Faculté des sciences

Pump-probe spectroscopy and velocimetry of cold atoms in a slow beam

Di Domenico, Gianni ; Mileti, Gaetano ; Thomann, Pierre

In: Physical Review A, 2001, vol. 64, no. 043408, p. 1-5

In this paper we report on the first purely “pump-probe” nonlinear laser spectroscopy results in a slow atomic beam. We have observed Raman, Rayleigh, and recoil-induced resonances (RIR) in a continuous beam of slow and cold cesium atoms extracted from a two-dimensional (2D) magneto-optical-trap (MOT) with the moving molasses technique. The RIR enabled us to measure the velocity distribution,... Mehr

Zum persönliche Liste hinzufügen
    Summary
    In this paper we report on the first purely “pump-probe” nonlinear laser spectroscopy results in a slow atomic beam. We have observed Raman, Rayleigh, and recoil-induced resonances (RIR) in a continuous beam of slow and cold cesium atoms extracted from a two-dimensional (2D) magneto-optical-trap (MOT) with the moving molasses technique. The RIR enabled us to measure the velocity distribution, therefore the average speed (0.6–4 m/s) and temperature (50–500 μK) of the atomic beam. Compared to time of flight, this technique has the advantage of being local, more sensitive in the low-velocity regime (v<1 m/s), and it gives access to transverse velocities and temperatures. Moreover, it may be extended to measure atomic velocities in the 2D MOT source of the atomic beam.