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Abstract Linear interpolation schemes very naturally lead to quadrature rules. In-
troduced in the eighties, linear barycentric rational interpolation has recently expe-
rienced a boost with the presentation of new weights by Floater and Hormann. The
corresponding interpolants converge in principle with arbitrary high order of preci-
sion. In the present paper we employ them to construct two linear rational quadrature
rules. The weights of the first are obtained through the direct numerical integration
of the Lagrange fundamental rational functions; the other rule, based on the solution
of a simple boundary value problem, yields an approximation of an antiderivative of
the integrand. The convergence order in the first case is shown to be one unit larger
than that of the interpolation, under some restrictions. We demonstrate the efficiency
of both approaches with numerical tests.

Keywords Rational interpolation · Barycentric form · Quadrature

Mathematics Subject Classification (2000) 65D05 · 65D32 · 41A05 · 41A20 ·
41A25

1 Introduction: quadrature from equidistant samples

Suppose we are given the discrete data F := {f0, . . . , fn}, corresponding to a real or
complex function f which is defined and integrable in an interval [a, b] and sampled
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at a strictly ordered set of abscissas X := {x0 = a, x1, . . . , xn−1, xn = b} in [a, b]. Our
aim is to either approximate the (definite) integral

I :=
∫ b

a

f (x) dx (1.1)

by a quadrature rule
∑n

k=0 wkfk or to approximate an antiderivative (primitive) of f .
If we are free to choose the set X at which the function f is to be sampled, we can

opt for any efficient distribution of points. This means using quadrature rules based
upon orthogonal polynomials. Examples include Gauss-type rules, which are known
to be stable and to converge for every Riemann-integrable function (see for instance
[15] or [29]). The situation is different when the set X cannot be chosen. If the data
set stems from measurements, for instance, it is most likely that these are taken on a
regular grid. But it is well known that polynomial interpolation from equidistant sam-
ples is unstable and that the corresponding Lebesgue constant grows very fast with n

(see [24] or [8] and the references therein). As a consequence, Newton–Cotes quadra-
ture rules diverge or are unstable with a growing number of points, as explained in
[21, 23] or in [12], where the author shows “die praktische Unbrauchbarkeit dieser
Verfahren” (meaning the uselessness of these rules in practice). One way to avoid
problems is using composite Newton–Cotes rules of low order such as the composite
trapezoidal or Simpson rules. Their frequent use in practical calculations documents
the importance of these slowly converging formulas for non-periodic functions, see
[13, p. 57] and the included reference to M. Abramowitz. Any attempt to construct
geometrically converging interpolants from equidistant data necessarily fails, as it
leads to Gibbs and Runge phenomena [22].

In the present paper we shall introduce methods for the approximation of an an-
tiderivative of f by a linear barycentric rational interpolant and of the integral of f

by that of such an interpolant. We analyse some of their properties for equidistant
points.

2 Linear barycentric rational interpolation

Let us first explicit the linear rational interpolants we shall be using and recall some
of their properties.

Let Pn[f ] be the unique polynomial of degree at most n interpolating the data F
at the set of nodes X. The steps from the Lagrangian representation to its barycentric
form

Pn[f ](x) =
n∑

k=0

βk

x − xk

fk

/ n∑
k=0

βk

x − xk

, (2.1)

where the so-called weights βk are defined by

βk =
[ ∏

j �=k

(xk − xj )

]−1

, k = 0, . . . , n, (2.2)
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are explained in many articles, such as [4] and [10]. For details on how to easily
implement this interpolant and for explicit O(n) formulas at particular point sets, see
[10]. Looking the right way at (2.1) and following [4], we see that Pn[f ] interpolates
the data F at the set X, no matter the weights, as long as none of these vanishes. If
we replace the weights βk by other non-zero μk , (2.1) usually becomes a true linear
rational interpolant

rn[f ](x) =
n∑

k=0

μk

x − xk

fk

/ n∑
k=0

μk

x − xk

, (2.3)

the numerator and denominator of which are polynomials of degree at most n. By
linear we shall mean the linear dependency of rn[f ] on the data f0, . . . , fn, this in
contrast to the non-linear dependency of the classical rational interpolant, in which
the denominator depends on f , see also [6]. Every set of n+ 1 non-zero weights thus
defines a new linear rational interpolant. In [4], the second author of the present paper
studied the simple choice

μk = (−1)kδk, δk :=
{

1/2, k = 0 or k = n,

1, otherwise.
(2.4)

The corresponding interpolant has no real poles and numerical experiments revealed
that the error decreases like 1/n2 for large n, see [4]. This choice of weights has been
extended by Floater and Hormann in [14]. For every fixed non-negative integer d ≤ n,
the authors considered the set of polynomials pi(x), i = 0, . . . , n − d , interpolating
f at the subsets {xi, . . . , xi+d} of X and the rational interpolant

rn[f ](x) =
∑n−d

i=0 λi(x)pi(x)∑n−d
i=0 λi(x)

, (2.5)

where

λi(x) := (−1)i

(x − xi) · · · (x − xi+d)
. (2.6)

They also found explicit formulas for the interpolation weights μk of its barycentric
representation. The approximation rate as

h := max
0≤i≤n−1

(xi+1 − xi) → 0

is O(hd+1) for a function f ∈ Cd+2[a, b]. One advantage of these interpolants is the
fact that the interpolation error depends on the maximum norm of the mere (d + 2)-
nd order derivative of f , as opposed to the dependence on the (n + 1)-st derivative
of f in the polynomial case. It turns out that the simple choice (2.4) corresponds to
d = 1 for equidistant nodes.
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3 Integration of barycentric rational interpolants

Every linear interpolation formula

f (x) ≈
n∑

k=0

γk(x)fk

trivially leads to a linear quadrature rule through the integration of the factors γk(x).
The behaviour of the so-obtained rule regarding convergence and stability simply
follows from the respective properties of the interpolant. In the case of an (n + 1)-
point linear rational interpolant (2.3) with non-zero weights μk , we have

I =
∫ b

a

f (x) dx ≈
∫ b

a

rn[f ](x) dx

=
∫ b

a

∑n
k=0

μk

x−xk
fk∑n

k=0
μk

x−xk

dx =
n∑

k=0

wkfk =: Qn, (3.1)

where

wk :=
∫ b

a

μk

x−xk∑n
k=0

μk

x−xk

dx. (3.2)

If rn[f ] is a true rational interpolant with non-constant denominator, then the so-
called quadrature weights wk can be easily determined in exact arithmetic only if the
poles are known.

The choice μk = βk of (2.2) in (3.1) reproduces the Newton–Cotes rules. The same
is true if d = n in the interpolant (2.5), since it then coincides with the interpolating
polynomial.

For the computation of the weights (3.2), we decided to neglect algebraic methods
as they mostly require the polynomials in the numerator and denominator of rn[f ] to
be in canonical form. The step from the representation (2.3) of these polynomials to
the canonical one is impaired by stability problems [17].

For a rational interpolant whose denominator degree exceeds 4 there is no formula
for the poles. As we would like to avoid approximating complex poles and determin-
ing expensive partial fraction decompositions, we pursue two ideas for generating
linear quadrature rules based on linear rational interpolants.

Under direct rational quadrature we shall here mean the result of applying existing
quadrature rules such as Gauss–Legendre or Clenshaw–Curtis [26, 29], which are
known to behave well, to approximate the integrals in (3.2).

Indirect rational quadrature uses the fact that the integral (1.1) may be obtained
through the solution of an ordinary differential equation, see, e.g., [27, Chap. 12].

4 Direct linear rational quadrature (DRQ)

The linearity of the rational interpolant (2.3) leads to the quadrature rule (3.1) with
the weights wk given by (3.2). Since the integrand in (3.2) is infinitely smooth and
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may be evaluated at every point in the interval, we can approximate the integral
by any efficient quadrature rule with rapid convergence, such as Gauss–Legendre
or Clenshaw–Curtis. Let wD

k , k = 0, . . . , n, be corresponding approximations of the
weights in (3.2); the direct rational quadrature rule then replaces Qn by

I =
∫ b

a

f (x) dx ≈
n∑

k=0

wD
k fk. (4.1)

If we do not need the weights, we may apply a rule directly on the whole inter-
polant, since rn[f ] can be evaluated stably everywhere in the interval. Not evaluating
the quadrature weights explicitly can thus make for much faster quadrature. Notice
that this could be done as well with the classical non-linear rational interpolant whose
barycentric representation is computed in [9].

The convergence of such a quadrature rule is guaranteed, provided the interpolant
itself converges. If the interpolation error converges as hp for some p as h → 0, then
the integration error will converge to 0 at least with the same order if we choose a
quadrature rule for the integral of rn[f ] that converges at a rate O(hq) with q ≥ p;
indeed,

∣∣∣∣
∫ b

a

f (x) dx −
n∑

k=0

wD
k fk

∣∣∣∣ ≤
∫ b

a

|f (x) − rn[f ](x)|dx

+
∣∣∣∣
∫ b

a

rn[f ](x) dx −
n∑

k=0

wD
k fk

∣∣∣∣
≤ C1h

p + C2h
q ≤ Chp, (4.2)

where C, C1, and C2 are constants depending only on f , derivatives of f and on the
interval length (b − a).

By a similar argument, we see that the degree of precision of the direct rational
quadrature rule attains at least the highest integer s such that every polynomial of
degree at most s is exactly reproduced by the interpolant.

We have thus established that the integral of every function f with a converging
rational interpolant can be approximated, by a direct rational quadrature rule, with at
least the same accuracy as the interpolant. For the interpolant (2.5), this yields the
following result, which is valid for any distribution of the nodes in X and which we
shall tighten in some cases (see Sect. 6).

Theorem 4.1 Suppose n and d , d ≤ n, are non-negative integers, f ∈ Cd+2[a, b]
and rn[f ] is the rational interpolant with parameter d given in (2.5). Let the quadra-
ture weights wk in (3.2) be approximated by a quadrature rule which converges at
least at the rate O(hd+1) and has degree of precision at least d + 1. Then

∣∣∣∣
∫ b

a

f (x) dx −
n∑

k=0

wD
k fk

∣∣∣∣ ≤ Chd+1,
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where, for d ≥ 1, C is a constant depending only on d , on derivatives of f and on the
interval length. In the case d = 0, C is to be multiplied by the mesh ratio

β = max
1≤i≤n−2

min

{
xi+1 − xi

xi − xi−1
,

xi+1 − xi

xi+2 − xi+1

}
.

The quadrature rule (4.1) has degree of precision d + 1 if n − d is odd and d if n − d

is even.

The ratio β shows up in the corresponding result of [14] as well. The last statement
stems from the fact that rn reproduces polynomials of the said degrees (see Theorem 2
in [14]).

5 Indirect linear rational quadrature (IRQ)

As an alternative to integrating a rational interpolant of f as described in Sect. 4, we
shall now follow another approach, in which the integral is seen as the solution of an
initial value problem. Approximating I then requires the solution of a full system of
linear equations of order n—or an equivalent method—but the procedure yields much
more, namely an approximation of an antiderivative of f ; I is then automatically
approximated by the endpoint value of the latter.

For that purpose, we approximate an antiderivative in the interval [a, b] by a linear
rational interpolant

rn[u](x) ≈
∫ x

a

f (y) dy, (5.1)

which we determine as the solution of the induced first order initial value problem

d

dx
rn[u](x) ≈ f (x), u0 = rn[u](a) = 0, x ∈ [a, b]; (5.2)

we solve (5.2) by the collocation solver for boundary value problems introduced in
[5] for the second order case.

Here, this merely requires the first derivative at the nodes of a rational interpolant
written in barycentric form with non-zero weights. Using Proposition 11 in [25], the
authors of [2] established formulas for the computation of such derivatives in matrix
form: denote by u the vector (u0, . . . , un)

T of the unknown values of rn[u] at the
nodes in X and let u′ be the vector containing the first derivative of rn[u] at the
nodes; then

u′ = Du,

where the elements of the centro-skew symmetric differentiation matrix D are given
by

Dij :=
{

μj

μi

1
xi−xj

, i �= j,

−∑n
k=0,k �=i Dik, i = j.
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As demonstrated in [1], the negative sum should be used for the diagonal elements
of such matrices to improve stability. Applying collocation to (5.2) (with the initial
condition u0 = 0)—i.e., requiring equality in (5.2) at the nodes x1, . . . , xn—leads to
a system of n equations for the n unknowns u1, . . . , un:

n∑
j=1

Dijuj = fi, i = 1, . . . , n. (5.3)

Inserting into (2.3) the values uk obtained from solving this system yields an approx-
imation of an antiderivative of f valid in the whole interval:

∫ x

a

f (y) dy ≈ rn[u](x) =
n∑

k=0

μk

x − xk

uk

/ n∑
k=0

μk

x − xk

, x ∈ [a, b]. (5.4)

At x = b, the last expression equals un, an approximation of the integral of f over
the interval [a, b]: ∫ b

a

f (y) dy ≈ rn[u](b) = un.

We stress that, in contrast with DRQ, IRQ yields not only the value un approxi-
mating the integral (1.1), but also approximate values of the antiderivative

∫ x

a
f (y) dy

at x1, . . . , xn−1 as u1, . . . , un−1 and at all other x ∈ [a, b] as the interpolant (5.4). For
sets of weights μk leading to interpolants with no poles in [a, b], this approximate
antiderivative is infinitely smooth.

Again, we can derive explicit formulas for the weights of the corresponding
quadrature rule. To this end, we use Cramer’s rule with the notation of [18], which
denotes by A←

n y the matrix A with its nth column replaced by y. Let D̃ be the dif-
ferentiation matrix D deprived of its first row and column (recall that u0 = 0), let
f̃ := (f1, . . . , fn)

T and let ek be the kth canonical vector in R
n. Then

un = det(D̃ ←
n f̃)

det(D̃)
=

n∑
k=1

wI
k fk,

where the quadrature weights are given by

wI
k := det(D̃ ←

n ek)

det(D̃)
, k = 1, . . . , n.

6 Properties of DRQ in the case of equidistant nodes

In this section we study the theoretical behaviour of DRQ when the rational inter-
polant rn[f ] in (3.1) is a member of the family of linear rational interpolants (2.5). It
is important to remember that these rational interpolants are infinitely smooth (even
analytic) and have no real poles (see Theorem 1 in [14]). Moreover, the Lebesgue
constant associated with equidistant nodes increases only logarithmically with n for
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fixed d , see [11]. We shall first investigate the convergence rates of the DRQ rules
for equidistant nodes. We show that, in this special case, the rate of approximation
of the quadrature rule is O(hd+2) when the rational interpolant converges at the rate
O(hd+1). At the end of this section we establish the degree of precision and the sym-
metry of these rules. Some of the tools we use in the proofs stem from [20].

Let us begin with a symmetry property of the denominator of the rational inter-
polant (2.5). In what follows, we denote this denominator by

Λn(x) :=
n−d∑
i=0

λi(x) (6.1)

and call x := a+b
2 the midpoint of the interval [a, b].

Lemma 6.1 Suppose the nodes xi , i = 0, . . . , n, are distributed symmetrically about
x, i.e., (x − xi) = (xn−i − x) for all i. Then the denominator in (2.5) is either sym-
metric or anti-symmetric about x, in the sense that for every real x,

Λn(x + x) = (−1)n+1Λn(x − x). (6.2)

Proof We show that for every i ∈ {0, . . . , n − d} the following identity holds:

λi(x + x) = (−1)n+1λn−d−i (x − x). (6.3)

By the definition (2.6), we have

λ−1
i (x + x) = (−1)i

d∏
k=0

(x + x − xi+k).

Since the nodes are distributed symmetrically about x, it follows that the above right
hand side equals

(−1)i+d+1
d∏

k=0

(x − x − xn−i−k).

Inverting the order of the factors in the last product, we obtain (6.3). �

For the next steps, we use the real functions

Ωn(y) :=
∫ y

xd+1

1

Λn(x)
dx. (6.4)

This definition trivially leads to the following corollary of Lemma 6.1.

Corollary 6.1 For any positive integers n and d , d ≤ n,

Ωn(xd+1) = 0,

Ωn(xn−d−1) = 0, if n is even,

Ωn(xn−d−1) = 2Ωn(x), if n is odd.
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Before we state the next lemma, we recall from [14] that the reciprocal of the
denominator Λn(x) may be rewritten as

1

Λn(x)
= (−1)n−d L(x)

s(x)
, where L(x) =

n∏
i=0

(x − xi) (6.5)

and where s(x) is positive for all real x, as shown in Theorem 1 of the same article.
This means that the reciprocal of the denominator changes sign only at the n + 1
nodes xi .

The following lemma will be essential for our proof of the convergence rates.

Lemma 6.2 Suppose the nodes xi , i = 0, . . . , n, are equidistant. Then Ωn does not
change sign in (xd+1, xn−d−1). In particular, if d ≤ n/2 − 1, then

Ωn(y) < 0. (6.6)

Proof We will show (6.6) only for d ≤ n/2 − 1 and y ∈ (xd+1, x). The other cases
then become obvious from Lemma 6.1. The claim (6.6) remains to be checked at
y = xd+3, xd+5, . . . in (xd+1, x), since by (6.5) the function 1/Λn(x) changes sign
exclusively at the nodes xi and is negative in (xd+1, xd+2), independently of n and d .
In order to prove (6.6), we show that

∫ xk+2

xk

1

Λn(x)
dx < 0, (6.7)

for k = d + 1, d + 3, . . . such that [k, k + 2] ⊆ [d + 1, n/2]. This means that every
negative contribution to Ωn(y) dominates the positive contribution that immediately
follows it. It is then easy to see that the remaining contribution to Ωn(n/2) is also
negative, if it occurs.

We first transform (6.7) into an integral over one sub-interval
∫ xk+2

xk

1

Λn(x)
dx =

∫ xk+1

xk

(
1

Λn(x)
+ 1

Λn(x + h)

)
dx.

Since the nodes are equidistant, we can express Λn(x + h) in terms of Λn(x):

Λn(x + h) = λ0(x + h) − Λn(x) + λn−d(x). (6.8)

This lets us further modify (6.7) into
∫ xk+2

xk

1

Λn(x)
dx =

∫ xk+1

xk

λ0(x + h) + λn−d(x)

Λn(x)Λn(x + h)
dx.

Finally, we discuss the sign of the last integrand. The denominator is negative since
x ∈ (xk, xk+1) and Λn(x) changes sign at the nodes. As x ≥ xd+1, we see from (2.6)
that λ0(x +h) is positive. Moreover, λn−d(x) is smaller in magnitude than λ0(x +h)

for x ≤ x. Thus the numerator is positive and the left hand side of (6.6) may be
interpreted as a sum of negative terms. �
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An essential ingredient of our proof of the convergence rates will be the following
change of variable:

x = a + th, t ∈ [0, n]. (6.9)

It will enable us to separate the powers of h from the constant factor in the error term.
As a preparation, we introduce the functions

λi(t) := (−1)i

(t − i) · · · (t − (i + d))
, i = 0, . . . , n − d, and Λn(t) :=

n−d∑
i=0

λi(t),

which are the λi(x) defined in (2.6), respectively Λn(x) from (6.1), after changing
the variable and neglecting the powers of h.

The next lemma shows that the integral of λ0 is bounded.

Lemma 6.3 For any positive integers n and d , d ≤ n, the integral

∫ n/2

d+1
λ0(t + 1) dt

is bounded as a function of n.

Proof We first observe that, after a partial fraction decomposition, λ0(t + 1) may be
expressed as

λ0(t + 1) =
d∑

i=0

Ci

t + 1 − i
, where Ci := (−1)i+d

i!(d − i)! .

This expression is now easy to integrate,

∫ n/2

d+1
λ0(t + 1) dt =

d∑
i=0

Ci ln

(
n

2
+ 1 − i

)
−

d∑
i=0

Ci ln(d + 2 − i).

As the last term does not depend on n, it is constant for fixed d . We will show that
the first converges towards 0 as n → ∞ for fixed d . To this end, we use the property
of the ln function to transform products into sums,

d∑
i=0

Ci ln

(
n

2
+ 1 − i

)
= (−1)d

d!
d∑

i=0

(−1)i
(

d

i

)
ln

(
n

2
+ 1 − i

)

= (−1)d

d! ln

(
P(n/2)

Q(n/2)

)
,

where P and Q are monic polynomials of the same degree in n/2, since∑d
i=0(−1)i

(
d
i

) = 0. Consequently, this term vanishes as n → ∞. �

As a last preparation for the main results, we prove yet another lemma.



Linear barycentric rational quadrature 417

Lemma 6.4 For any positive integers n and d , d ≤ n/2 − 1, the expressions

∫ n/2

d+1

1

Λn(t)
dt and

∫ n/2

d+1

(t − n/2)/n

Λn(t)
dt

are bounded as functions of n.

Proof As in the proof of Lemma 6.2, we may split the integrals into two parts. To
this end, we define the set

K :=
{
k = d + 1, d + 3, . . .

∣∣[k, k + 2] ⊂
[
d + 1,

n

2

]}
.

Moreover let

R := [d + 1, n/2] \
⋃

k∈K

[k, k + 2]

be the remaining part of the interval [d + 1, n/2]. Now the integrals over R are
clearly bounded, since Λn(t) is bounded from below as shown in Theorems 2 and 3
from [14] and (t − n/2)/n is smaller than 1/2 in norm for 0 ≤ t ≤ n/2. We proceed
to show the boundedness of the first part of the first integral,

∑
k∈K

∫ k+2

k

1

Λn(t)
dt =

∑
k∈K

∫ k+1

k

λ0(t + 1) + λn−d(t)

Λn(t)Λn(t + 1)
dt.

We have shown in the proof of Lemma 6.2 that the integrand does not change sign.
Thus we may study the denominator separately. Its reciprocal is bounded by C2,
where C = d! if d �= 0 and C = 2 if d = 0. Thus we may write∣∣∣∣

∑
k∈K

∫ k+2

k

1

Λn(t)
dt

∣∣∣∣ ≤ C2
∣∣∣∣
∫ n/2

d+1
λ0(t + 1) dt +

∫ n/2

d+1
λn−d(t) dt

∣∣∣∣.
The first term is covered by Lemma 6.3 and the second is obviously bounded by
(n/2)λn−d(n/2), which converges towards a constant for d = 0 and vanishes as n →
∞ if d > 0.

To deal with the second integral of the claim, we proceed analogously. First, we
observe that

∑
k∈K

∫ k+2

k

(t − n/2)/n

Λn(t)
dt

=
∑
k∈K

1

n

∫ k+1

k

(t − n/2)(λ0(t + 1) + λn−d(t)) + Λn(t)

Λn(t)Λn(t + 1)
dt.

Similar arguments as above lead to∣∣∣∣
∑
k∈K

∫ k+2

k

(t − n/2)/n

Λn(t)
dt

∣∣∣∣ ≤ C2

2

∣∣∣∣
∫ n/2

d+1
λ0(t + 1) dt + n

2
λn−d(n/2)

∣∣∣∣ + C

2
,

which is clearly bounded. �
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The preceding lemmas help us to prove the main results.

Theorem 6.1 Suppose n and d , d ≤ n/2 − 1, are non-negative integers, f ∈
Cd+3[a, b] and rn[f ] is the rational interpolant with parameter d given in (2.5) and
interpolating f at equidistant nodes. Let the quadrature weights wk in (3.2) be ap-
proximated by a quadrature rule converging at least at the rate O(hd+2). Then

∣∣∣∣
∫ b

a

f (x) dx −
n∑

k=0

wD
k fk

∣∣∣∣ ≤ Chd+2,

where C is a constant depending only on d , on derivatives of f and on the interval
length b − a.

The hypothesis d ≤ n/2−1 is no real limitation for two reasons. Firstly, d is meant
to be fixed in advance and not to depend on n. In consequence the hypothesis on d

will become fulfilled as n increases. Secondly, if d ≥ n/2, we can use Theorem 4.1
and (4.2) to change the factor b − a into 2dh and derive an error bound depending on
hd+2.

Proof As exemplified in (4.2) it is sufficient to study the integral of the interpolation
error, ∫ b

a

(
f (x) − rn[f ](x)

)
dx. (6.10)

Following [14], we rewrite the interpolation error at x ∈ [a, b] as

f (x) − rn[f ](x) =
∑n−d

i=0 (−1)if [xi, . . . , xi+d, x]∑n−d
i=0 λi(x)

=: Fn(x)

Λn(x)
.

The authors show in the same article that the numerator Fn is bounded by a constant
depending only on d , on low order derivatives of f and on the interval length. In what
follows, such bounds will be denoted generically by C.
Our study of (6.10) begins with a splitting of the integral into three parts

∫ b

a

(
f (x) − rn[f ](x)

)
dx =

∫ xd+1

a

Fn(x)

Λn(x)
dx +

∫ xn−d−1

xd+1

Fn(x)

Λn(x)
dx

+
∫ b

xn−d−1

Fn(x)

Λn(x)
dx.

The first and last parts are bounded by Chd+2: simply apply the change of variable
(6.9) and take the maximum norm. The difficult part is the second one. We will show
that the oscillations of the reciprocal of Λn(x) almost cancel throughout that central
part of the interval [a, b]. To see this, we recall the definition (6.4) of Ωn and integrate
by parts:

∫ xn−d−1

xd+1

Fn(x)

Λn(x)
dx = Fn(xn−d−1)Ωn(xn−d−1) −

∫ xn−d−1

xd+1

F ′
n(x)Ωn(x)dx.
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On account of Corollary 6.1 we know that Ωn(xn−d−1) vanishes if n is even. If n is
odd, it equals 2Ωn(x), which with the change of variable (6.9) and by Lemma 6.4
may be bounded by Chd+2. Lemma 6.2 enables us to deal with the second term by
applying the mean value theorem for integrals:

∫ xn−d−1

xd+1

F ′
n(x)Ωn(x)dx = F ′

n(ξ)

∫ xn−d−1

xd+1

Ωn(x)dx

for some ξ ∈ [xd+1, xn−d−1]. Since we assume that f ∈ Cd+3[a, b], F ′
n(ξ) is

bounded by a constant, as shown in [7] (see also [20]). As x − x is an antideriva-
tive of 1, one more integration by parts yields

∫ xn−d−1

xd+1

Ωn(x)dx = (xn−d−1 − x)Ωn(xn−d−1) −
∫ xn−d−1

xd+1

x − x

Λn(x)
dx.

If n is odd, the last integral vanishes as its integrand is anti-symmetric about x by
a trivial modification of Lemma 6.1. If n is even, we repeat the change of variable
(6.9) and we use the symmetry of the integrand about x. To conclude by means of
Lemma 6.4, we recall that h = (b − a)/n. �

Lemma 6.1 and Corollary 6.1 of this section enable us to show a more general
result about the degree of precision (as defined, e.g., in [20]) of the DRQ rule with a
rational interpolant (2.5) from [14]. The nodes only need to be distributed symmetri-
cally about x.

Theorem 6.2 Suppose n and d , d ≤ n, are non-negative integers, rn in the DRQ
rule is the rational interpolant with parameter d given in (2.5) and the nodes xi are
distributed symmetrically about x. Let the linear quadrature rule Q approximating
the integral of rn be symmetric and have degree of precision at least d + 2. Then the
resulting DRQ rule has degree of precision

d + 2, if n is even and d is odd,
d + 1, if n and d are even,
d + 1, if n is odd and d is even,
d, if n and d are odd.

Proof The last two claims follow immediately from Theorem 2 in [14], since rn
exactly reproduces polynomials of degree d + 1, respectively d , in these cases.
The proof for the remaining claims will be divided into two parts. Firstly, we show
that the interpolation error for xd+2, respectively xd+1, is anti-symmetric about x.
Secondly, we use this result to prove that xd+2, respectively xd+1, are integrated
exactly by DRQ in these cases.
We begin with the case where n is even and d is odd. Following the lines of the proof
of Theorem 2 in [14] for f (x) = xd+2, we write the interpolation error for x ∈ [a, b]
as

rn[xd+2](x) − xd+2 =
n−d−1∑

i=0, i even

(xi+d+1 − xi)x
d+2[xi, . . . , xi+d+1, x]

/
Λn(x),
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where xd+2[xi, . . . , xi+d+1, x] stands for the corresponding divided difference of or-
der d + 3 of xd+2, which equals 1 (see for example [20]). Thus the numerator is
constant and the whole function is anti-symmetric by Lemma 6.1. Similar arguments
may be used for the case where both n and d are even.
Now we treat the second part of the proof. To this aim let P(x) be the polynomial
under consideration, that is, either xd+2 or xd+1. As the linear quadrature rule Q has
degree of precision at least d + 2, the total quadrature error of the DRQ rule is

∫ b

a

P (x)dx − Q[rn[P ]] =
(∫ b

a

P (x)dx − Q[P ]
)

+ (
Q[P ] − Q[rn[P ]])

= Q[P − rn[P ]].
Since Q is assumed to be symmetric and the interpolation error P(x) − rn[P ](x) is
anti-symmetric, this quadrature error vanishes. �

Finally we use Lemma 6.1 to show that the DRQ rule with a rational interpolant
(2.5) from [14] is symmetric if the nodes are distributed symmetrically about x.

Theorem 6.3 The DRQ rule (4.1) as determined by the hypotheses of the previous
theorem is symmetric.

Proof We show that the Lagrange fundamental rational functions

Rk(x) := μk

x − xk

/
Λn(x)

are pairwise symmetric about x, that is

Rk(x + x) = Rn−k(x − x)

for every real x. The symmetry of Q then guarantees that wD
k = wD

n−k . Note that
the denominator in the barycentric representation (2.3) of rn equals the denominator
in (2.5), see [14]. The denominator Λn(x) does not depend on k and we know from
Lemma 6.1 that (6.2) holds. As the nodes are supposed to lie symmetrically about x,
we see that x + x − xk = −(x − x − xn−k). We finally show that

μk = (−1)nμn−k. (6.11)

The barycentric weights are given in [14] as

μk = (−1)k−d
∑
i∈Jk

i+d∏
j=i, j �=k

|xk − xj |−1, (6.12)

where

Jk = {i ∈ {0, . . . , n − d}|k − d ≤ i ≤ k}.
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Table 1 Error with the direct and indirect rational quadrature rules

n Runge (d = 3) Sine (d = 4)

DRQ Order IRQ Order DRQ Order IRQ Order

10 7.5e−02 4.0e−01 2.5e−03 1.1e−01

20 1.3e−03 5.8 1.0e−02 5.3 5.0e−05 5.6 5.0e−03 4.4

40 1.0e−06 10.3 4.6e−05 7.8 7.8e−07 6.0 1.9e−04 4.7

80 6.0e−09 7.4 4.9e−06 3.2 1.2e−08 6.0 7.6e−06 4.7

160 1.8e−10 5.1 4.2e−07 3.6 1.8e−10 6.0 3.1e−07 4.6

320 5.4e−12 5.0 3.6e−08 3.5 2.9e−12 6.0 1.3e−08 4.6

640 2.1e−13 4.7 3.2e−09 3.5 9.0e−14 5.0 5.8e−10 4.5

The fact that, by the symmetry of the nodes,

|xk − xj | = |xn−k − xn−j |
and a rearrangement of the factors in the product and of the terms in the sum in (6.12)
yield (6.11). �

7 Numerical results

To illustrate the theoretical results from Sect. 6 and the efficiency of the methods
introduced in this paper, we have approximated the integral and the antiderivative of
two functions, Runge’s f1(x) = 1/(1 + x2) and f2(x) = sin(x). We sampled them
both at equidistant nodes, f1 in the interval [−5,5]. We investigated f2 in the non-
symmetric interval [−4,5] to avoid an approximation of 0, since the DRQ rule is
symmetric and f2 is anti-symmetric. We used the rational interpolant (2.5) with the
same d as in [14], i.e., d = 3 for f1 and d = 4 for f2.

Our aim was to observe estimated approximation orders with the DRQ and IRQ
rules. We computed the DRQ rule by the Gauss–Legendre rule with 1000 points.
This may seem expensive at first sight. However the Chebfun [3, 28] command
legpts, an implementation of the method introduced in [16], provides a very fast
algorithm. Moreover, we had to compute the Legendre points and weights only once
for all the examples we investigated. For the antiderivative, we considered the error
at 2000 equidistant points in the interval [5a/4,5b/4], computed the maximum value
inside the interval [a, b] and deduced the convergence rates.

Table 1 illustrates Theorem 6.1 on the convergence rates of the DRQ rule. We find
experimental orders of about 5 for the approximation of the integral of f1 and 6 for
that of f2 for large enough n, in accordance with the predicted d + 2. With the IRQ
rule, the order is smaller than with DRQ. Several examples, including those displayed
here, show an experimental order of d + 1/2.

We do not explicit the results on the approximation of antiderivatives of f1 and
f2 since they are very similar to the results obtained with IRQ, which is to be ex-
pected from its definition. Figure 1 reveals the quality of the approximation of an
antiderivative with our indirect rational method with d = 3 and n = 9. The solid line
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Fig. 1 Approximating an
antiderivative of Runge’s
example with d = 3 and n = 9

represents the solution of the problem u′ = f1, u(0) = 0, the dots are the approxima-
tions u0, . . . , u9 and the dashed line is the corresponding rational interpolant.

The slower convergence of the IRQ rule as compared with the DRQ rule is one
reason why we did not study further the theoretical convergence behaviour of the for-
mer. Additionally, we observed that some of the quadrature weights in the IRQ rule
are negative for almost every admissible choice of n and d . On the other hand, numer-
ical tests revealed that the weights in the DRQ rule, computed using the 1000-point
Gauss–Legendre rule, are positive at least for n between d and 1250 for 0 ≤ d ≤ 5.
In consequence, these rules are stable and converge for every Riemann-integrable
function, see [12] and [19].

In a second experiment, we have compared graphically the DRQ and IRQ rules
for various rather low values of d , namely d = 5,6,7, with Newton–Cotes rules, see
Fig. 2. We sampled the function sin(100x)+100 at equidistant nodes and repeated the
same computations as in the previous examples. The standard Newton–Cotes rules
(for d = n) are known to be unstable and to diverge with a growing number of points.
We omit to plot their catastrophic behaviour here and concentrate on the composite
Simpson rule and on the composite Boole rule (Newton–Cotes with 5 points). The
slopes of the curves reflect the experimental order 4 of the composite Simpson rule
for sufficiently large n [13] and the order 6 of the composite Boole rule. We see here,
in the top picture for DRQ and in the bottom one for IRQ, rapidly decreasing errors
for our quadrature rules based on linear barycentric rational interpolants interpolating
between a large number of equidistant points. With an adequate choice of the param-
eter d , these quadrature rules outperform composite Newton–Cotes rules, including
those with higher theoretical convergence rates; we do not show the corresponding
results. For small to moderate values of n, the error of composite Simpson is smallest
in this example: for such n, the piecewise parabolic interpolant turns out to be more
accurate than the (infinitely smooth) linear rational one. Notice that in our rules n

may be any positive number, whereas it must be of the form 2k + 1 in composite
Simpson and 4k + 1 in composite Boole.

Finally we have repeated the experiments of the present section using spline in-
terpolants of degree d with the not-a-knot end condition, computed with MATLAB’s
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Fig. 2 Comparison of the errors
in the composite Simpson and
Boole rules with DRQ (top) and
with IRQ (bottom) for
16 ≤ n ≤ 1024

spline toolbox. We omit to present the results since these spline-based methods yield
almost identical errors as the DRQ rules in our examples.
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