000028618 001__ 28618
000028618 005__ 20150420164336.0
000028618 0248_ $$aoai:doc.rero.ch:20120229083001-PL$$punifr$$ppostprint$$prero_explore$$particle$$zthesis_urn$$zreport$$zthesis$$zbook$$zcdu51$$zjournal$$zcdu16$$zpreprint$$zcdu1$$zdissertation$$zcdu34
000028618 041__ $$aeng
000028618 080__ $$a51
000028618 100__ $$aHormann, Kai$$uFaculty of Informatics, University of Lugano, Switzerland
000028618 245__ $$9eng$$aBarycentric rational interpolation at quasi-equidistant nodes
000028618 520__ $$9eng$$aA collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But since practical applications not always allow to get precisely equidistant samples, we relax this condition in this paper and study the Floater–Hormann family of rational interpolants at distributions of nodes which are only almost equidistant. In particular, we show that the corresponding Lebesgue constants still grow logarithmically, albeit with a larger constant than in the case of equidistant nodes.
000028618 695__ $$9eng$$aBarycentric rational interpolation ; Lebesgue function ; condition
000028618 700__ $$aKlein, Georges$$uDepartment of Mathematics, University of Fribourg, Switzerland
000028618 700__ $$aDe Marchi, Stefano$$uDepartment of Pure and Applied Mathematics, University of Padova, Italy
000028618 773__ $$g2012/5//1-6$$tDolomites Research Notes on Approximation
000028618 8564_ $$fkle_bri.pdf$$qapplication/pdf$$s166084$$uhttp://doc.rero.ch/record/28618/files/kle_bri.pdf$$yorder:1$$zpdf
000028618 918__ $$aFaculté des sciences$$bDécanat, Ch. du Musée 6A, 1700 Fribourg$$cMathématiques
000028618 919__ $$aUniversité de Fribourg$$bFribourg$$ddoc.support@rero.ch
000028618 980__ $$aPOSTPRINT$$bUNIFR$$fART_JOURNAL
000028618 990__ $$a20120229083001-PL