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Abstract

Recent results reveal that the family of barycentric rational interpolants introduced by Floater

and Hormann is very well-suited for the approximation of functions as well as their derivatives,

integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely

smooth interpolants offer a much better choice than their polynomial analogue. A natural and

important question concerns the condition of this rational approximation method. In this paper

we extend a recent study of the Lebesgue function and constant associated with Berrut’s rational

interpolant at equidistant nodes to the family of Floater–Hormann interpolants, which includes the

former as a special case.
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1 Introduction

The approximation problem we consider is the following: suppose we want to approximate a function
f : [a, b] → R by some g, taken from a finite-dimensional linear subspace of the Banach space C0[a, b] of
continuous functions over [a, b] with the maximum norm, such that g interpolates f at the n+1 distinct
interpolation nodes a = x0 < x1 < · · · < xn = b,

g(xk) = f(xk), k = 0, . . . , n.

With a given set of basis functions bj satisfying the Lagrange property,

bj(xk) = δjk =

{
1, if j = k,

0, if j �= k,

we may define the class of interpolants that we focus on, namely that of linear interpolants

g(x) =

n∑
j=0

bj(x)f(xj).

We stress that by linearity we mean the dependence on the data f(x0), . . . , f(xn). Examples include
(among many others) polynomial interpolation in Lagrangian form and linear barycentric rational in-
terpolation. Besides the convergence theory of g, it is natural to study the condition of this numerical
approximation method.
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Let every data point f(xj) be given with an absolute error or perturbation of at most ε, for example
due to rounding, noise, or measurement imprecision. Then the maximum distance in [a, b] between the
interpolant g̃ of the perturbed data and the interpolant g of the exact data is bounded as

max
a≤x≤b

|g̃(x) − g(x)| ≤ ε max
a≤x≤b

Λn(x),

where the function

Λn(x) =
n∑

j=0

|bj(x)|

is called the Lebesgue function for the nodes x0, x1, . . . , xn, and its maximum over the interval [a, b],

Λn = max
a≤x≤b

Λn(x),

is the Lebesgue constant [14]. Thus, the quantity Λn is the worst possible error amplification and, since g
is linear in the data, coincides with the condition number of the interpolation process [13]. Throughout
this paper we make use of this interpretation of the Lebesgue constant. Its original definition as the
norm of the approximation operator [14] is not needed here, since we are not looking for the best

approximation of f in some linear space.
Numerous authors have derived results about the Lebesgue function and constant associated with

Lagrange interpolation at various kinds of nodes; see [5, 6, 18] and the references therein. It is well
known [5] that the Lebesgue constant associated with Lagrange interpolation at nodes distributed in
any way always increases at least logarithmically with the number of nodes. Such a rate is achieved,
for instance, for Chebyshev nodes [15, 18].

In contrast to this favourable behaviour, the Lebesgue constant for Lagrange interpolation at equidis-
tant nodes grows exponentially,

Λn ∼
2n+1

en ln(n)

as n → ∞. More detailed results and other approaches to describing the error amplification may
be found in [7, 10, 17, 19] and the references therein. The bad condition, together with Runge’s
phenomenon [8, 16], makes Lagrange interpolation at equidistant nodes often useless for n ≥ 50. In
fact, interpolation at these nodes is a challenging problem, as it was shown in [13] that it is not possible
to develop an interpolation method which is simultaneously well-conditioned and converging at an
exponential rate as the number of nodes increases. One way to overcome this restriction and to get
better results is using rational instead of polynomial interpolation at equidistant nodes.

Berrut and Mittelmann [3] determine rational interpolants with small Lebesgue constants for given
nodes by numerically optimizing the denominator of the interpolant. Here we shall concentrate on the
family of barycentric rational interpolants introduced by Floater and Hormann [9] with basis functions

bj(x) =
(−1)jβj

x− xj

/ n∑
i=0

(−1)iβi

x− xi

, j = 0, . . . , n. (1)

Explicit formulas for the positive weights β0, . . . , βn are given in the same paper. The original con-
struction reveals that the so-obtained rational interpolant is a blend of local polynomial interpolants of
degree at most d corresponding to d + 1 consecutive values of the given function. It is further shown
that the approximation order is O(hd+1), where h = max0≤i≤n−1(xi+1 − xi), as long as the interpolated
function is d + 2 times continuously differentiable. This family of barycentric rational interpolants is
well-suited for the approximation of sufficiently smooth functions [9] as well as for applications such as
the approximation of derivatives, integrals and primitives [2, 11, 12].

For n ≥ 2d equidistant nodes, which is the setting that we assume from now on, the weights in (1)
turn out to be

βj =
n∑

k=d

(
d

k − j

)
=

⎧⎪⎨
⎪⎩
∑j

k=0

(
d

k

)
, if j ≤ d,

2d, if d ≤ j ≤ n− d,

βn−j , if j ≥ n− d.

(2)
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If d = 0, then all weights are equal to one, and the favourable properties of the corresponding
rational interpolant were discovered numerically by Berrut [1]. Bos, De Marchi, and Hormann [4] later
analysed the associated Lebesgue constant and show that it is bounded as

cn ln(n+ 1) ≤ Λn ≤ 2 + ln(n), (3)

where cn = 2n/(4 + nπ) with limn→∞ cn = 2/π.
The general case d ≥ 1 needs a different approach since the study of the Lebesgue function

Λn(x) =

n∑
j=0

|bj(x)| =

n∑
j=0

βj

|x− xj |

/∣∣∣∣
n∑

j=0

(−1)
j
βj

x− xj

∣∣∣∣ (4)

through the direct use of the basis functions (1) results in rather complicated expressions, whereas the
original form of the rational interpolants as blends of polynomials allows for much shorter proofs.

The aim of this paper is to show that the Lebesgue constant associated with the family of Floater–
Hormann interpolants with d ≥ 1 grows logarithmically in the number of interpolation nodes if these
are equidistant. This is achieved by establishing logarithmic upper and lower bounds in Sections 2
and 3, respectively.

2 Upper bound

In case of equidistant nodes, the properties of barycentric rational interpolation depend only on the
constant distance h between the nodes. For simplicity and without loss of generality, we assume that
the interpolation interval is [0, 1], so that the nodes are equally spaced with distance h = 1/n,

xk = kh =
k

n
, k = 0, . . . , n.

We begin by deriving an upper bound for the Lebesgue constant associated with the family of
Floater–Hormann interpolants with d ≥ 1.

Theorem 1. The Lebesgue constant associated with rational interpolation at equidistant nodes with the

basis functions bj(x) in (1) satisfies
Λn ≤ 2d−1(2 + lnn).

Proof. If x = xk for k = 0, . . . , n, then Λn(x) = 1. Otherwise, xk < x < xk+1 for some k with
0 ≤ k ≤ n− 1 and we consider

Λn(x) =

(x− xk)(xk+1 − x)

n∑
j=0

βj

|x− xj |

(x− xk)(xk+1 − x)

∣∣∣∣
n∑

j=0

(−1)jβj

x− xj

∣∣∣∣
=:

Nk(x)

Dk(x)
.

Since all the weights βj are less than or equal to 2d, the numerator is bounded as

Nk(x) ≤ 2d
(
1

n
+

1

2n
lnn

)
,

following the proof of Theorem 2 in [4] for the case d = 0.
We now show that the denominator Dk(x) is bounded from below by 1/n, which leads to the claimed

result. To see this, we recall from [9, Section 4] that

n∑
j=0

(−1)
j
βj

x− xj

= (−1)dd!hd

n−d∑
j=0

λj(x), (5)
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where

λj(x) =
(−1)

j

(x− xj) · · · (x − xj+d)
.

Assuming k ≤ n− d, the proof of Theorem 2 in [9] shows that

∣∣∣∣
n−d∑
j=0

λj(x)

∣∣∣∣ ≥ |λk(x)| =
1

(x − xk)(xk+1 − x) · · · (xk+d − x)
. (6)

Therefore,

Dk(x) = d!hd(x− xk)(xk+1 − x)

∣∣∣∣
n−d∑
j=0

λj(x)

∣∣∣∣
≥

d!hd∏k+d

j=k+2
(xj − x)

≥
d!hd∏k+d

j=k+2
(xj − xk)

= h =
1

n
,

where the last inequality follows from the fact that xj −x ≤ xj −xk for j ≥ k+1. If k > n−d, a similar
reasoning leads to this lower bound for Dk(x) by considering λk−d+1(x) instead of λk(x) in (6).

Note that the upper bound in Theorem 1 for d = 1 is identical to the upper bound for d = 0 in (3),
which is consistent with our numerical observations that both cases have a similar Lebesgue constant;
compare Figure 3 (top right) and Figure 2 in [4].

3 Lower bound

Let us now turn to the study of the lower bound of the Lebesgue constant associated with the family of
Floater–Hormann interpolants. We first give a general result for any d ≥ 1 and then derive an improved
bound for the case d = 1, which turns out to be again very similar to the one for d = 0 in (3).

Theorem 2. The Lebesgue constant associated with rational interpolation at equidistant nodes with the

basis functions bj(x) in (1) satisfies

Λn ≥
1

2d+2

(
2d+ 1

d

)
ln
(n
d
− 1

)
.

Proof. From numerical experiments (see Figure 1), it appears that for d ≥ 2 the Lebesgue function

Λn(x) =

n∑
j=0

βj

|x− xj |∣∣∣∣
n∑

j=0

(−1)jβj

x− xj

∣∣∣∣
=:

N(x)

D(x)
(7)

obtains its maximum approximately halfway between x0 and x1 (and halfway between xn−1 and xn

because of the symmetry with respect to the mid-point of the interval). For this reason, we consider
x∗ = (x1 − x0)/2 = 1/(2n) and derive a lower bound for Λn(x

∗).
We begin by investigating the numerator at x∗,

N(x∗) =

n∑
j=0

βj

|x∗ − xj |
=

n∑
j=0

βj∣∣ 1

2n
− j

n

∣∣ = 2n

n∑
j=0

βj

|2j − 1|
.
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Figure 1: Lebesgue function of the Floater–Hormann interpolants for d = 1 (top), d = 2 (middle), and
d = 3 (bottom) at n+ 1 equidistant nodes for n = 10, 20, 40.

Omitting the first and last d terms and noticing that βj = 2d for the remaining terms, we obtain

N(x∗) ≥ 2n2d
n−d∑
j=d

1

2j − 1
≥ 2n2d

∫ n−d

d−1

1

2x+ 1
dx = 2n2d

1

2
ln

(
2n− 2d+ 1

2d− 1

)

≥ n2d ln
(n
d
− 1

)
.

To handle the denominator, we first recall (5) to get

D(x∗) =

∣∣∣∣
n∑

j=0

(−1)
j
βj

x∗ − xj

∣∣∣∣ = d!hd

∣∣∣∣
n−d∑
j=0

λj(x
∗)

∣∣∣∣.
As x∗ belongs to the first sub-interval [x0, x1], we notice that λ0(x

∗) and λ1(x
∗) have the same sign

and that the following λj(x
∗) oscillate in sign and decrease in absolute value. The absolute value of the

sum over these functions is thus bounded from above by the sum of the absolute values of the first two
terms,

D(x∗) ≤ d!hd
(
|λ0(x

∗)|+ |λ1(x
∗)|

)
,

and expanding this expression at x∗ finally gives

D(x∗) ≤ d!hd

(
1∏d

j=0

∣∣ 1

2n
− j

n

∣∣ + 1∏d+1

j=1

∣∣ 1

2n
− j

n

∣∣
)

= n2d+1d!

(
2d+ 1∏d+1

j=1
(2j − 1)

+
1∏d+1

j=1
(2j − 1)

)
= n

22d+2(
2d+1

d

) .

Proposition 1. If d = 1, then the Lebesgue constant associated with rational interpolation at equidistant

nodes with the basis functions bj(x) in (1) satisfies

Λn ≥ an ln(n) + bn,

where limn→∞ an = 2/π and limn→∞ bn = 0.
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Figure 2: Lebesgue function of the Floater–Hormann interpolants for d = 1 at n+ 1 equidistant nodes
for n = 9, 19, 39.

Proof. If d = 1, then the weights βj in (2) simplify to

βj =

⎧⎪⎨
⎪⎩
1, if j = 0,

2, if 1 ≤ j ≤ n− 1,

1, if j = n.

(8)

Assume first that n = 2k + 1 is odd. The proof is very similar to that of Theorem 2, except that we
use x∗ = 1/2. According to our numerical experiments, this is where the maximum of the Lebesgue
function appears to occur (see Figure 2).

We first derive a lower bound for the denominator D(x∗). Due to the symmetry of D(x) with respect
to x∗, the first and the last k + 1 terms in the sum are equal and so

D(x∗) =

∣∣∣∣
n∑

j=0

(−1)
j
βj

x∗ − xj

∣∣∣∣ = 2n

∣∣∣∣
n∑

j=0

(−1)
j
βj

n− 2j

∣∣∣∣
= 4n

∣∣∣∣
k∑

j=0

(−1)
j
βj

2k + 1− 2j

∣∣∣∣ = 4n

∣∣∣∣
k∑

j=0

(−1)
j
βk−j

2j + 1

∣∣∣∣.
Now using the triangle inequality, Equation (8), and the fact that the Leibniz series converges to π/4
with ∣∣∣∣

k−1∑
j=0

(−1)
j

2j + 1
−

π

4

∣∣∣∣ ≤ 1

2k + 1
,

we have

D(x∗) ≤ 4n

(∣∣∣∣
k−1∑
j=0

(−1)jβk−j

2j + 1

∣∣∣∣ +
∣∣∣∣(−1)kβ0

2k + 1

∣∣∣∣
)

= 8n

∣∣∣∣
k−1∑
j=0

(−1)j

2j + 1

∣∣∣∣+ 4n

2k + 1

≤ 8n

(
π

4
+

1

2k + 1

)
+ 4 = 2nπ + 12.

(9)

It remains to find a lower bound for the numerator N(x∗). With the same arguments as above, it
follows that

N(x∗) = 2n

n∑
j=0

βj

|n− 2j|
= 4n

k∑
j=0

βj

2k + 1− 2j
= 8n

k−1∑
j=0

1

2j + 1
+

4n

2k + 1
≥ 4n ln(n) + 4,

and together with (9) we obtain

Λn ≥
2

π + 6/n
ln(n) +

2

nπ + 6
.

Finally, if n = 2k is even, then the point x = 1/2 is a node and the Lebesgue function equals one
there. Referring to Figure 1, we consider x∗ = 1/2 + 1/(2n) instead in this case. Applying the same
reasoning as for odd n leads to

D(x∗) = 2n

∣∣∣∣4
k−1∑
j=0

(−1)
k+j

2j + 1
+

1

2k − 1
+

1

2k + 1

∣∣∣∣ ≤ 2nπ +
2n

n− 1
+

10n

n+ 1
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Figure 3: Comparison of the Lebesgue constants of the Floater–Hormann interpolants at n+1 equidis-
tant nodes for 2d ≤ n ≤ 200 and d = 1, 2, 3 (top left) and to the upper and lower bounds in Theorems 1
and 2. For d = 1, the improved lower bound in Proposition 1 is shown by the dashed curve (top right).
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Figure 4: Lebesgue constants of the Floater–Hormann interpolants at a fixed number of n+1 equidistant
nodes for 1 ≤ d ≤ 25.

and

N(x∗) = 2n

(
4

k−1∑
j=0

1

2j + 1
−

1

2k − 1
+

1

2k + 1

)
≥ 4n ln(n+ 1)−

2n

n− 1
+

2n

n+ 1
,

hence

Λn ≥
2

π + 6n−4

n2−1

ln(n+ 1)−
2

π(n2 − 1) + 6n− 4
,

which concludes the proof.

4 Numerical experiments

We performed numerous experiments to verify numerically that the behaviour of the Lebesgue constant
associated with the family of barycentric rational interpolants is as predicted by the theoretical results
in the previous sections. Figure 3 confirms that the growth of Λn is logarithmic in the number of
interpolation nodes. These results further suggest that for fixed d the coefficient

(
2d+1

d

)/
2d+2 of the

logarithmic term in our lower bound in Theorem 2 is a better estimate of the true value than the factor
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2d−1 in our upper bound in Theorem 1. However, both factors indicate that for fixed n the growth of
the Lebesgue constant with respect to d is exponential, which is confirmed by the examples in Figure 4.
Finally, Figure 1 demonstrates that this exponential growth seems to always happen near the boundary
of the interpolation interval, whereas the behaviour of the Lebesgue function away from the boundary
is almost independent of d. This suggests considering distributions of nodes which are uniform in the
centre and clustered towards the boundary; we plan to study such settings in a forthcoming paper.
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