Faculté des sciences

On the Lebesgue constant of barycentric rational interpolation at equidistant nodes

Bos, Len ; De Marchi, Stefano ; Hormann, Kai ; Klein, Georges

In: Numerische Mathematik, 2012, vol. 121, p. 461–471

Recent results reveal that the family of barycentric rational interpolants introduced by Floater and Hormann is very well-suited for the approximation of functions as well as their derivatives, integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely smooth interpolants offer a much better choice than their polynomial analogue. A natural and important... Di più

Aggiungi alla tua lista
    Summary
    Recent results reveal that the family of barycentric rational interpolants introduced by Floater and Hormann is very well-suited for the approximation of functions as well as their derivatives, integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely smooth interpolants offer a much better choice than their polynomial analogue. A natural and important question concerns the condition of this rational approximation method. In this paper we extend a recent study of the Lebesgue function and constant associated with Berrut’s rational interpolant at equidistant nodes to the family of Floater–Hormann interpolants, which includes the former as a special case.