intriguing similarities with an equilibrium
system [9] and several sedimentation and trapping problems
are analytically tractable on the single-particle level [10]. As
a starting point for a theoretical treatment of the nonstationary
case we will employ this model in the form of a coarse-grained
Langevin equation for the particle position [6,7,11] with
activity of particles appearing as a colored-noise term. It is
important to note that the colored-noise Langevin equation
describes a non-Markovian process and thus cannot yield an
exact Fokker-Planck equation.

The colored-noise Langevin equation serves as the basis for
effective equilibrium approaches that map an active system
to a passive equilibrium system with modified interaction
potential and an approximate Fokker-Planck equation [6,7].
An approximate modified potential is microscopically derived
taking explicitly into account the activity on the two-particle
level [6,12]. Previously, this approach has been applied to
the structural properties of active Brownian particles such as
the pair correlation function and phase behavior [6,13,14].

Here we show this approach can yield valuable insight into
dynamical properties such as the rate of escape of active
particles across a barrier.

The standard model system of active Brownian particles
in three spatial dimensions consists of spherical particles of
diameter d with coordinate r and orientation specified by
an embedded unit vector p. Active motion of the particle is
included by imposing a self-propulsion of speed v0 in the
direction of orientation. The motion of the particle can be
modeled by the equations

ṙi = v0 pi + γ −1Fi + ξ i , ṗi = ηi × pi , (1)

where γ is the friction coefficient and Fi the force on particle
i. The stochastic vectors ξ (t) and η(t) are Gaussian distributed
with zero mean and have time correlations 〈ξ i(t)ξ j (t ′)〉 =
2Dt1δij δ(t − t ′) and 〈ηi(t)ηj (t ′)〉 = 2Dr1δij δ(t − t ′), where
Dt and Dr are the translational and rotational diffusion
coefficients.

Disregarding the orientational degrees of freedoms, we will
consider a theoretically tractable model of active particles
evolving according to the Langevin equations [6,7,11–13],

ṙi = γ −1Fi + ξ i + χ i . (2)

The Ornstein-Uhlenbeck process (OUP) χ has the time corre-
lation 〈χ i(t)χ j (t ′)〉 = Da1δij e

−|t−t ′ |/τa/τa, where Da denotes
an active diffusion coefficient and τa is the persistence time of
active particle. For a homogeneous system, the time correlation
of the orientations pi of active particles evolving according to
Eq. (1) can be conveniently mapped onto that of OUPs by
choosing Da = v2

0τa/3 and τa = 1/(2Dr). Ghosh et al. [15]
employed the idea of time-correlated active Brownian motion
to rectify a Janus particle confined to an asymmetric channel.
This mapping procedure [6,11] may be viewed as a coarse-
graining that effectively neglects the coupling of fluctuations
in orientation and positional degrees of freedom. Escape of
particles driven by colored noise in nonthermal systems has
been studied in the past in different context [16,17]. As
we show below, our focus here is on an active system for
which one can obtain an approximate Fokker-Planck equation
and subsequently identify an effective interaction potential
allowing us to explicitly use Kramers approach to the active
particles under consideration.

Due to the presence of colored noise in Eq. (2), an exact
Fokker-Planck equation for the time evolution of probability
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density cannot be obtained. However, one can obtain
an approximate Fokker-Planck equation following different
schemes [7,12,18,19]. Using the method of Fox [18,19], one
obtains the approximate Fokker-Planck equation for Eq. (2)
(see Appendix A) with the one-body current given by

Ji(rN,t) = −
∑

k

Dik(r)
[∇k − βFeff

k (r)
]
�(r,t), (3)

where �(r,t) is the one-body configurational probability and
βFeff

k (rN ) is the effective force acting on particle with index
k with β ≡ (kBT )−1. The activity enters in the description
via Dij , the components of an effective diffusion tensor D[N],
which are given as Dij = Dt1δij + Da �−1

ij , where

�ij = 1δij − τa

γ
∇i ⊗ Fj . (4)

The effective force can be written as

βFeff
k (rN ) =

∑
j

D−1
jk βFj − ∇k ln(detD[N]), (5)

where the dimensionless diffusion tensor is defined as D[N] =
D[N]/Dt.

In this study we restrict ourselves to studying a one-
dimensional problem of active particles with Eq. (2) as
the equation of motion, allowing us to employ an effective
potential without facing further caveats resulting from the
general form of Eq. (4) [14]. Further considering only an
external force on particle i, generated from the one-body
potential V (x) according to Fi(x)=−V ′(x), the diffusion
tensor D[N] becomes diagonal and the effective force in Eq. (5)
becomes the sum of single-particle forces. Introducing the
dimensionless parameters τ = τaDt/d

2 and Da = Da/Dt, we
obtain from the single-particle limit of Eq. (5) the effective
external potential (assuming that V (0)=0 vanishes in the
origin),

βV eff(x) =
∫ x

0
dy

βV ′(y) + D′(y)

D(y)
, (6)

with the dimensionless effective diffusivity (setting d ≡ 1),

D(x) = 1 + Da

1 + τβV ′′(x)
. (7)

This result conforms with the approximations made in Ref. [6].
Following a different scheme, the unified colored noise
approximation, the same effective potential can be obtained
in the special case of noninteracting active particles in a
one-dimensional external potential [14]. We note that for
interacting particles, where one is interested in obtaining an
effective interaction potential, one must take into account the
generalized form of the effective diffusivity in Eq. (4), which
requires calculation of dyadic terms ∇i ⊗ Fj . In Ref. [6] the
dyadic product was approximated as a scalar product ∇i · Fi

(see Appendix A), which yields the same effective potential as
obtained for the special case considered in this study. However,
in more than one dimension, the validity of this approximation
is not obvious [20] and a detailed discussion for interacting
particles taking into account the full dyadic product will be
presented elsewhere.

The main objective of this work is to apply the above
effective interaction approach to an active particle trapped in

FIG. 1. Bare potential, Eq. (8), and analytic effective potential
V eff (x), Eq. (9), for different values of Da (see legend). For the given
parameters ω0 = 10, α = 1, τ = 0.02, and Dt = 1, these results are
indistinguishable from the numeric solution of Eq. (6). We denote by
xa = 0 the local minimum of the potential from where particles escape
over the barrier at xb to the sink located at arbitrary xc. For numerical
treatment xc will be obtained as the solution of βV eff (x) = −20.
The orange vertical arrow indicates the decreasing potential barrier
with increasing activity. The change in the curvature of the energy
landscape is clearly evident. We use the curvature at xb,0 = ω0/(3α)
to approximate the curvature at the (effective) maximum, which shifts
slightly toward larger values of x.

the potential of the (nonspecific) form,

βV (x) = 1
2ω0x

2 − α|x|3, (8)

where ω0 is the curvature of this bare potential at both its
minimum xa = 0 and its maximum xb,0 = ω0/(3α) and the
parameter α can be used to tune the barrier height βE0 =
ω3

0/(54α2). Now we seek to obtain an expression for V eff(x)
from Eq. (6) and employ Kramers approach [1]. This will
allow us to explicitly determine the rate of escape ract of
an active particle over the given (effective) potential barrier
in the limit of vanishing flux. This requires determining the
effective curvature ωa at the minimum located at xa, as well
as, the curvature ωb and the maximal height Eb of the effective
potential at xb, as indicated in Fig. 1. In general, all these
variables except xa ≡ 0 are functions of ω0, α and the activity
parameters τ and Da.

The most appealing aspect of the barrier-crossing problem
considered is that the curvature |V ′′(x)| � ω0 of the chosen
potential in the region of interest, |x| � xb,0, is bounded.
Choosing the product ω0τ of bare curvature and persistence
time small enough, we can avoid some of the pitfalls
of the effective-potential approach. In contrast to most of
the potentials describing realistic interactions between two
particles [6,13], it is now justified to Taylor expand the
integrand in Eq. (6) in terms of τ , as the whole expression
τβV ′′(x) � τω0 � 1 in the denominator of Eq. (7) remains
small within the potential well. The unphysical divergence of
D(x), resulting from the highly negative curvature V ′′(x) at,
say, xc is irrelevant for our calculations.
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Using Eq. (6), the effective potential, up to linear order in
τ , becomes

βV eff(x) = 1
2ωax

2 − α′|x|3 + g(x), (9)

where

ωa = ω0

[
1

1 + Da
+ Daω0τ

(1 + Da)2

]
, (10)

α′ = α

[
1

1 + Da
+ 3Daω0τ

(1 + Da)2

]
, (11)

g(x)

τ
= 6Daα

1 + Da
|x| + 9

2

Daα
2

(1 + Da)2
x4. (12)

This analytical approximation reduces to the bare potential
βV (x) in the limit of Da → 0. It becomes apparent from Fig. 1
that introducing activity to the particles makes it easier for them
to escape the effectively shrinking barrier. To further quantify
this observation, we assume xb 	 xb,0 = ω0/(3α) independent
of activity (compare Fig. 1) and obtain the simple expressions

ωb = ω0

[
− 1

1 + Da
+ Daω0τ

(1 + Da)2

]
, (13)

βEb = ω3
0

54α2(1 + Da)
+ 2Daω0τ

(1 + Da)
, (14)

for the effective curvature and barrier height, respectively. It
can be easily seen that the effective potential barrier decreases
with increasing Da. Explicitly requiring Eb < E0 we find the
nearly trivial condition ω0τ < βE0/2. A more meaningful
constraint ω0τ < 1 + 1/Da for the maximal applicability of
the effective potential approach to our problem in general,
follows from demanding ωb < 0.

Following Kramers [1], we calculate the escape rate as

ract = Jact

p
, (15)

where Jact is the flux of an active particle across the potential
barrier and p is the probability of finding the particle in the po-
tential well (in the neighborhood of xa). The one-dimensional
probability distribution ψ(x) can be calculated exactly [7], but
we do not require its explicit form in the following. Using
ψ(x) one can calculate p using the equilibrium approximation
ψ(x)/ψ(xa) ∼ exp{−β[V eff(x) − V eff(xa)]}, which holds for
vanishing flux across the potential barrier, which is justified
for sufficiently large potential barrier. Under this assumption
p can be obtained as an integral,

p =
∫ (xb−xa)

−(xb−xa)
ψ(x)dx

≈ ψ(xa)eβV eff (xa )
∫ ∞

−∞
e−βV eff (x)dx

= ψ(xa)

√
2π

βωa
, (16)

over ψ(x) in a region around xa corresponding to the width
2xb of the (effective) potential well. The integral expression
on the second line is obtained by invoking a saddle-point

approximation for V eff(x) at xa and extending the integration
domain to infinity.

The flux can be calculated from the one-dimensional
version of Eq. (3) rewritten as

Jact = −DtD(x)e−βV eff (x) d

dx
[eβV eff (x)ψ(x)]. (17)

Assuming a constant flux of particles one can integrate Eq. (17)
from xa to xc to obtain an expression for Jact as

Jact = −Dt

∫ xc

xa

d
dx

[eβV eff (x)ψ(x)]dx∫ xc

xa

eβV eff (x)

D(x) dx

≈ ψ(xa)
Dt(1 + Da)e−(βEb− Daω0τ

1+Da
)√

2π
β|ωb|

, (18)

where the saddle-point approximation (at xb) has been used
to evaluate the integral in the denominator and the boundary
condition at the sink is set to ψ(xc) = 0. As noted above, the
effective potential can exhibit unphysical behavior. However,
the approximate result for Jact remains reasonable as long
as the condition ωb < 0 holds. For ωb < 0, the unphysical
behavior of the effective potential manifests itself for x > xb

and thus does not obscure our calculations as ψ(xc) and the
location of xc do not explicitly enter in the second step in
Eq. (18). When ω0τ becomes too large such that ωb < 0 is no
longer valid, the saddle point approximation is unjustified and
the above analytics do not hold.

Using Eqs. (16) and (18), the rate of escape of active
particles over a potential barrier can be written as

ract = βDt(1 + Da)
√|ωaωb|e−(βEb− Daω0τ

1+Da
)

2π
. (19)

This result is valid only for large barrier heights βEb � 1.
Employing our approximate effective potential by substituting
Eqs. (10), (13), and (14) into Eq. (19), we obtain the compact
analytic representation

ract ≈ βDtω0

2π

√
1 −

(Daω0τ

1 + Da

)2

e
−[

ω3
0

54α2(1+Da)
+ Daω0τ

1+Da
]

≈ βDtω0

2π
e−βE0e

Da(βE0−ω0τ)
1+Da

= rpass exp

[Da(βE0 − ω0τ )

1 + Da

]
, (20)

where βE0 = ω3
0/(54α2). In the second line we have omit-

ted the term in the square root. In Eq. (20), we have
identified the escape rate of passive particles as rpass =
βDtω0 exp(−βE0)/(2π ). In this form, Eq. (20) clearly demon-
strates that activity significantly facilitates the escape of a
particle.

Equation (20) is obtained based on the approximate form
of the effective potential where the small τ approximation has
been used. In principle, the effective potential can be obtained
directly by numerical integration of Eq. (6) or in a lengthy
analytical form generalizing Eq. (9) by taking into account
higher-order terms in τ . However, the escape rate obtained
in this way does not differ significantly from the analytical
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FIG. 2. Escape rate of active particles as a function of the active diffusivity Da. Escape rate of active particles is expressed in units of the
escape rate of passive particles over the barrier of the bare potential. The rate of escape is calculated for three different values of τ (see legend).
The curvature of the bare potential at xa is fixed to ω0 = 10 and the nonlinear parameter is α = 1. The escape rate ract increases by several
orders of magnitude with increasing Da. The circles represent the rate calculated within the effective equilibrium approach and is obtained
by numerically solving Eq. (17). The squares correspond to the rate obtained by simulating the colored-noise Langevin Eq. (2). The solid
black lines correspond to the analytic predictions of Eq. (20) using the effective potential in the Kramers approach. The excellent agreement
between the predictions of Eq. (20) with the numerically obtained rate from Eq. (17) indicates the high-accuracy of the Kramers analytical
approach used in calculation of Eq. (20). The escape rate calculated using the colored-noise Langevin equation [Eq. (2)] starts deviating from
the prediction of Eq. (20) for large Da.

approximation in Eq. (20). Hence, Eq. (20) is expected to
accurately capture the escape rate under the condition that the
saddle-point approximations made in Eqs. (16) and (18) do
not introduce any significant errors. The accuracy of Eq. (20)
can be assessed by comparing the analytical predictions with
the numerical rate of escape obtained by solving Eq. (17)
with the boundary conditions ψ(xa) = 1 and ψ(xc) = 0.
However, the comparison between Eq. (20) and the rate
obtained from Eq. (17) serves only to benchmark the analytical
(Kramers) approximation against the numerical prediction
from the effective equilibrium approach for low activity. The
most relevant test is to determine the rate directly from the
governing Langevin equations. This is done by numerically
solving the one-dimensional version of Eq. (2) (Appendix B)
for a particle trapped in the potential given by Eq. (8). We
calculate the mean-first-passage-time (MFPT) of a particle
starting at x = 0 escaping to a sink located sufficiently far from
the potential barrier. The equivalence of MFPT to Kramers rate
[21] implies that Kramers rate can be numerically obtained as
the inverse of MFPT.

We first discuss the escape rate ract as a function of the
reduced diffusion constant Da in Fig. 2. As can be seen
in Fig. 2, the escape rate increases over several orders of
magnitude with increasing Da. In particular, the analytical
prediction of Eq. (20) is in excellent agreement with the
numerical prediction of Eq. (17) over the full range of Da

considered in this study. In general, the escape rate obtained
using the effective equilibrium approach agrees very well with
the simulations based on the colored-noise Langevin equation,

Eq. (2). It is apparent from Fig. 2(c) that the deviations resulting
from the effective equilibrium mapping are only manifest at
large Da. With increasing Da, the flux of particles across the
potential barrier can become significantly large such that the
equilibrium approximation to calculate p in Eq. (16) does
not hold. This is equivalent to stating that the barrier height
must remain sufficiently large for the Kramers approach to
yield reliable estimate of escape rate across the barrier. We
also tested the analytical prediction for different values of τ

as shown in Fig. 2. The excellent agreement suggests that
in one dimension, the effective potential can yield accurate
quantitative description of the escape process.

To further assess the accuracy of our approach and
demonstrate its utility, we study the escape rate of active
particles at constant activity but for some other combinations of
parameters in the trapping potential, Eq. (8). The parameters
must be chosen so as not to violate the constraints on ω0

and τ as determined from Eqs. (13) and (14). The analytical
prediction is expected to become inaccurate with increasing
ω0τ . First, we fix the location xb,0 = 10/3 of the potential
barrier by setting α = ω0/10. As a result the height βE0 =
50 ω0/27 becomes a linearly increasing function of ω0. The
evolution of the escape rate is primarily determined by the
exponential function, the argument of which is linear in ω0 in
both the active and the passive case. Therefore, the escape rate
of active particles shown in Fig. 3(a) closely resembles that of
passive ones and can thus be explained as if there was a higher
effective temperature (strictly speaking this analogy, which
here would require V eff(x) 	 V (x)/(1 + Da) up to a constant,
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FIG. 3. Escape rate in units of βDt for different values of the curvature ω0 of the bare potential Eq. (8) with (a) α = ω0/10 chosen thus that
the barrier is always located at a fixed xb,0 and its height βE0 increases with ω0, and (b) α = √

ω3
0 /35 such that xb,0 moves toward the origin

with increasing ω0, while maintaining a constant barrier height. The data in (a) are plotted on a logarithmic scale and in (b) on linear scale to
highlight the exponential and almost linear behavior of the escape rate as a function of ω0, respectively. The parameters are set to τ = 0.02
and Da = 2/3. The dashed black line indicates a linearly increasing ract with a slope m = βDt exp [−βE0/(1 + Da)]/(2π ) [Eq. (21)]. For
such small values of ract, statistical fluctuations in the numerically measured escape rate (squares) make it difficult to ascertain the functional
dependence of ract on ω0. It appears that ract becomes slightly nonlinear with increasing ω0 as it gets closer to the solid black line, which
corresponds to Eq. (20). Nevertheless, the approximately linear dependence of ract on ω0 is clearly evident. The inset of (b) is a plot of the
escape rate in Eq. (20) for different values of Da for fixed βE0. In the direction of the arrow Da is 0.5, 1, 2, 4, and 6. ract is normalized with
respect to the slope m to highlight the nonlinearity with increasing ω0. The dash-dotted line of unit slope corresponds to the exactly linear
variation of ract with ω0 in the limit of Da = 0.

only holds exactly for linear potentials [10,12]). We calculate
the escape rate from Eq. (20) and plot it together with the
numerically obtained rates in Fig. 3. The numerically obtained
escape rates are in agreement with each other over the entire
range of ω0 considered as well as with the analytical prediction
of Eq. (20). The high accuracy of the analytical approach in
describing the escape rate suggests that the assumptions used
in the Kramers-like analytical approach in the derivation of
Eq. (20) remain valid for a significant range of the barrier
height.

The barrier height of the bare potential depends on ω0

and α. By choosing α =
√

ω3
0/35, the barrier height βE0 =

1225/54 remains independent of ω0, but the width xb,0 =
35/(3

√
ω0) of the potential well decreases with increasing

curvature. Another, more intuitive interpretation would be
that of an increasing average slope βE0/xb,0 = 35

√
ω0/18

of the potential barrier. This particular choice of parameters
allows us to discuss the rate of escape from a potential well of
changing curvature but with a fixed barrier height. It follows
from Eq. (20) that, with the barrier height of the bare potential
fixed, the passive rate rpass becomes a perfectly linear function
of ω0, whereas ract maintains its exponential form. However,
this deviation from linearity is almost negligible for the range
of ω0 we are interested in. As shown in Fig. 3(b), the behavior
of the escape rate is well represented by the linear function,

ract ≈ βDtω0

2π
exp

(
− βE0

1 + Da

)
, (21)

obtained from expanding Eq. (20) in terms of ω0 at constant
E0. Even for the small values of ract, the numerics and analytics
are in good agreement.

A related barrier-crossing problem has recently been
studied experimentally [22] and theoretically [23]. The active
particle moves in an energy landscape that is flat except
having an asymmetric potential barrier. The particle can cross
the potential barrier from either side. It was found that the
transition rate was smaller for particles crossing the barrier
from the side facing steeper slope of the barrier. This cannot
be explained using the Kramers approach in which, as shown
above, the escape rate increases with increasing curvature for
a fixed barrier height. Note that in the Kramers approach one
considers a potential well rather than a single barrier that does
not surround the particle. An ideal study to test our theoretical
results would correspond to studying the transition rate in
a one-dimensional double-well potential of equal depth but
different widths. By confining active particles to a channel, a
quasi-one-dimensional system can be realized with effective
interaction between the particle and the confining walls. It will
also be very interesting to extend the Kramers approach to
particles escaping over an asymmetric barrier.

In conclusion, we derived an effective interaction potential
for active particles in a one-dimensional potential well of
finite depth. Using this effective potential we calculated the
escape rate of active particles over the potential barrier. For
the problem considered, this approximate procedure turns out
to be (i) well justified, as no tensorial effective quantities
occur and no pairwise interaction forces are involved, which
both would require further approximations, (ii) highly accurate
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although the potential considered has a negative curvature, (iii)
particularly simple, as all conditions are respected to justify
expansion methods, and (iv) the ideal link to Kramers approach
for passive particles. As our main result we obtained and
discussed a closed analytic formula for the escape rate. We
find that upon increasing the activity or the curvature at the
maximum of our model potential, the effective equilibrium
approach only slightly overestimates the escape rate of active
particles compared to computer simulations. Similar calcula-
tions can be made involving any other trapping potential. It
would be interesting to set up an experiment or adapt existing
ones [22] to test our theoretical predictions.

APPENDIX A: THE GENERAL FOX APPROXIMATION

We derive of the probability current given by Eq. (3)
employing a generalized Fox approximation [18,19] to the
coupled stochastic differential equations given by Eq. (2). The
method detailed in Appendix B of Ref. [6], which suggests
the occurrence of a force derivative of the form ∇i · βFi ,
is missing two crucial points, which we will detail in the
following. First, in d > 1 dimensions, Eq. (2) is vector valued:
taking this into account properly, the force derivative becomes
∇i ⊗ βFi , where ⊗ denotes a dyadic product of two vectors.
Second, the forces Fi(rN ) are multivariate, resulting in the
derivative term ∇i ⊗ βFj as entering in Eq. (3). Introducing
a component-wise notation (compare, e.g., Ref. [12]) for
dN -dimensional arrays xα(t) we understand that the two points
can be accounted for in the same way, as we rewrite Eq. (2)
in the form (neglecting the Brownian white noise ξα(t) for the
moment)

ẋα(t) = DtβFα(x1,x2, . . . ,xdN ) + χα(t), (A1)

with α ∈ {1 . . . dN}.
Obviously, the correlator,

Cαβ(t − t ′) := 〈χα(t)χβ(t ′)〉= Da

τa
δαβe− |t−t ′ |

τa , (A2)

needs to be a dN × dN tensor and the probability distribution
functional [6],

PN [{χα}]∝exp

⎡
⎣−1

2

∫∫
ds ds ′ ∑

αβ

χα(s)Kαβ(s − s ′)χβ(s ′)

⎤
⎦,

(A3)

is equipped with a tensorial kernel Kαβ(t − t ′), the inverse of
Cαβ . The latter point is the basic content of the discussion in
Ref. [6] about how the one-dimensional single-argument case
should be generalized. For our derivation, we calculate the
formal solution,

PN ({yα},t) =
∫

D[{χα}]PN [{χα}]
∏
α

δ(yα − xα(t)), (A4)

of Eq. (A1) and its time derivative,

∂PN ({yα},t)
∂t

=
∫

D[{χα}]PN [{χα}]
{
−

∑
β

∂

∂yβ

∏
α

δ(yα−xα(t))ẋβ(t)

}

=
∑

β

− ∂

∂yβ

(
DtβFβ({yα})PN ({yα},t)

+
∫

D[{χα}]PN [{χα}]
{∏

α

δ(yα − xα(t))
}
χβ(t)

)
,

(A5)

using Eq. (A1) in the second step. It is here necessary to
account for each component χα(t) and xα(t) of the two vectors.
Then the exact starting point,

∫
D[{χα}]PN [{χα}]

{∏
α

δ(yα − xα(t))

}
χβ(t)

= −
∑

γ

∫
ds ′Cβγ (t − s ′)

∫
D[{χα}]

×
{

∂

∂yβ

∏
α

δ(yα − xα(t))

}
δxβ (t)

δχγ (s ′)
PN [{χα}], (A6)

of the Fox approximation follows from a partial integration
[6,18].

The most important difference from the (approximate)
presentation in Ref. [6] arises in how the variation in Eq.
(B15) therein is determined. In the multivariate case, we find

δẋβ (t)

δχγ (t ′)
= Dt

∑
δ

∂βFβ(xdN (t))
∂xδ(t)

δxδ(t)

δχγ (t ′)
+ δβγ δ(t − t ′),

(A7)

and we obtain the tensorial solution

δxβ(t)

δχγ (s ′)
=

[
exp

∫ t

s ′
ds F′(s)

]
βγ


(t − s ′)

≈ [e(t−s ′) F′(t)]βγ 
(t − s ′), (A8)

which we approximated in the second step according to the Fox
scheme [6,18] [compare Eq. (B20) therein], while only taking
into account the linear term in t − s ′ when expanding the
exponent. The matrix F′(t) 	 F′[x(t)] in the exponential has
the components F′

βγ = Dt∂βFβ/∂xγ 	 Dt∇i ⊗ βFj , where
we recognize the desired generalization of the force derivative
when switching back to the vectorial notation. Using Eq. (A8)
and the explicit correlator Eq. (A2) in Eq. (A6) yields at a
sufficiently large time t [6,18] the representation

∂PN (rN,t)

∂t
= −

N∑
i=1

∇i ·
[
DtβFi(rN )PN

−Dt∇iPN − Da

∑
j

∇j

(
�−1

ij PN

)]
(A9)

of Eq. (A5) with �ij given by Eq. (4) and we used the
identity ∇i�ij = ∇j�ij . We thus have established the full
generalization of the Fox approximation to three dimensions.
After reintroducing into Eq. (A9) the contribution −Dt∇iPN

resulting from the Brownian white noise, the probability
current in the Smoluchowski Eq. (A5) is given by Eq. (3).
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APPENDIX B: COLORED-NOISE SIMULATIONS

Consider the following equation:

ẋ = f (x) + ξ (t) + χ (t), (B1)

where ξ is Gaussian process with zero mean and the time
autocorrelation 〈ξ (t)ξ (s)〉 = δ(t − s) and χ is colored noise
with an autocorrelation that decays exponentially in time
as 〈χ (t)χ (t ′)〉 = Daτ

−1
a e−|t−t ′ |/τa . In numerical simulation of

Eq. (B1) with dt as the integration time step, the time-updated
x can be written as

x(t + dt) = x(t) + f (x(t))dt + Zξ + Zχ, (B2)

where Zξ and Zχ are random processes defined as

Zξ =
∫ t+dt

t
ξ (s)ds,

Zχ =
∫ t+dt

t
χ (s)ds.

(B3)

Since ξ is a Gaussian process, Zξ is distributed according
to a Gaussian distribution with zero mean and variance

√
dt ,

i.e., Zξ ∼ √
dtN (0,1). The distribution corresponding to Zχ

can be determined in the following way. The process χ (t) can
be written in terms of a filtered white noise as [24]

χ̇ = − χ

τa
+

√
2Da

τa
ζ (t), (B4)

where ζ (t) is Gaussian noise with zero mean and the
time correlation 〈ζ (t)ζ (s)〉 = δ(t − s). The formal solution to
Eq. (B4) is given as

χ (t) = e−t/τaχ (0) +
√

2Da

τa

∫ t

0
e

s−t
τa ζ (s)ds. (B5)

Following Ref. [24], we define μ ≡ dt/τa and two Gaussian
processes

�0 ≡
∫ dt

0
e

s−dt
τa χ (s)ds,

�1 ≡
∫ dt

0

∫ h

0
e

s−h
τa χ (s)dsdh,

(B6)

with zero mean and correlations as〈
�2

0

〉 = τa

2
(1 − e−2μ),

〈
�2

1

〉 = τ 3
a

2
(2μ − 3 − e−2μ + 4e−μ), (B7)

〈�0�1〉 = τ 2
a

2
(1 − 2e−μ + e−2μ).

With the mean and variance known the two Gaussian processes
can be expressed as

�0 ∼
√〈

�2
0

〉
N (0,1),

(B8)

�1 ∼ 〈�0�1〉√〈
�2

0

〉 N (0,1) +
√

〈�2
1〉 − 〈�0�1〉2〈

�2
0

〉 N (0,1).

We can now write the time-updated χ as

χ (t + dt) = e−μχ (t) +
√

2Da

τa
�0. (B9)

Using Eq. (B9) in Eq. (B3), we can write

Zχ =
∫ t+dt

t
χ (s)ds

= τa(1 − e−μ)χ (t) +
√

2Da

τa
�1. (B10)

The trajectory of a particle governed by the stochastic equation
of motion Eq. (B1) can be obtained by advancing time in small
steps in Eq. (B2).

To calculate the rate of escape numerically, we place sinks at
xc = ±(xb,0 + 1), where |xb,0| = ω0/(3α) is the location of the
barrier of the bare potential. A particle starting at x = 0 at time
t = 0 is considered captured by the sink if |x(t = tc)| � xc.
Once a particle is captured at the sink, it is reintroduced at the
origin and the process is repeated at least 5000 times to obtain
a reliable average of tc. This average corresponds to the mean
first passage time of the particle and the escape rate is obtained
as simply the inverse of this quantity. We note that the choice
of the sink xc = ±(xb,0 + 1) is arbitrary. We have verified that
our results are insensitive to the choice of the location of sink
by considering xc = ±(xb,0 + 2) and xc = ±(xb,0 + 3).
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[9] É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and
F. van Wijland, Phys. Rev. Lett. 117, 038103 (2016).

[10] G. Szamel, Phys. Rev. E 90, 012111 (2014).
[11] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702

(2012).
[12] U. M. B. Marconi and C. Maggi, Soft Matter 11, 8768 (2015).
[13] R. Wittmann and J. M. Brader, Europhysics Lett. 114, 68004

(2016).
[14] U. M. B. Marconi, M. Paoluzzi, and C. Maggi, Mol. Phys.

114, 2400 (2016).
[15] P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Phys. Rev.

Lett. 110, 268301 (2013).

012115-7

https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1088/0953-8984/20/40/404215
https://doi.org/10.1088/0953-8984/20/40/404215
https://doi.org/10.1088/0953-8984/20/40/404215
https://doi.org/10.1088/0953-8984/20/40/404215
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1038/nature04090
https://doi.org/10.1038/nature04090
https://doi.org/10.1038/nature04090
https://doi.org/10.1038/nature04090
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1038/srep10742
https://doi.org/10.1038/srep10742
https://doi.org/10.1038/srep10742
https://doi.org/10.1038/srep10742
https://doi.org/10.1140/epjb/e2016-70359-0
https://doi.org/10.1140/epjb/e2016-70359-0
https://doi.org/10.1140/epjb/e2016-70359-0
https://doi.org/10.1140/epjb/e2016-70359-0
https://doi.org/10.1103/PhysRevLett.117.038103
https://doi.org/10.1103/PhysRevLett.117.038103
https://doi.org/10.1103/PhysRevLett.117.038103
https://doi.org/10.1103/PhysRevLett.117.038103
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1039/C5SM01718A
https://doi.org/10.1039/C5SM01718A
https://doi.org/10.1039/C5SM01718A
https://doi.org/10.1039/C5SM01718A
https://doi.org/10.1209/0295-5075/114/68004
https://doi.org/10.1209/0295-5075/114/68004
https://doi.org/10.1209/0295-5075/114/68004
https://doi.org/10.1209/0295-5075/114/68004
https://doi.org/10.1080/00268976.2016.1155777
https://doi.org/10.1080/00268976.2016.1155777
https://doi.org/10.1080/00268976.2016.1155777
https://doi.org/10.1080/00268976.2016.1155777
https://doi.org/10.1103/PhysRevLett.110.268301
https://doi.org/10.1103/PhysRevLett.110.268301
https://doi.org/10.1103/PhysRevLett.110.268301
https://doi.org/10.1103/PhysRevLett.110.268301


A. SHARMA, R. WITTMANN, AND J. M. BRADER PHYSICAL REVIEW E 95, 012115 (2017)

[16] P. Hänggi, F. Marchesoni, and P. Grigolini, Z. Physik B -
Condens. Matter 56, 333 (1984).

[17] P. Jung and P. Hänggi, Phys. Rev. Lett. 61, 11
(1988).

[18] R. F. Fox, Phys. Rev. A 33, 467 (1986).
[19] R. F. Fox, Phys. Rev. A 34, 4525 (1986).
[20] M. Rein and T. Speck, Eur. Phys. J. E 39, 84 (2016).

[21] P. Reimann, G. J. Schmid, and P. Hänggi, Phys. Rev. E 60, R1(R)
(1999).

[22] N. Koumakis, A. Lepore, C. Maggi, and R. Di Leonardo, Nature
Commun. 4, 2588 (2013).

[23] N. Koumakis, C. Maggi, and R. Di Leonardo, Soft Matter 10,
5695 (2014).

[24] R. Mannella, Int. J. Mod. Phys. C 13, 1177 (2002).

012115-8

https://doi.org/10.1007/BF01306642
https://doi.org/10.1007/BF01306642
https://doi.org/10.1007/BF01306642
https://doi.org/10.1007/BF01306642
https://doi.org/10.1103/PhysRevLett.61.11
https://doi.org/10.1103/PhysRevLett.61.11
https://doi.org/10.1103/PhysRevLett.61.11
https://doi.org/10.1103/PhysRevLett.61.11
https://doi.org/10.1103/PhysRevA.33.467
https://doi.org/10.1103/PhysRevA.33.467
https://doi.org/10.1103/PhysRevA.33.467
https://doi.org/10.1103/PhysRevA.33.467
https://doi.org/10.1103/PhysRevA.34.4525
https://doi.org/10.1103/PhysRevA.34.4525
https://doi.org/10.1103/PhysRevA.34.4525
https://doi.org/10.1103/PhysRevA.34.4525
https://doi.org/10.1140/epje/i2016-16084-7
https://doi.org/10.1140/epje/i2016-16084-7
https://doi.org/10.1140/epje/i2016-16084-7
https://doi.org/10.1140/epje/i2016-16084-7
https://doi.org/10.1103/PhysRevE.60.R1
https://doi.org/10.1103/PhysRevE.60.R1
https://doi.org/10.1103/PhysRevE.60.R1
https://doi.org/10.1103/PhysRevE.60.R1
https://doi.org/10.1038/ncomms3588
https://doi.org/10.1038/ncomms3588
https://doi.org/10.1038/ncomms3588
https://doi.org/10.1038/ncomms3588
https://doi.org/10.1039/C4SM00665H
https://doi.org/10.1039/C4SM00665H
https://doi.org/10.1039/C4SM00665H
https://doi.org/10.1039/C4SM00665H
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1142/S0129183102004042



