Faculté des sciences

High-performance laser-pumped rubidium frequency standard for satellite navigation

Bandi Nagabhushan, Thejesh ; Affolderbach, Christoph ; Calosso, C.E. ; Mileti, Gaetano

In: Electronic Letters, 2011, vol. 47, no. 12, p. 698–699

Presented is a double-resonance continuous-wave laser-pumped rubidium (Rb) atomic clock with a short-term stability of 4×10−13 τ −1/2 for integration times 1 s ≤ τ ≤ 1000 s, and a medium- to long-term stability reaching the 1×10−14 level at 104 s. The clock uses an Rb vapour cell with increased diameter of 25 mm, accommodated inside a... Plus

Ajouter à la liste personnelle
    Summary
    Presented is a double-resonance continuous-wave laser-pumped rubidium (Rb) atomic clock with a short-term stability of 4×10−13 τ −1/2 for integration times 1 s ≤ τ ≤ 1000 s, and a medium- to long-term stability reaching the 1×10−14 level at 104 s. The clock uses an Rb vapour cell with increased diameter of 25 mm, accommodated inside a newly developed compact magnetron-type microwave cavity. This results in a bigger signal with reduced linewidth, and thus improved short-term stability from a clock with 1 dm3 physics package volume only. The medium- to long-term clock stability is achieved by minimising the effects of light-shift and temperature coefficient on the atoms. Potential applications of the clock are discussed.