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PROF. CHRISTIAN GOURIÉROUX - EXTERNAL MEMBER





An American option provides the right to perform a specified financial transaction (sell, buy, ex-

change) on or before the contract maturity. Many different contracts traded on centralized and OTC

markets are of this kind. In particular, a plain vanilla American option is a contract between two parties

concerning the possibility of selling or buying a reference asset (underlying) at a specified price (strike

price). Setting the contract price and choosing the best moment for its exercise are two of the most

studied problems in finance during the last 40 years. In financial markets, the behavior of the underly-

ing is not predictable. Thus, a description of the probability law governing its stochastic evolution is

necessary for the determination of the contract price and the optimal exercise decision.

The majority of the existing literature focuses on mathematical and numerical procedures for com-

puting the option price and determining the optimal exercise policy for a given law of motion of the

underlying. For these purposes, only a model for the dynamics of the underlying under the risk-neutral

distribution is required. When this approach is put into practice, typically a parametric model for such

distribution is adopted and the parameters are calibrated on a cross-section of available option prices.

On the contrary, in this PhD thesis, that summarizes the research conducted to obtain the degree of

Doctor of Philosophy in Economics at the University of Lugano, an econometric framework for the

empirical pricing of American options is developed. In this framework, a statistical model for the dy-

namics of the underlying is specified by the researcher and estimated on available data. Data include

both time series of relevant state variables and cross-sections of observed option prices. The estimated

model is then used to estimate the price of contracts that are not currently actively traded on the market.

The econometric approach proposed in this thesis features three major characteristics. First, it is based

on a coherent specification of both historical and risk-neutral dynamics. Second, the statistical model

for the dynamics of the underlying is more general than most of the models previously considered in

the literature. Third, the model parameters can be consistently estimated even when the amount of

option data is limited.

In the first three chapters of the thesis, the problem, the proposed solution and an empirical ap-

plication of the novel method are presented. Chapter 1 introduces the price of an American option

as the expected value of the contract at the most remunerative time for exercising it. Some different

pricing techniques based on this representation and the way they are used to handle with real data are

briefly reviewed. Chapter 2 presents the novel empirical methodology developed in the PhD research.

Chapter 3 describes an application of this methodology for the analysis of IBM shares and plain vanilla

American options written on them. In the last two chapters of the thesis, the regularity assumptions

for the validity of the asymptotic properties of the proposed method and the proofs of propositions and

technical lemmas are reported. In particular, Chapter 4 provides details on the content of Chapter 2

and Chapter 5 does it for the content of Chapter 3.
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Chapter 1, titled The Pricing of American Options: Optimal Stopping and Financial Theory, is

a brief survey on several different approaches to the pricing of American options that combine the

theory of optimal stopping and asset pricing, under the hypotheses of rational agents and efficient

markets. The formulations of the pricing of American options by the martingale approach and, in

presence of some variables summarizing the state of economy, by the equivalent Markov approach are

presented. Some general properties of put and call options, that are the most liquid American options,

are considered. Some different approaches to find a solution of the optimal stopping problem are re-

viewed. Among these techniques, some rely on the transformation of the optimal stopping problem

into a free-boundary problem, while others are directly inspired by the principle of optimality of dy-

namic programming. Finally the implementation of these pricing techniques to handle with real data

is briefly discussed.

Chapter 2, titled Semi-Parametric Estimation of American Option Prices, introduces a novel semi-

parametric estimation methodology for the pricing of American options, that is the result of a joint

work with Prof. Patrick Gagliardini. The proposed methodology requires three data inputs: a time

series of state variables for the underlying, a cross-section of prices of American options written on

the underlying and a risk-free interest rate. The estimation is based on a parametric specification of the

Stochastic Discount Factor (SDF) and is non-parametric w.r.t. the historical dynamics of the Markov

state variables. The model parameters are the SDF parameter, that has finite dimension, and the his-

torical transition density, that is a functional parameter. This semi-parametric setting is intermediate

between fully parametric and fully non-parametric approaches. The advantage w.r.t. the former is the

flexibility in modeling the historical transition density and the possibility to get a proper distribution

theory for the estimators without introducing ad-hoc pricing errors. The advantage w.r.t. the latter

is that the estimated pricing model is arbitrage-free by construction. In non-parametric approaches,

ensuring the absence of arbitrage opportunities by imposing shape restrictions on the pricing function

might be difficult, since such shape restrictions are not completely known in the general framework

considered in this thesis. The proposed method exploits the no-arbitrage conditions for a short-term

non-defaultable zero-coupon bond, the underlying and a cross-section of observed prices of American

options. In particular, the method considers the uniform moment restrictions and some restrictions that

involve nonlinear functionals of the transition density. These nonlinear functionals result from repre-

senting the American option price through a backward recursive application of a risk and time dis-

counting operator on the option payoff (dynamic programming). The estimation in such a framework

needs an extension of the Generalized Method of Moments. First, the SDF parameter is estimated by

minimizing a quadratic criterion based on empirical restrictions. Then, the historical transition density

of the state variables is estimated by minimizing a statistical measure based on the Kullback-Leibler
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divergence from a kernel-based transition density. The estimators of the model parameters can be used

to estimate many functionals of SDF parameter and the transition density of the state variables, such as

the prices of American options not traded in the market, historical and risk-neutral conditional Laplace

transforms, skewness, kurtosis and cross-moments of the state variables. A Monte Carlo experiment

shows how the proposed method outperforms a pricing methodology that exploits only the no-arbitrage

conditions for the short-term risk-free bond and the underlying.

Chapter 3, titled An Empirical Study of Stock and American Option Prices, describes an empirical

study of the information content of daily IBM share prices and American put and call option quotes

about their generating process. The study focuses on daily IBM share closing prices at NYSE from

January 2006 to August 2008 and closing quotes for IBM American call and put options selected

among U.S. centralized markets in July and August 2008. Two results are empirically obtained con-

sidering stock return and its volatility as the risk factors and without parameterizing their historical

joint dynamics. First, contemporaneous share prices and option quotes are both necessary to quantify

the equity and variance premia. Second, an arbitrage-free pricing model is useful to get more precise

estimates of the historical joint dynamic properties of the risk factors. As an illustration, time series

of different estimates of historical conditional correlation of the risk factors, Sharpe ratio of an invest-

ment on the stock, return skewness and kurtosis are reported. The empirical results are obtained by

confronting the results of different approaches to the estimation of the data generating process.

I owe my deepest gratitude to Prof. Patrick Gagliardini, who introduced me to econometrics,

provided continuous encouragement for my PhD studies and supervised this thesis. The National

Centre of Competence in Research FINRISK and the University of Lugano financially supported my

participation to several international conferences to present the work described in this thesis.
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1 The Pricing of American Options: Optimal Stopping and Fi-

nancial Theory

An American option is a financial contract that offers the right to perform a pre-specified financial

transaction (sell, buy, exchange) on or before the contract expiration date (maturity). In the last 40

years many American-style financial products have been introduced in the financial markets.1 Among

them we find options on index, stock, interest rate, exchange rate and future contracts. Because of the

large diffusion of these products, their pricing is one of the most considered problems in the history

of the financial sector. Many analytical and numerical ways to determine the optimal time to exercise

the contract have been proposed. In this survey I briefly review some related literature, with special

attention to equity options. For further surveys on the literature of American option pricing see Broadie

and Detemple [2004], Barone-Adesi [2005] and Detemple [2005].

In Section 1.1 I introduce the general formulation of the American options pricing as an optimal

stopping problem and some equivalent representations of the American option price. In Section 1.2 I

describe some properties of put and call options, that are the most liquid American options traded in

centralized markets. In Section 1.3 I review some techniques that rely on a particular specification of

the dynamics of the state variables. In Section 1.4 I describe some calibration and empirical methods

to handle with real data.

1.1 Optimal stopping time formulation

The most general mathematical formulation of the pricing of American options combines the theory

of optimal stopping and asset pricing. The theory of optimal stopping pertains the choice of the best

time to take a given action. This decision is based on sequential realizations of a random process and

is taken in order to maximize an expected payoff or to minimize an expected cost. The first systematic

approach to the theory of optimal stopping is in the field of sequential analysis, in particular for the

search of the best time to stop a sequential testing of two alternative hypotheses by not rejecting one of

them at a certain confidence interval. This stopping time is such that the probability of occurrence of

errors of first and second kind is lower than some given levels and its expected value is the smallest as

possible, since the longer the sequential analysis is, the more it costs (see Wald and Wolfowitz [1948]

and Arrow, Blackwell and Girshick [1949]). The first generalization for sequential problems without

a statistical structure is in Snell [1952].
1The Chicago Board of Options Exchange, the largest U.S. options exchange, was opened in 1973.
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Shiryaev [1978] and Peskir and Shiryaev [2006] provide extensive treatments of the theory of op-

timal stopping. The theory of asset pricing pertains the origin of financial asset prices. In particular

the existence of a probability measure Q, called risk-neutral probability, such that option and under-

lying asset price processes are local Q-martingale, is assumed. The mathematical justification of the

existence of this probability is in Cox and Ross [1976] and its complete explanation is in Harrison

and Kreps [1979] and Harrison and Pliska [1981]. Bensoussan [1984], Karatzas [1988] and Karatzas

[1989] highlight the connection between American option hedging and pricing and the mathematical

theory of optimal stopping.

The exercise of an American option depends on the non-negative gain (or reward) at exercise. This

gain depends on the state of the economy and on some option characteristics stated in the contract in-

denture. The American option pricing problem can be formulated as the determination of the best time

to exercise the option. I consider in this section two approaches to the problem stated as an optimal

stopping problem. The first is known as martingale approach and is grounded in the theory of martin-

gales. The second is known as Markovian approach and requires the existence of a Markovian state

variables vector that re-assumes the state of the economy. Any time at which the exercise is favorable

is called stopping time. Both the approaches consider the marginal expectations of the gain at exercise,

discounted by risk and time, at every stopping time before or at the contract maturity. The price of

an American option is the maximum between all these expectations. The difference between the two

approaches is that in the second approach the conditioning information set is completely spanned by

the state variables. Therefore, the martingale approach involves the conditional probability density of

the state variables, while the Markovian approach involves their transition density.

1.1.1 Martingale approach

Let us consider an American option with maturity T , gain gt at exercise and interest rate rt at time t.

The maturity is constant and possibly infinite. The gain at exercise depends on the unpredictable state

of the economy. The interest rate is time-dependent and possibly stochastic. Let us indicate the option

price at time t by Vt and its time-to-maturity by h := T − t. Generally speaking, a stopping time τ for

a sequence of random variables is an almost surely finite random variable such that its occurrence is

adapted to the filtration of sigma-algebras generated by the sequence. Let us define the set of stopping

times for the option exercise decision at time t as

Tt(h) := {τ ∈ [t, t+ h] s.t. Vτ = gτ} . (1.1)

2



The time- and risk-discounted gain expected at time t from the exercise of the considered option at any

stopping time τ is

EQ
[
e−

∫ τ
t rsdsgτ

∣∣∣Ft] , (1.2)

where (Ft) is the filtration such that e−
∫ τ
t rsdsgτ is Ft-measurable and EQ [. | Ft] is the risk-neutral

expectation conditional to the information available at time t. To make this expectation exist, let us

assume that

sup
τ∈Tt(h)

e−
∫ τ
t rsdsgτ ∈ Lp(Q), (1.3)

where Lp(Q) is the linear space of p-integrable functions under the measure Q, for some p > 1. To

prevent arbitrage opportunities, the price maker values the option at time t as the maximum time- and

risk-discounted gain expected from an exercise at any stopping time τ . Let us introduce the stochastic

process (Vt), for positive t, such that

Vt(h) := ess sup
τ∈Tt(h)

EQ
[
e−

∫ τ
t rsdsgτ

∣∣∣Ft] , (1.4)

for the time-to-maturity h. I use the essential supremum operator ess sup and not simply the operator

sup because the supremum of a set of random variables is random itself.2 The process (Vt) is the

smallest Q-supermartingale majorant of the time-discounted gain process
(
e−

∫ τ
t rsdsgτ

)
. The former

is known as the Snell envelope of the latter (see Snell [1952]) under the measure Q. For a discussion

about optimal stopping in discrete time and the basic properties of the essential upper bound of a

stochastic process see Neveu [1975].

Let us consider the stopping times included in set Tt defined in Equation (1.1). Between them, the

optimal stopping time is the one such that, under the measure Q, the expected gain from the exercise

at that time is not lower than any expected gain at a following moment. Similarly, the exercise decision

at that time is optimal. The optimality condition for the stopping time and exercise decision depend on

the state of the economy and the price maker needs to determine optimal stopping time and risk-neutral

expectation at any time. Let us consider the optimal stopping time at time t for the period [t, t + h]

and interpret the American option price as the value of a fictitious European contract. This European

contract, that offers the right to perform the pre-specified financial transaction only at maturity, expires

at the optimal stopping time for the American option. All the other contract characteristics are the

2The essential supremum (or essential upper bound) for EQ
[
e−

∫ τ
t
rsdsgτ

∣∣∣Ft] is the smallest positive ε such that

EQ
[
e−

∫ τ
t
rsdsgτ

∣∣∣Ft] < ε almost surely, for any τ .

3



same. This means that the European option price is

EQ
[
e−

∫ τ
t rsdsgτ

∣∣∣Ft] , (1.5)

for the optimal stopping time τ at time t.

A potential is defined as a càdlàg non-negative supermartingale process with vanishing expected value

as time goes to infinity (see e.g. Protter [2004]). The Riesz decomposition states that any càdlàg uni-

formly integrable supermartingale is equal to the sum of a potential and a càdlàg uniformly integrable

martingale (see e.g. Neveu [1975]). El Karoui and Karatzas [1995] apply this result to the Snell en-

velope for an American put option written on an asset with continuous path (see also Myneni [1992]

and Rutkowski [1994] in the case of constant and stochastic interest rates, respectively). They derive

the Early Exercise Premium (EEP) representation of the option: the American option price can be

written as the sum of the price of the European option with corresponding contract characteristics and

the EEP, that is the present value of the gains from exercise before maturity. The EEP is an integral of

the discounted payoff at exercise, that is a non-negative function. When it is not strictly positive, the

American option is not optimally exercised before maturity.3

Let us now assume to be able to find a non-negative criterion function Q that allows us to order the

Q-supermartingales majorant of the time-discounted gain process. The price expressed in Equation

(1.4) is equivalent to

Vt(h) = inf
B∈B

Q (B) , (1.6)

where B is the space of the Q-supermartingales B := (Bt̃) majorant of process
(
e−

∫ t̃
t rsdsgt̃

)
. The

formulation of the American option pricing problem in Equation (1.6) is defined primal. An equivalent

dual representation of the price of the American option as the infimum over a class of Q-martingales

of a family of expectations can also be shown (see for instance Davis and Karatzas [1994], Rogers

[2002] and Haugh and Kogan [2004]):

Vt(h) = inf
C∈C

EQ

[
sup

τ∈[t,t+h]

(
e−

∫ τ
t rsdsgτ − Cτ

)∣∣∣∣∣Ft
]
, (1.7)

3For instance, this is the case of a call option written on a a stock that pays no dividend. In some empirical applications,
when the EEP is smaller than the bid-ask spread or a basis point, some authors approximate the price of an American option
by the one of an European option with same contract characteristics. See for instance Flesaker [1993] in the context of
American options written on interest rates, Broadie, Chernov and Johannes [2007] for American options written on futures
and Bikbov and Chernov [2010] for American options written on exchange rates.
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where C is the space of the Q-martingales C := (Cτ ) null at time t and such that sup
τ∈[t,t+h]

|Cτ | belongs

to the linear space of integrable functions under the measure Q.4

Let us now make an inductive argument on the price Vt in a discrete time setting. At any time the

American option price is the maximum between the contemporaneous exercise gain and the expected

time- and risk-discounted value of the option at the following time. The former value is called exercise

value. The latter value is called continuation value and it involves an expectation conditional on the

information currently available. At maturity, the price of the option equals the exercise value, since

there is no any later exercise possibility. Then, we can write

Vt(h) =


max

[
gt,E

Q [Vt+1(h− 1)| Ft]
]
, for h > 0,

gT , for h = 0.

(1.9)

This inductive argument is known as the principle of optimality of Dynamic Programming (DP) or

Bellman’s principle.5 From Equation (1.9) at the contract expiration we understand that set Tt defined

in Equation (1.1) is never empty, since it contains the option maturity.

1.1.2 Markovian approach

Let us assume the existence of a Markovian state variables vector Xt that represents the state of the

economy and takes value in set X . In other words, let us assume that at any time the information set

is completely spanned by this vector. We can write the gain at exercise as a function of this vector:

gt ≡ g(Xt).6 The value of the American option at time t, for time-to-maturity h, is Vt(h,Xt). This

value has the following expression:

Vt(h, x) := sup
τ∈Tt(h)

EQ
[
e−

∫ τ
t rsdsg(Xτ )

∣∣∣x] , (1.10)

4The derivation of the dual representation is based on the Doob-Meyer decomposition of the price Vt into the sum of a
Q-martingale component and a bounded variation component:

Vt = V0 +Mt +At, (1.8)

where (Mt) is a Q-martingale and (At) is a decreasing predictable process (i.e. At is measurable w.r.t the information
at date t − 1) such that M0 and A0 are null. This decomposition holds under Assumption (1.3) and for a càdlàg time-
discounted gain process

(
e−

∫ τ
t
rsdsgτ

)
.

5Bellman [1957] states the principle of optimality in this way: an optimal policy has the property that whatever the
initial state and decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

6For sake of simplicity I do not consider in the exposition gain at exercise that are also dependent on time in a deter-
ministic way. For them, a similar reasoning applies.
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where EQ [. |x] is the risk-neutral expectation conditional on the realization x of the state variables

process. To ensure the existence of the previous expectations, let us assume that

EQ

[
sup

τ∈Tt(h)

e−
∫ τ
t rsdsg(Xτ )

∣∣∣∣∣x
]
<∞, (1.11)

for any x ∈ X . At any time t, the set of state variable values for which the option is exercised is

defined stopping region and its set-theoretical complement is defined continuation region Ct:

Ct(h) := {x ∈ X : Vt(h, x) > g(x)} ,

for the option time-to-maturity h. The exercise boundary is the set of state variable values that separate

the continuation from the stopping region. These values are defined critical.

Similarly to the interpretation of the American option price as an European option price in the Martin-

gale approach of Subsection 1.1.1, we can write

Vt(h, x) = EQ
[
e−

∫ τ
t rsdsg(Xτ )

∣∣∣x] , (1.12)

for any x ∈ X and the optimal stopping time τ at time t.

The principle of optimality of DP in the Markovian case gives the Wald-Bellman equations. For a

time-homogeneous state variables process in discrete time these are

Vt(h, x) =


max

[
g(x),EQ [Vt+1(h− 1, Xt+1)|x]

]
, for h > 0,

g(x), for h = 0.

(1.13)

The Wald-Bellman equations in discrete time are also known as Value Iteration (VI) algorithm for DP.

The Q-VI algorithm for DP is an equivalent algorithm focused on the continuation value Qt(h, x) :=

EQ [Vt+1(h− 1, Xt+1)|x] at time t:

Qt(h, x) =


EQ [max [g(Xt+1), Qt+1(h− 1, Xt+1)]|x] , for h > 0,

0, for h = 0,

(1.14)

see e.g. Tsitsiklis and Van Roy [2001]. The optimal stopping time depends on the state variables. Let

us make this dependence explicit and consider the indicator function 1Ct(h) for the continuation region

at time t. Let us use these functions to formalize an inductive argument in discrete time for the optimal
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stopping time:

τ ∗t (h, x) =


t+
(
τ ∗t+1(h− 1, x)− t

)
1Ct(h)(x), for h > 0,

T, for h = 0.

(1.15)

for any x ∈ X .

1.2 No arbitrage inequalities

The style of many traded options is American. For a given gain at exercise, further boundaries on

the option price can be derived by no-arbitrage arguments. I consider in this section the case of

the most liquid American-style options traded in centralized markets: call and put options, generally

called plain vanilla options. For these options the gain at exercise depends on time only through the

value of the underlying asset. An American call option provides the holder the right to purchase the

underlying asset at an agreed strike price K at any time on or before maturity T . Its gain at exercise

is then gt = (St −K)+. Conversely, an American put option provides the holder the right to sell the

underlying asset at strike price K at any time on or before maturity T . Its gain at exercise is then

gt = (K − St)+. Let us consider an American call option with price Ct and an American put option

with price Pt, both written on the same underlying with price St and with the same time-to-maturity

h. I indicate by ct and pt the value of the European call and put option with the same characteristics as

the American ones. I consider the dividend yield δ paid by the underlying asset and the risk-free rate

rf , assumed both constant in time. By no-arbitrage arguments, the following inequalities hold (see e.g.

Musiela and Rutkowski [2005]):

(Ste
−δh −Ke−rfh)+ ≤ ct ≤ Ct ≤ St,

(Ke−rfh − Ste−δh)+ ≤ pt ≤ Pt ≤ Ke−rfh.

A put-call inequality holds (see Merton [1973b]):

Ct − Ste−δh +Ke−rh ≤ Pt ≤ Ct − Ste−δh +K.

Moreover, for a given maturity, the call (put) option prices are convex decreasing (increasing) functions

of the strike price.
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1.3 Solution of the optimal stopping problem

In this section I review some of the most notable techniques for the pricing of an American option that

rely on a specification of the Markov state variables process (Xt) under the risk-neutral measure Q.

For some particular specification of this process, some properties of the price of an American plain

vanilla option are known. For instance, the price Vt on an American call option written on an asset with

price St following a GBM is continuous w.r.t. St and time t, because of the continuity of the payoff

function at exercise gt = (St −K)+ and any path of St. The price Vt is non-decreasing and convex

in St, because the payoff function at exercise has these characteristics and it is non-decreasing in the

initial condition (see e.g. Detemple [2005]). Moreover, the exercise boundary for this option is convex

(see Chen, Chadam, Jiang and Zheng [2008]). Some characteristics of American options written on a

stock that follows a diffusive process with volatility that is dependent on both time and level are stud-

ied in Ekstrom [2004] and a jump-diffusion process in Ekstrom and Tysk [2007]. Schroder [1999] and

Detemple [2001] show the equivalence between the values of an American call and put with the same

maturity. The two options differ in terms of underlying and strike prices, interest and dividend rates.

The diffusive processes followed by the underlying assets of the two options are different. At a given

time, the strike price of an option plays as underlying price for the other, and the same happens with

interest and dividend rates. Moreover, Detemple [2001] extends the results to some American-style

exotic options (see also Detemple [2005]).

Once the process of the Markov state variables process is specified, some techniques rely on the trans-

formation of the optimal stopping problem into a free-boundary problem. These techniques can lead

to analytic or semi-analytic results. Other techniques are iterative and directly inspired by the DP rep-

resentation. By these last techniques we can get only numerical results. I describe some techniques

based on the free boundary formulation of the problem in Subsection 1.3.1 and some iterative pro-

cedures in Subsection 1.3.2. For comparative analysis of the performance of different methods see

Broadie and Detemple [1996], Ait-Sahlia and Carr [1997] and Pressacco, Gaudenzi, Zanette and Ziani

[2008]. I conclude this section by reporting in Subsection 1.3.3 some empirical findings against the

hypotheses of rational agents and frictionless market.

1.3.1 Free boundary formulation

The American option price expressed in Equation (1.10) is related to a parabolic-elliptic Partial Differ-

ential Equation (PDE), when Xt has continuous paths, and to a Partial Integro-Differential Equation,

when Xt has discontinuous paths (see e.g. Peskir and Shiryaev [2006]). No analytic expression for the

price of the American option is available, even for an American-style plain vanilla written on a stock
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following a Geometric Brownian Motion (GBM).7 Nonetheless, many characteristics of the price of

the American options are known in some special cases.

The first attempt to price an American option is the work of McKean [1965] appeared in an appendix

of Samuelson [1965], an article on the pricing of warrants. McKean [1965] considers the PDE with

the free boundary conditions for a stock price following a GBM. He uses an incomplete Fourier trans-

form to obtain an integral representation for the American call price that involves the exercise bound-

ary. The evaluation of this expression on the exercise boundary provides an integral equation for the

boundary itself. In this article there is not the risk-neutralization argument based on Ito’s lemma and

risk-less hedging introduced in Black and Scholes [1973]. Nonetheless McKean [1965] derives sev-

eral properties of the solution, including an exact asymptotic formula. Friedman [1959] faces a similar

one-dimensional free boundary problem in a study of ice melting. In this article, the existence and

local uniqueness of the solution are proved by using the contraction mapping theorem for a small time

interval and then extended by induction to any interval of time. For a stock following a GBM, Black

and Scholes [1973] derive the PDE for the European call option price by arbitrage-free arguments on

a portfolio composed by a long position in the option Vt and a short position in
∂Vt
∂St

shares of the

underlying asset. This portfolio is immune by risk and then its rate of return is equal to the constant

risk-free rate rf . The Black and Scholes (BS) PDE with boundary condition at maturity then follows:
rfVt −DVt = 0,

VT = gT ,

for the Dynkin operator D associated with the GBM dynamics defined as

D =
∂

∂t
+ µ

∂

∂St
+

1

2
σ2 ∂

2

∂S2
t

, (1.16)

with constant drift µ and volatility σ. The BS PDE associated with the boundary condition gives

rise to a linear parabolic Cauchy problem, and its solution is the famous BS formula. In the case of an

American option, by a similar reasoning we get the following non-linear PDE with boundary condition

at maturity: 
min [rfVt −DVt, Vt − gt] = 0,

VT = gT .

(1.17)

7Zhu [2006] uses the homotopy-analysis method to derive an asymptotic expansion of the price of an American put
written on a stock following a GBM process. Anyway, to make the computation feasible the series must be truncated and
then approximated.
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This system represents a free boundary problem. In order to uniquely identify the frontier between

exercise and continuation regions, let us add two boundary conditions. These conditions pertain the

value of the option and its first derivative w.r.t. the underlying asset price on the exercise boundary. For

a put option with critical stock price value S∗t , the first condition, known as value matching condition,

is

Vt(S
∗
t ) = K − S∗t (1.18)

and the second condition, known as smooth fit principle (or smooth pasting or high contact condition),

is
∂Vt(S

∗
t )

∂St
= −1. (1.19)

The first attempt to derive the smooth fit principle for diffusion processes in the literature of American

option pricing is in McKean [1965]. Another derivation is in Bather [1970] and Van Moerbeke [1976],

who consider a Taylor expansion of the exercise payoff at the exercise boundary. McKean [1965] cor-

rectly points out that the smooth fit principle in Equation (1.19) is not valid if the option underlying

asset follows a process with jumps (see the appendix of Barone-Adesi [2005] for an intuitive discus-

sion). Jamshidian [1992] shows how to move from the solution of the homogeneous PDE for plain

vanilla American options inside the continuation region to the solution of an inhomogeneous PDE on

an unrestricted region. He provides an intuitive explanation of the EEP representation as the weighted

sum of the solutions of the two equations corresponding to the PDE in the stopping region and the

continuation region respectively. The weights are given by the probabilities of being in either region

at any time before maturity. Kim [1990], Jacka [1991] and Carr, Jarrow and Myneni [1992] consider

a GBM for the underlying asset and derive the EEP representation. They write the price of the Eu-

ropean option with the same contract characteristics by the BS formula and the EEP as an integrated

BS formula with the stock critical value S∗t replacing the strike price. In particular the integration is

w.r.t. the maturity of the option and the domain of integration is the time interval from the actual time

to the maturity of the American option. The critical value S∗t is the solution of a recursive non-linear

integral equation with the boundary conditions regarding its value at maturity and at the moment im-

mediately prior to maturity. Myneni [1992] and Carr, Jarrow and Myneni [1992] derive the Delayed

Exercise Premium (DEP) representation of the value of the American option for an underlying asset

price that follows a GBM (see Detemple [2005] in the case of an Ito process). In this representation,

the American option is written as the sum of the immediate exercise value (also called intrinsic value)

and the DEP (also called time value) of the American option, that is the present value of the gains from

delaying the exercise.

Many authors focus on analytic expressions for the properties of the solution in some extreme cases.

10



For instance, McKean [1965] derives the expression of the critical price when the American put option

is perpetual (i.e. with infinite time-to-maturity). Kim [1990] derives the price for the perpetual Amer-

ican call option and a limit of the exercise boundary at maturity. In Wilmott, Howison and Dewynne

[1993] this last limit is obtained by considering the PDE for very small times-to-maturity. Other re-

sults on the asymptotic behavior of the critical price for processes with constant volatility can be found

in Barles, Burdeau, Romano and Sansoen [1995], Evans, Kuske and Keller [2002], Lamberton and

Villeneuve [2003] and Chen, Chadam, Jiang and Zheng [2008]. The adaptation of the results to the

case of a local volatility dependent only on the stock value is in Chevalier [2005]. Mordecki [2002]

presents the results of a perpetual American option for models based on Lévy processes. Alili and

Kyprianou [2005] show the necessary and sufficient condition for the smooth fit principle to hold in

the case of a perpetual American option written on a stock modeled by a Lévy process and that pays

no dividend.

The American option pricing problem in System (1.17) can be equivalently formulated as an obstacle

problem or a variational inequality. Bensoussan and Lions [1982] develop some variational inequalities

and interpret this system and other differential equations associated to different Markovian processes

as weak non-linear PDE’s with initial conditions on the space of distributions. If the exercise payoff

function gt belongs to a suitable Sobolev space, variational methods lead to solutions in a stronger

sense (see also Bensoussan [1984] for the theory of variational inequalities). Crandall, Ishii and Lions

[1992] interpret these equations in the viscosity sense. Thanks to their interpretation, less regularity

assumptions on the exercise payoff function gt are required. Gatarek and Świech [1999] consider a

diffusion taking values on a Hilbert space and show that the value function is the unique viscosity

solution of an obstacle problem for the associated parabolic PDE in the Hilbert space.

Brennan and Schwartz [1977] and Brennan and Schwartz [1978] are the first to use the finite difference

method to approximate numerically the Dynkin operator in System (1.17). The time and the domain

of the state variables vector are discretized on a grid and then at every grid point each partial derivative

is replaced by a Taylor expansion. In an explicit finite difference scheme the variable at date t + 1

depends explicitly on its lagged value at time t, while in an implicit finite difference scheme a combi-

nation of the possible value of the variable at date t+ 1 depends on the value of the variable at time t.

The PDE approximated by one of these schemes and the boundary conditions form a set of difference

equations which can be solved either directly or iteratively. Brennan and Schwartz [1978] show that

the probabilities of a jump process approximation to the underlying diffusion process correspond to the

coefficients of the difference equation that approximates the BS PDE. Jaillet, Lamberton and Lapeyre

[1990] provide a rigorous justification of the method introduced in Brennan and Schwartz [1977] by

using the theory of variational inequalities illustrated in Bensoussan and Lions [1982] in the case of
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diffusion models and Zhang [1997] in the case of jump-diffusion models. A recent review on the use

of finite difference methods in finance is Duffy [2006]. Other authors use the finite element method

for finding the approximated solution of the PDE, for a review see Topper [2005]. Johnson [1983]

replaces the put value by an approximating function of the model and contract parameters, but this

approximation can not be arbitrarily accurate. Geske and Johnson [1984] suggest a variation on the

approach based on a extrapolation scheme. They solve the problem of the valuation of a Bermudan

option (i.e with exercise possible at only a discrete number of dates) and consider the result as a dis-

crete approximation of the solution of the American put option pricing problem. This last approach is

computationally intensive because requires the computation of high dimensional multivariate normal

probabilities. Bunch and Johnson [1992] improve the accuracy and computational efficiency by re-

stricting the exercise possibility at only two dates. MacMillan [1986] and Barone-Adesi and Whaley

[1987] use the EEP decomposition. They price the European option component by the BS formula

and model directly the EEP. Barone-Adesi and Whaley [1987] focus on the PDE for the EEP in the

case of options with very short or very long maturity. This PDE is a second order ordinary differential

equation and the authors get the first order term of the correct solution. Improvement of this method-

ology are in Barone-Adesi and Elliott [1991] and Allegretto, Barone-Adesi and Elliott [1995]. Ju and

Zhong [1999] add a second order term to the solution. Ho, Stapleton and Subrahmanyam [1997] adapt

the Geske and Johnson [1984] method to the case of stochastic interest rates. Carr and Faguet [1994]

discretize the time derivative in the PDE by the method of lines, approximate the exercise boundary

and then compute option values and hedging parameters. Capped options are call and put options

automatically exercised when the asset price closes at or above (for a call) or at or below (for a put) a

predetermined level. Broadie and Detemple [1995] value these options written on a stock following a

GBM. Broadie and Detemple [1996] use these options to express lower and upper bounds of the prices

of plain vanilla American options. The value of these last options is then obtained by interpolation.

Huang, Subrahmanyam and Yu [1996] approximate the exercise boundary using Richardson extrapo-

lation to accelerate convergence for a stepwise approximation of the free boundary. The computation

by this methodology is faster than the one by Kim [1990], but it still requires the solution of several

integral equations. Ju [1998] approximates the exercise boundary with a multipiece exponential func-

tion. Pham [1998] considers the EEP representation for a jump-diffusion model for the underlying

asset and shows how in this case the EEP has a component due to the eventual occurrence of jumps.

Little, Pant and Hou [2000] reduce the dimensionality of the problem by an equation for the boundary

with only an integral. Broadie, Detemple, Ghysels and Torrés [2000a] and Broadie, Detemple, Ghysels

and Torrés [2000b] consider the EEP representation for an underlying asset with stochastic dividend

yield and volatility and estimate the early exercise boundary in a nonparametric way. Detemple and
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Tian [2002] considers American options written on an asset price that follows a diffusion process

and with stochastic interest rate. They derive a recursive integral equation for the exercise boundary

and provide a parametric representation of the American option price. Kallast and Kivinukk [2003]

propose a numerical method to compute the solution of the Kim’s integral equations and estimate

numerically the exercise boundary. Carr [1998] computes the American option from a sequence of op-

tions with random maturity. Huang and Pang [1998] consider some American option pricing models

as linear complementarity problems involving partial differential operators and study the properties of

their discretizations. Hon and Mao [1999] use the radial basis function method to solve numerically

System (1.17). Chiarella and Ziogas [2009] adopt the method introduced by Jamshidian [1992] for a

jump-diffusion process.

1.3.2 Iterative procedures

Regression-based methods rely on the computation of the continuation value at each step in a discrete

time framework (see Equations (1.13)). The conditional expectation is usually computed by lattice

methods or quadrature methods when the state variables vector is low dimensional and by Monte

Carlo (MC) or quasi-MC methods when it is high dimensional.

Lattice methods require the discretization of the state variables space to be deterministic. At each time

step, the state variables vector can move toward one of a finite number of values with a certain proba-

bility. Parkinson [1977] considers the American put problem by taking series expansion of the solution

given by McKean [1965] in transform space. He uses a three-jump process that approximates the pro-

cess followed by the continuous log-normal underlying price. He also shows that a trinomial tree is

equivalent to the explicit finite difference method and that a generalized multinomial jump process is

equivalent to a complex implicit finite difference approximation. The binomial tree approach becomes

widely famous with the article by Cox, Ross and Rubinstein [1979], where, even if not dealing with

American-style contingent claims, the authors clarify the direct implementation of the DP principle for

option pricing. This pricing technique is introduced also in Sharpe [1978] and Rendleman and Bart-

ter [1979]. Improvement of the binomial tree are the trinomial tree of Boyle [1988], the multinomial

tree of Kamrad and Ritchken [1991] and the efficient lattice algorithm of Ritchken and Trevor [1999].

Convergence results for the discrete time approximation in a general setting are in Amin [1993] and

Amin and Khanna [1994]. In particular, Amin [1993] develops an extension of the binomial method

to handle the inclusion of jumps, making the binomial tree applicable to jump-diffusion models. A

quadrature method is a computational method to value a definite integral. This method makes use of
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interpolating functions that are easy to integrate.8 It gives the value of an approximation of the con-

sidered integral. The value of this last integral corresponds to the limit case of an infinite number of

considered points and can be inferred by an extrapolation methods, for instance the Richardson’s ex-

trapolation.9 Sullivan [2000] proposes a quadrature method to approximate the value of the American

put given by a recursive function of its payoff by using Chebyshev polynomials.

For high dimensional integrals MC and quasi-MC methods are preferred. In MC and quasi-MC meth-

ods the integrand is evaluated at some randomly or quasi randomly chosen points and then averaged.

These methods are then based on a random discretization of the state variables space. Tilley [1993]

introduces the use of MC simulations in the literature on DP approaches to the American option pric-

ing problem. Grant, Vora and Weeks [1996] show how to price American options written on an asset

that follows a pure diffusion and jump-diffusion processes by using MC simulations. Carriere [1996]

considers the price of an American option expressed as the solution of the VI algorithm in a DP frame-

work. He considers a nonparametric estimator of the continuation value based on q-splines and local

polynomial smoothers as approximating functions over a sample of MC simulated paths under the risk-

neutral probability measure. Broadie and Glasserman [1997b] develop algorithms that use simulated

trees and backwards recursion to obtain a biased high and a biased low estimator of the American op-

tion price that are convergent and asymptotically unbiased in the computational burden. Longstaff and

Schwartz [2001] introduce the MC Least Squares method for American option pricing. At each point

in time they regress the continuation value on a set of basis functions dependent of the state variables

vector. They simulate many MC paths of the state variables vector, consider only the value of the state

variables vector such that the option is in the money and estimate the expectations by MC averages.

The authors outline a convergence proof and Clément, Lamberton and Protter [2002] provide a com-

plete convergence proof and a central limit theorem for the algorithm. Tsitsiklis and Van Roy [2001]

consider payoffs dependent on many state variables, for example options written on many underlyings,

as a basket option. In order to handle with the curse of dimensionality, they use an Approximate VI

algorithm. It is basically the same algorithm as the VI algorithm of Equations (1.13), but it relies on

the computation of the option value only at some points of the state space. The entire value function is

reconstructed by using a linear combination of basis functions to fit the data via least squares regres-

sion. At any step a projection operator minimizes a least squares criterion. The authors study how the

approximation errors propagate in the algorithm. Rogers [2002] considers the dual representation of

8For instance, the Newton-Cotes quadrature methods express the integral as the sum of integrals on smaller integration
domains and approximate each of these integrals by the area of geometric figures. The Gaussian and Clenshaw-Curtis
quadrature methods express the integral as a weighted sum of the value of the integrand function at some special points.

9The quadrature rule can be applied to high dimensional integrals by computing an iterated one-dimensional integration
thanks to the Fubini’s theorem, but the function evaluations grow exponentially in the number of dimensions (curse of
dimensionality).

14



the price of the American option in Equation (1.7), chooses a Q-martingale and computes the condi-

tional expectation by simulation. Andersen and Broadie [2004] and Haugh and Kogan [2004] adopt a

similar approach and construct upper and lower bounds on the true price of the option. Bally and Pagès

[2003] and Bally, Pagès and Printems [2005] introduce a quantization method for the computation of

a large number of conditional expectations that consists in the projection of the underlying process

on a special grid designed to minimize a projection error. Glasserman and Yu [2004] and Stentoft

[2004] study the convergence of the different DP algorithms as the number of basis functions and MC

samples increase. In the stochastic mesh approach proposed in Broadie and Glasserman [2004], many

paths for of the future values of the state variables vector are simulated. In this way a set of nodes is

created at each time. The estimation of the continuation value is then performed backwards in time:

the continuation value at time t is approximated by a weighted sum of the possible values at time t+1.

The weight of these values is connected to their probability of occurrence. An additional study on this

method is in Avramidis and Matzinger [2004] and a modification is in Liu and Hong [2009]. Barty,

Girardeau, Roy and Strugarek [2008] consider recursive kernel regression estimates of the continua-

tion value on simulated data. In particular they use Gaussian kernels as mollifiers and approximate

the value functions as a sum of Gaussian kernels, that can be rapidly computed by a Gauss Transform.

Egloff, Kohler and Todorovic [2007] consider least squares splines MC regressions. Kohler, Krzyżak

and Todorovic [2010] consider least squares neural network MC regressions. Laprise, Fu, Marcus,

Lim and Zhang [2006] price American-style derivatives in a Markovian setting. They approximate

the value function with an interpolation function and convert the pricing of American-style derivative

with an arbitrary payoff function to the pricing of a portfolio of European Call options. For extended

surveys on Monte Carlo methods for option pricing see Dupire [1998], Fu, Laprise, Madan, Su and

Wu [2001],Glasserman [2004] and Kohler [2010].

1.3.3 Empirical findings against some assumed hypotheses

The optimal stopping formulation of the American option pricing problem described in Section 1.1

and consequently all the methods considered in this survey are based on the assumptions of rational

investors and frictionless market. In real markets investors play in a more or less rational way on the

base of preferences and transaction costs. Many studies stress the limits of these assumptions. Tax

depend on the investor’s tax status and on the type of underlying asset. They can therefore inhibit a

rational strategy. Diz and Finucane [1993] show that transaction costs and other market frictions can

induce early exercise of index options. Overdahl and Martin [1994], Finucane [1997] and Engstrom,

Nordén and Stromberg [2000] find similar results for markets of equity options. Carpenter [1998]

explain the irrational exercise of not tradeable Employee Stock Options (also Detemple and Sundare-
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san [1999] takes this fact into account). Poteshman and Serbin [2003] find that sometimes public

customers of full-service and discount brokers exercise American options in an irrational way, while

firm proprietary traders never do so. In particular this irrational exercise is triggered by exceptional

levels of the underlying stock price (see also Duffie, Liu and Poteshman [2005]). Alpert [2010] show

how taxes can trigger an early exercise. Some models recently presented account for market frictions.

For instance, Costantidines and Perrakis [2007] and Roux and Zastawniak [2009] consider transaction

costs.

1.4 Model calibration and empirical methods

In this section I describe some calibration and empirical methods. The aim of these methods is bring-

ing the theoretical models to data. They provide us with the value of the model risk-neutral parameters

that best fit some cross-sections of observed option prices on the base of a criterion. The risk-neutral

density, or at least some of its moments, is backed out of observed option data and then used to price

other contracts. This density is called implied density. Due to the complexity introduced by the early

exercise possibility, models are preferably calibrated to some observed European option prices. In this

section I focus on some methods that allow for a calibration to American option prices.

Achdou [2005] considers the calibration of a GBM with American plain vanilla options. Achdou

[2008] does the same for an underlying asset following a Lévy process. Rubinstein [1994] introduces

the method of implied binomial trees. He extracts the risk-neutral transition density from a cross

section of European options (see also Jackwerth and Rubinstein [1996], Jackwerth [1997], Jackwerth

[1999], Jackwerth [2000]) by considering the closest transition density to a reference density, e.g. a

log-normal one. Tian [2011] adapts the method of implied binomial trees to American options. Stutzer

[1996] introduces the canonical valuation methodology in the context of European option pricing: the

risk-neutral transition density is estimated by the minimizer of the Kullback Leibler distance from a

nonparametric estimator of the historical transition density, subject to the no-arbitrage restriction on

the underlying asset. Alcock and Carmichael [2008] adopts the canonical valuation methodology with

no-arbitrage restrictions on an American option at every possible exercise date. The estimated risk-

neutral transition density is then used to price the option itself by the Longstaff and Schwartz [2001]

algorithm (see also Liu [2010]). Alcock and Auerswald [2010] consider the same approach and add

the no-arbitrage restrictions on a cross section of observed European options. Duan [2002] considers

the series of returns on the underlying and divides the difference between each return and the condi-

tional mean by the conditional volatility. He obtains in this way an independent identically distributed

(i.i.d.) sequence and by a transformation of their marginal distribution he gets an i.i.d. standard normal
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sequence. He then considers the minimizer of the relative entropy distance from the standard normal

distribution of these normalized returns, subject to the no-arbitrage restriction on the underlying asset,

as estimator for the risk-neutral distribution.

The stochastic discount factor embodies the aversion of the investors for risk. If they are risk-averse,

the risk-neutral transition density has more probability mass in extreme events than the historical one

(see for instance the review on pricing kernels in Hansen and Renault [2010]). Only in absence of

risk aversion, i.e. when in the price formation there is no risk-discount, the two transition densities

coincide. The expected return under the risk-neutral measure is the risk-free rate and it is usually a

different value under the historical measure, since investors ask for a premium for bearing the risks

associated to holding the stock. They require a premium for the risks of a lower excess return and an

higher return variance than expected (see e.g. Mehra and Prescott [1985] for the equity premium in

the CAPM, Lamoureux and Lastrapes [1993] for the volatility premium and Carr and Wu [2009] for

the variance premium). Many empirical studies show structural differences between the probability

densities of the same variables under the historical and risk-neutral measures. For instance, Canina and

Figlewski [1993], Bakshi, Cao and Chen [2000], Jackwerth [2000], Jiang and Tian [2005], Bakshi and

Madan [2006], Christoffersen, Heston and Jacobs [2006], Carr and Wu [2009] and Bollerslev, Gibson

and Zhou [2011] study the differences in the case of index returns and Dennis and Mayhew [2002],

Bakshi, Kapadia and Madan [2003] and Duan and Wei [2009] study the differences in the case of

equity returns. We assume risk-averse agents and consequently we consider some risk-neutralization

arguments in asset pricing. The reason why the risk-neutral transition density should be the closest

transition density inside a certain class of distributions is not evident.

Daglish [2003] compare the in-sample and the out-of-sample pricing and hedging performances of

some parametric and nonparametric American option pricing techniques. He considers the BS model

and the stochastic volatility model considered in Heston [1993], the practitioners’ BS model intro-

duced in the context of European option pricing in Aı̈t-Sahalia and Lo [1998], a kernel regression

nonparametric model and a technique based on spline fitting. Daglish [2003] finds a superior per-

formance of the nonparametric techniques for in-sample pricing and of the parametric techniques for

forecasting and hedging. Nonparametric techniques are considered particularly useful to determine the

actual state price density from a cross-section of observed options.10 The nonparametric techniques do

not take into account the no-arbitrage restrictions on the considered assets, but they do not suffer of the

10Daglish [2003] writes that nonparametric methods can be a very effective tool for in-sample pricing of options. Given
this, they may represent a very valuable tool for extracting the state price density, which can then be used to perform
arbitrage-based pricing of other securities. In light of the work by Broadie, Detemple, Ghysels and Torrés [2000b], I
might expect to see nonparametric methods outperforming parametric models when pricing American options for two
reasons: improvement in modeling of the underlying asset process, and also being able to fit the optimal exercise boundary
more consistently.
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risk of a misspecification of the state variables dynamics, that could lead to mispricing. See Longstaff,

Santa-Clara and Schwartz [2001] for a study on the costs of applying single-factor exercise strategies

to American-style swap options when the true term structure is driven by several factors.

Some authors face the American option pricing problem as a learning problem. For instance, Chen

and Magdon-Ismail [2006] combine an artificial neural network with a multinomial tree to derive the

risk-neutral measure from a cross-section of American options. On the one hand, a neural network

algorithm offers the possibility of choosing any economic variable as state variable, on the other hand

it requires a large cross-section of options to form the algorithm training set.

Using the EEP representation, we could in principle compute the EEP as the difference between the

prices of American and European options written on the same asset and with the same contract char-

acteristics. Unfortunately simultaneous liquid market for such pairs of options are extremely rare.11

Since the put-call parity (see e.g. Stoll [1969] and Klemkosky and Resnick [1979]) does not hold for

American options and only the weaker put-call relationship reported in Section 1.2 holds, we could

take the deviations from this parity as a measure of the EEP (see Evnine and Rudd [1985] and Zivney

[1991] for empirical studies based on this idea).

11The comparison in Dueker and Miller [2003] is based on the exceptional quote of both European and American plain
vanilla options by CBOE during just few months in 1986.
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2 Semi-Parametric Estimation of American Option Prices

This chapter deals with the estimation of American option prices in a discrete time, incomplete market,

Markovian framework. The Markov state variables vector includes the return on the fundamental asset,

as well as other relevant pricing factors, such as the asset stochastic volatility and the discount rate.

An American option differs from the corresponding European security since the holder has the right

to exercise the option on or before the maturity date (see Broadie and Detemple [2004] and Detemple

[2005] for reviews on valuation of American-style derivatives). Thus, the American option valuation

problem can be faced as an optimal stopping time problem (see Bensoussan [1984], Karatzas [1988]

and Karatzas [1989]).12 Equivalently, at each date the option value is the maximum between the

exercise payoff and the continuation value, that is, the risk adjusted and time discounted conditional

expectation of the option value one day ahead. This dynamic programming argument suggests that, in a

discrete time framework, the pricing of an American option can be represented by a backward recursive

application of a valuation operator that embodies both the exercise decision and the computation of

the continuation value.

The literature on dynamic programming approaches to American option pricing has mostly focused

on parametric models for the risk-neutral dynamics of the state variables vector, such as the Black-

Scholes, stochastic volatility and jump-diffusion models. The time is discretized and, for given values

of the model parameters, the backward recursive option valuation is performed assuming a finite set

of possible values for the state variables at each date. In lattice methods the state variables domain

is discretized in a deterministic way depending on the model (see e.g. the binomial tree of Cox,

Ross and Rubinstein [1979], the trinomial tree of Boyle [1988], the multinomial tree of Kamrad and

Ritchken [1991] and the efficient lattice algorithm in Ritchken and Trevor [1999]). In Monte Carlo

methods the state variables domain is discretized in a stochastic way based on a special choice of the

space sampling (see e.g. the random tree of Broadie and Glasserman [1997b], the regression-based

Monte Carlo methods of Carriere [1996], Longstaff and Schwartz [2001] and Tsitsiklis and Van Roy

[2001] and the stochastic mesh of Broadie and Glasserman [2004]). For instance, in regression-based

Monte Carlo methods a sample of state variables paths is artificially generated from the model. The

conditional expectation that gives the continuation value at a given date and state is approximated

by using nonparametric regression methods applied to the simulated cash-flows or option values at

the future dates. Glasserman [2004] explains how regression-based Monte Carlo methods can be

interpreted as stochastic mesh approaches. Finally, Sullivan [2000] uses a Gaussian quadrature to

12Alternative characterizations of the American option pricing problem for special parametrizations of the state variables
process include for instance the free boundary formulation (see e.g. McKean [1965], Brennan and Schwartz [1977],
Barone-Adesi and Whaley [1987] and Huang, Subrahmanyam and Yu [1996]).
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compute the continuation value.

Despite this huge body of literature on valuation, the analysis of statistical estimation methods with

American option price data is very limited, likely because of the complexity induced by the pricing

problem. Nonparametric estimation methods are particularly convenient in this respect, since they

allow to bypass this complexity by postulating a flexible link function relating the American option

price with observable contract characteristics and state variables. For instance, Broadie, Detemple,

Ghysels and Torrés [2000a] and Broadie, Detemple, Ghysels and Torrés [2000b] consider kernel-

based regression methods including the moneyness strike, the time-to-maturity, the asset stochastic

volatility and dividend yield among the regressors. In an empirical study, these authors find that both

dividend yield and stochastic volatility are important determinants of the American option price. Other

nonparametric approaches, such as splines and neural networks, are also possible (see Daglish [2003]

for a comparative study as well as Hutchinson, Lo and Poggio [1994] and Garcia and Gencay [2000]

for the use of neural networks to price European options).

We depart from this literature by combining the dynamic programming formulation with a semi-

parametric specification of the risk-neutral distribution in discrete time. Specifically, the historical

transition density f of the Markov state is left unconstrained and treated as a functional parameter,

while the stochastic discount factor (SDF) is assumed in a parametric family indexed by the finite-

dimensional parameter θ. The goal is to estimate the true values of both parameters f0 and θ0 by the

information in a time-series of state variables observations and a cross-section of observed American

option prices at the current date. The estimates of θ0 and f0 are then used to estimate the prices of

American options at the current date that are not actively traded on the market. We also propose

new semi-parametric estimators for a class of linear or nonlinear functionals of θ and f that include

historical and risk-neutral conditional cross-moments of the state variables, such as leverage effects

(see Black [1977]) and term structures of skewness and kurtosis measures (see e.g. Bakshi, Kapadia

and Madan [2003]).

The semi-parametric setting introduced in this chapter is intermediate between fully parametric

and fully nonparametric approaches. The advantage w.r.t. the former approach is the flexibility in

modeling the historical transition density, which allows to get estimators of the option prices and

exercise boundary in a rather general model setting. Moreover, we get a proper distribution theory for

the estimators without introducing ad-hoc pricing errors. The advantage w.r.t. the latter approach is

that the estimated pricing model is arbitrage-free. In nonparametric approaches, ensuring the absence

of arbitrage opportunities by imposing shape restrictions on the pricing function might be difficult,

since such shape restrictions are not completely known for American options in a general framework

(see e.g. Aı̈t-Sahalia and Duarte [2003], Yatchev and Härdle [2006] and Birke and Pilz [2009] for
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constrained nonparametric estimation of the state price density from European option data).

The information contained in the historical state variables and cross-sectional option data is ex-

ploited through the associated no-arbitrage restrictions. In our framework these restrictions are multi-

day and involve the recursive valuation operator for American options. The resulting constraints on

θ0 and f0 are nonlinear w.r.t. both parameters and do not correspond to moment restrictions. This

feature yields a setting that is different from the ones of the Generalized Method of Moments (GMM,

see Hansen [1982] and Hansen and Singleton [1982]), the Extended Method of Moments (XMM, see

Gagliardini, Gouriéroux and Renault [2011]) and other semi-parametric settings considered in the lit-

erature (see e.g. Ai and Chen [2003], Powell [1994] and Ichimura and Todd [2007]). This difference

explains the methodological novelty introduced in this chapter. To get numerically tractable estimators,

we consider a two-step approach. First, the SDF parameter θ0 is estimated by minimizing a distance

criterion that corresponds to a quadratic form of the empirical constraint vector. Second, the historical

transition density f0 is estimated by minimizing an information-theoretic criterion subject to the set

of no-arbitrage restrictions with estimated SDF parameter. The information criterion is based on the

Kullback-Leibler distance of f0 from a kernel density estimator (see Kitamura and Stutzer [1997] and

Kitamura, Tripathi and Ahn [2004]).

Despite the differences in terms of model specification and data usage, comparing our estimation

methodology with the existing literature on dynamic programming valuation gives interesting insights.

Indeed, for any given value of the SDF parameter θ, we compute the conditional expectation that gives

the continuation value as a weighted average over the sample observations of the state variables. Thus,

our approach is closer in spirit to stochastic mesh than to lattice methods, with the historical realization

of the state variables vector process taken as a mesh. The weights turn out to be kernel weights adjusted

by a tilting factor accounting for the no-arbitrage restrictions, and multiplied by the SDF to pass from

the historical to the risk-neutral distribution.

In Section 2.1 we describe the discrete time Markovian framework and define the American option

pricing operator for recursive valuation. In Section 2.2 we introduce the semi-parametric specification

with historical transition density f of the Markov state and SDF parameter θ. We discuss the no-

arbitrage restrictions from the available historical and option data. We investigate the local sensitivity

of the no-arbitrage constraint vector to the model parameters by computing the gradient of the con-

straints w.r.t. θ and their Fréchet derivative w.r.t. f . In Section 2.3 we introduce the semi-parametric

estimators of the true SDF parameter θ0, the true historical transition density f0 and a class of their

functionals, including the American option prices. We study the large sample properties of these es-

timators in Section 2.4. The asymptotics is for a long time-series of state variables observations and

a fixed number of cross-sectionally observed option prices. We make a link between the asymptotic
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properties of the proposed estimators and the ones of information-theoretic GMM estimators, by in-

terpreting the Fréchet derivative of the constraint vector as a moment function locally around the true

transition density f0. In Section 2.5 we present the results of a Monte Carlo experiment to study the

finite-sample properties of the estimators. In Appendix 4.1 we list the set of regularity assumptions

for the validity of the asymptotic properties. Proofs of the propositions are gathered in Appendices

4.2-4.6.

2.1 Valuation of American options

In this section we define the dynamics of the state variables and asset prices. We first consider the state

variables and the SDF in Section 2.1.1. We then state an homogeneity property w.r.t. the underlying

asset price for a class of American options in Section 2.1.2. Finally in Section 2.1.3 we introduce an

operator formulation for the American option price useful for the derivation of the theoretical results.

2.1.1 The framework

We consider an incomplete market framework in discrete time. The time index t, with t ∈ N, iden-

tifies a trading day. A fundamental asset (a stock, say) with price St, a short-term non-defaultable

zero-coupon bond and a set of American options with different contract characteristics written on the

fundamental asset are traded on the market. The state variables are the daily geometric return on the

fundamental asset rt := log (St/St−1) and a (d− 1)-dimensional stochastic vector σt of relevant pric-

ing factors, with d ≥ 2. The vector σt can include the daily volatility of the stock return, the stock

dividend yield and the discount rate. To simplify, we refer generically to σt as the volatility factor.

We collect the state variables in the vector Xt := [rt σ
′
t]
′. The filtration generated by the process (Xt)

represents the flow of information available to the investor and coincides with the filtration generated

by the sequence of [St σ
′
t]
′, given the initial asset value S0.

Assumption 1. Under the physical probability measure P , the process (Xt) is stationary, time-

homogeneous and Markov of order 1 in X = R× S ⊂ R× Rd−1 with transition density f(xt|xt−1).

When the underlying asset volatility is included in vector σt, Assumption 1 is compatible with the

usual discrete time stochastic volatility models and multivariate volatility factor models.13 Assumption

13In a standard discrete time one-factor stochastic volatility model σt is a scalar (d = 2) and represents the volatility of

the stock return. We have rt = µ(σt)+σtεt , σt = a(σt−1, ut), where [εt ut]
′ ∼ IIN

(
0,

[
1 ρ
ρ 1

])
. This model allows

for a leverage effect through the contemporaneous correlation ρ between the shocks on the geometric return and volatility
of the stock, and is compatible with Assumption 1. Markov processes of order m > 1 for the volatility σt are compatible
with Assumption 1 if we extend the state variables vector as Xt := [rt σt . . . σt−m+1]′ and d = m+ 1.
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1 allows for both a contemporaneous leverage effect, through the dependence between rt and the

underlying asset volatility conditional on Xt−1, and a lagged leverage effect, through the dependence

of the underlying asset volatility on rt−1. Since the state variables are assumed observable by the

econometrician, the underlying asset volatility has to be replaced by an observable proxy such as

a realized volatility measure (see Broadie, Detemple, Ghysels and Torrés [2000a]). Note that the

underlying asset return rt, and not its price St, is included in the state variables vector Xt since we

invoke stationarity and ergodicity conditions for Xt to prove consistency and asymptotic normality of

the estimators in Sections 2.3 and 2.4.

We assume that the prices of all traded assets are compatible with a (not necessarily unique) risk-

neutral probability measure Q associated with a SDF (Hansen and Richard [1987] and Gouriéroux

and Monfort [2007]) satisfying the next Assumption 2.

Assumption 2. The one-day SDF Mt,t+1 between date t and date t+ 1 is a function of the value of the

state variables at date t+ 1, i.e. Mt,t+1 = m(Xt+1).

Under Assumptions 1 and 2 the sequence ofXt is a time-homogeneous Markov process of order 1 also

under the risk-neutral probability measure Q.

For expository purpose, in Sections 2.1.2-2.4 we consider null risk-free rate and dividend yield on

the stock. In this case, the American option price is equivalent to the price of an European option writ-

ten on the same underlying and with the same contract characteristics. We do not use this equivalence

to derive our theoretical results. They can be extended to stochastic risk-free rate and dividend yield by

including them in vector σt and considering cum-dividend stock returns. We use a constant non-zero

risk-free rate in Section 2.5 for our Monte Carlo experiment.

2.1.2 The American put options

Let us consider an American put option with payoff at exercise (K − S)+ := max [K − S, 0] for strike

price K > 0.14 By the principle of dynamic programming and Assumption 1, the price Vt(h,K) at

date t of the American put option with time-to-maturity h and strike price K is such that

Vt(h,K) =


max

[
(K − St)+,EQ

t [Vt+1(h− 1, K)]
]
, for h > 0,

(K − St)+ , for h = 0,

(2.1)

14The results in this chapter extend to options with payoff at exercise φ(St,K) that is linearly homogeneous w.r.t. the
stock price, i.e., φ(St,K) = Stφ(1,K/St). For instance, an American chooser option has payoff at exercise φ(St,K) =

max
[
(K − St)+ , (St −K)

+
]
. When the homogeneity property is not satisfied, the approach in this chapter adapts by

defining Yt := [St X
′
t]
′ in Equation (2.2). Moreover, when the option is written on a different underlying than stocks, such

as volatility options, this underlying plays the role of the fundamental asset in this chapter.
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where EQ
t [.] denotes the conditional expectation operator under the risk-neutral probability measure

Q given the investors’ information at date t. The quantities (K−St)+ and EQ
t [Vt+1(h− 1, K)] are the

early exercise payoff (or intrinsic value) and the continuation (or holding) value of the option at date t,

respectively. The former is the value of the option if it is exercised at date t, the latter if it is not. The

American option price is the maximum between the intrinsic and continuation values. Equation (2.1)

corresponds to the value iteration algorithm (see Carriere [1996] and Tsitsiklis and Van Roy [2001]).

Since the state variables vector Xt does not include the stock price St while the option exercise

payoff is written on St, we have to augment the state space for the option valuation. More specifically,

for a given strike K > 0 let us introduce the process of the moneyness strike kt := K/St associated

with St. From Assumptions 1 and 2, the process of the variable

Yt := [kt X
′
t]
′ (2.2)

in Y := R+×X is time-homogeneous and Markov of order 1 under both P and Q. Its transition law

is independent of the strike K under both P and Q. By the Markovianity of process (Yt) under Q,

we deduce the next Proposition 1, which states an homogeneity property of the American option price

similar to Merton [1973a] and Merton [1990].15

Proposition 1. Under Assumptions 1 and 2, the American put option price Vt(h,K) is a linearly

homogeneous function of the underlying asset price:

Vt(h,K) = Stv(h, Yt),

where the American put option-to-stock price ratio v is such that

v(h, yt) =


max

[
(kt − 1)+, EQ

[
kt
kt+1

v(h− 1, Yt+1)

∣∣∣∣Yt = yt

]]
, for h > 0,

(kt − 1)+, for h = 0,

(2.3)

for any yt = [kt x
′
t]
′ ∈ Y , and EQ [.|Yt = yt

]
denotes the conditional expectation under the risk-

neutral probability measure Q given Yt = yt.

Proof. See Appendix 4.2.

From Proposition 1, the American put option-to-stock price ratio Vt(h,K)/St is a function of the time-

15Theorem 9 in Merton [1973a] and Theorem 8.6 in Merton [1990] show that the American call price function is
homogeneous of degree 1 in the stock price and in the strike price, when the stock returns are independent and identically
distributed or follow an autonomous diffusion process, respectively.
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to-maturity h, the moneyness strike kt and the state variables vector Xt only. Since the risk-neutral

transition law of the Markov process (Yt) is independent of strike K, the option-to-stock price ratio

at date t is independent of K when the moneyness strike kt is given. Thus, the homogeneity property

in Proposition 1 reduces the dimensionality of the valuation problem, since function v(h, .) gives the

option-to-stock price ratio at time-to-maturity h for any strike K, stock price S and state variables

vector X .16 Finally, the daily stock gross return kt/kt+1 = St+1/St in the conditional expectation in

Equation (2.3) accounts for the fact that we consider option-to-stock price ratios.

The function v determines the optimal exercise policy. More precisely, the continuation region at

time-to-maturity h ≥ 1 is defined as

C(h) :=
{
y = [k x′]′ ∈ Y : v(h, y) > (k − 1)+

}
. (2.4)

Equivalently, the continuation region C(h) is the set of pairs of moneyness strike kt and state variable

value Xt for which the holding-to-stock price ratio u(h, yt) := EQ

[
kt
kt+1

v(h− 1, Yt+1)

∣∣∣∣Yt = yt

]
is

strictly larger than the exercise-to-stock price ratio (kt − 1)+. The set-theoretical complement of C(h)

in Y is the exercise (or stopping) region. The frontier between the two regions is known as exercise

boundary, and the values assumed by y on this frontier are called critical values.

2.1.3 The American put pricing operator

Following Proposition 1 we compute the American put option-to-stock price ratio v(h, y) recursively

backward w.r.t. the time-to-maturity h. This recursion can be expressed in terms of a pricing operator

acting on L2(Y), that is the linear space of functions ϕ on Y such that
∫
Y
ϕ(y)2fX(x)

k2
dy <∞ , where

fX denotes the stationary density of Xt.17

Definition 1. The American put pricing operator A : L2(Y) → L2(Y) applied to a payoff-to-stock

price ratio ϕ ∈ L2(Y) and evaluated at yt = [kt x
′
t]
′ ∈ Y is

A[ϕ](yt) := max

[
(kt − 1)+, EQ

[
kt
kt+1

ϕ(Yt+1)

∣∣∣∣Yt = yt

]]
.

The linear operator that maps ϕ(yt) into EQ

[
kt
kt+1

ϕ(Yt+1)

∣∣∣∣Yt = yt

]
is the one-day adjusted condi-

16While following Merton [1973a] and Merton [1990] we consider option-to-stock price ratios, lowering the problem
dimensionality by considering price-to-strike ratios is quite common in the American option pricing literature (see e.g.
Wilmott, Howison and Dewynne [1993] for the Black-Scholes setting, and Broadie, Detemple, Ghysels and Torrés [2000a]
and Broadie, Detemple, Ghysels and Torrés [2000b] for a diffusion setting).

17We prove that the American put pricing operator maps L2(Y) into itself in Appendix 4.3. See Peskir and Shiryaev
[2006], p.15, for a similar operator representation of the Wald-Bellman equations.
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tional expectation operator for Markov process (Yt) under the risk-neutral probability measure Q given

Yt = yt. This operator acts on a payoff-to-stock price ratio and returns another payoff-to-stock price

ratio. By a change of variable and Assumption 2, we can rewrite this operator through the historical

transition density of Xt and the SDF:

EQ

[
kt
kt+1

ϕ(Yt+1)

∣∣∣∣Yt = yt

]
=

∫
X
m(x)erϕ(kte

−r, x)f(x|xt)dx, yt ∈ Y . (2.5)

From Proposition 1 the option-to-stock price ratio function satisfies the backward recursion:

v(h, yt) = A[v(h− 1, .)](yt), (2.6)

with value at maturity v(0, yt) = (kt − 1)+. Thus, we get

v(h, yt) = Ah[v(0, .)](yt), for all h ∈ N, (2.7)

where Ah denotes the h-fold application of operator A.

2.2 A semi-parametric option pricing model

Building on the framework of Section 2.1, we now introduce a semi-parametric option pricing model.

We consider the parametrization of the SDF in Section 2.2.1 and describe the restrictions on the pa-

rameters induced by the no-arbitrage assumption in Section 2.2.2. Finally in Section 2.2.3 we derive

the sensitivity of the American option-to-stock price ratios to a change in the model parameters.

2.2.1 The historical and risk neutral parameters

The SDF is parametrized by a finite-dimensional parameter, while the historical transition density f of

process Xt in Assumption 1 is left unconstrained.

Assumption 3. The single-day SDF Mt,t+1 between date t and date t+ 1 is a function of the unknown

parameter vector θ0 ∈ Θ, i.e. Mt,t+1 = m(Xt+1; θ0), where m is a known function and Θ ⊂ Rp is the

SDF parameter set.

The parameter vector θ includes the risk premia associated with the priced risk factors. In an incom-

plete market framework, a multiplicity of admissible SDF’s may exist. Here we implicitly assume that

only one valid SDF admits the parametric specification in Assumption 3. This is made explicit by the

identification conditions for parameter θ in Section 2.4 (see Assumptions 5 and 7).
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From Equation (2.5) and Assumption 3 the pricing operator A in Definition 1 involves both the

finite-dimensional parameter θ and the infinite-dimensional parameter f . We denote by Aθ,f the pric-

ing operator A defined for generic parameters θ and f . This operator yields a semi-parametric pricing

model for American options through Equation (2.7). The goal is to estimate the true SDF parameter

θ0 and the true historical transition density f0. Then, by the plug-in principle, we can estimate the

American put option-to-stock price ratio Ah∗θ0,f0
[v(0, .)](k∗, xt0) at the current date t0 for any given

moneyness strike k∗ and time-to-maturity h∗, as well as other functionals of interest that depend on

the true parameters (θ0, f0).

2.2.2 The no-arbitrage restrictions

The true values θ0 and f0 of the model parameters are estimated from the information contained in the

no-arbitrage restrictions implied by the market price data. The data consist of two sets of observations.

First, we have at the current date t0 a sample of N cross-sectionally observed trading prices of Amer-

ican put options with times-to-maturity hj and moneyness strikes kj := kt0,j , where j = 1, . . . , N .

The corresponding option-to-stock price ratios are denoted by vj , for j = 1, . . . , N . Second, we have

a sample of T historical observations xt, where t = t0 − T + 1, . . . , t0, for the state variables vector

previous to date t0.

The observational design for the options reflects the common practice of cross-sectional calibra-

tion. This practice conveniently accounts for the fact that the set of actively traded options typically

changes from one trading day to the next one. The results of this chapter can be extended to include a

few cross-sections of observed option prices with minor modifications. The extension of the asymp-

totic analysis to include a full panel of observed option prices at every trading day in the sample is

more difficult because of the time-varying random characteristics of the actively traded options (time-

to-maturity and moneyness strike) and is beyond the scope of this chapter.

The one-day no-arbitrage restrictions on the underlying stock and on the short-term non-defaultable

bond are 
E0 [m(Xt+1; θ0)ert+1|Xt = x] = 1,

E0 [m(Xt+1; θ0)|Xt = x] = 1,

for almost every (a.e.) x ∈ X , (2.8)

respectively, where E0 [·|Xt = x] denotes the conditional expectation under the true historical prob-

ability measure given Xt = x. The conditional moment restrictions (2.8) are valid uniformly in the

conditioning value of the state variables vector. We refer to them as uniform capital market restrictions.

The no-arbitrage restrictions on the cross-sectionally observed American option prices at date t0,
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that we call derivative market restrictions, are given by

g(θ0, f0) = 0, (2.9)

where the vector function g = [g1 . . . gN ]′ with argument (θ, f) is defined by

gj(θ, f) := Ahjθ,f [v(0, .)](yj)− vj, j = 1, · · · , N, (2.10)

for yj := [kj x
′
0]′ and x0 := xt0 . The derivative market restrictions (2.9) are not moment restrictions,

since we cannot write them as an expectation under f0 of a known function of the unknown parameter

θ0 and the data. Indeed, the restriction vector g depends nonlinearly on f because of the multi-day

nature of the constraints and the exercise decision embodied in the pricing operator. Moreover the

derivative market restrictions (2.9) are local in nature, holding for the value x0 of the state variables

vector at date t0 only. These features explain why our framework differs from the standard GMM set-

ting (Hansen [1982] and Hansen and Singleton [1982]) as well as from the XMM setting (Gagliardini,

Gouriéroux and Renault [2011]).

The total set of no-arbitrage restrictions is given by System (2.8) and Equation (2.9). For the

definition and interpretation of the estimators in Section 4, it is useful to rewrite these restrictions in

an equivalent form. Since the N traded options at t0 are in the continuation region, their prices equal

the holding values. Thus, by using Definition 1 and Equation (2.5), the restrictions (2.8) and (2.9) can

be rewritten as 
E0 [ΓU(Xt+1; θ0)|Xt = x] = 0, for a.e. x ∈ X ,

E0 [γS(Xt+1; θ0, f0)|Xt = x0] = 0,

(2.11)

where

ΓU(x; θ) := m(x; θ)[er 1]′ − [1 1]′ (2.12)

and the vector function γS = [γS,1 . . . γS,N ]′ is defined as

γS,j(x; θ, f) := m(x; θ)γ1,j(x; θ, f)− vj, γ1,j(x; θ, f) := erAhj−1
θ,f [v(0, .)](kje

−r, x), (2.13)

for j = 1, · · · , N and any x ∈ X . Vector ΓU is the moment function for the capital market restric-

tions. Vector γS defines a short-term quasi moment function for the derivative market restrictions.

Vector γS is not a feasible moment function since, when hj > 1 for some option j, it involves the

unknown transition density f0 through γ1,j , that is, the one-day ahead price of option j in units of the

current underlying asset price. We could consider γS as a moment function involving both a finite-
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dimensional parameter θ and an infinite-dimensional parameter f as in Ai and Chen [2003]. However,

their estimation approach cannot be applied here since the restriction is local and not uniform w.r.t. the

conditioning value.

2.2.3 Sensitivity of the derivative market constraints to the model parameters

The informational content of the derivative market restrictions (2.9) depends on the sensitivity of vector

function g to an infinitesimal change in the parameters θ and f . In Proposition 2 below we compute

the gradient ∇θ′gj of function gj w.r.t. the finite-dimensional parameter θ, and the Fréchet derivative

of gj w.r.t. the infinite-dimensional parameter f , for j = 1, . . . , N . The Fréchet derivative of function

gj(θ, ·) at f in the direction ∆f , denoted by 〈Dgj(θ, f),∆f〉, measures the first-order variation of

gj(θ, ·) when we perturb the transition density from f to f + ∆f , holding parameter θ fixed. Hence

gj(θ, f + ∆f) = gj(θ, f) + 〈Dgj(θ, f),∆f〉+O
(
‖∆f‖2

∞
)
, (2.14)

where ‖∆f‖∞ denotes the supremum norm of ∆f (see e.g. Ichimura and Todd [2007] for the use of

the Fréchet derivative in nonparametric and semi-parametric methods).

Proposition 2. Let parameters (θ, f) satisfy the no-arbitrage restrictions g(θ, f) = 0 and

Ef [ΓU(Xt+1; θ)|Xt = x] = 0, for a.e. x ∈ X , where Ef [·|Xt = x] denotes the expectation w.r.t.

the pdf f(·|x). Moreover, assume that yj is in the interior of the continuation region Cθ,f (hj) for time-

to-maturity hj and parameters (θ, f), for all j = 1, . . . , N . Then, under Assumptions 1-3, and A 2 and

A 8 in Appendix 4.1, the Fréchet derivative of gj(θ, ·) at f in the direction ∆f is

〈Dgj(θ, f),∆f〉 =

∫
X
m(x; θ)γ1,j(x; θ, f)∆f(x|x0)dx

+

∫
X

∫
X
m(x; θ)γ2,j(x, x̃; θ, f)∆f(x|x̃)dxdx̃, (2.15)

and the gradient of gj w.r.t. θ is

∇θ′gj(θ, f) = Ef [(∇θ′m(Xt+1; θ)) γ1,j(Xt+1; θ, f)|Xt = x0]

+

∫
X

Ef [(∇θ′m(Xt+1; θ)) γ2,j(Xt+1, x̃; θ, f)|Xt = x̃] dx̃, (2.16)
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for j = 1, . . . , N , where functions γ1,j(x; θ, f) are given in Equation (2.13) and

γ2,j(x, x̃; θ, f) := er
hj∑
l=2

fQ
θ,l−1(x̃|x0)EQ

θ,f

[
1Cθ,f (hj−1)(Yt+1) . . .1Cθ,f (hj−l+1)(Yt+l−1)

· kt
kt+l−1

Ahj−lθ,f [v(0, .)](kt+l−1e
−r, x)

∣∣∣∣∣Xt+l−1 = x̃, Yt = yj

]
, (2.17)

and where 1Cθ,f (h) is the indicator of the continuation region for time-to-maturity h and parameters

(θ, f), the conditional expectation EQ
θ,f [.|.] is taken under the risk-neutral probability measure of (Yt)

for parameters (θ, f), and fQ
θ,l−1 is the (l−1)-day risk-neutral transition density of (Xt) for parameters

(θ, f).

Proof. See Appendix 4.4.

The Fréchet derivative in Equation (2.15) involves two components. The first one yields the sensitivity

to infinitesimal perturbations ∆f(·|x0) of the transition density for the conditioning value x0 of the

state variables vector at t0. The second one yields the integrated sensitivity to infinitesimal perturba-

tions ∆f(·|x̃) of the transition densities for the conditioning values x̃ ∈ X of the state variables vector.

This decomposition of the Fréchet derivative results from the multi-day nature of the constraint vector

g and an application of a functional version of the product rule for differentiation. Indeed, since in

Proposition 2 the options are assumed to be in the continuation region at date t0 for parameters (θ, f),

we have

gj(θ, f) =

∫
X
m(x; θ)γ1,j(x; θ, f)f(x|x0)dx− vj, (2.18)

in a neighborhood of parameters values, for j = 1, . . . , N . Thus, if we hold the transition density f

in the normalized future option-to-stock price ratio γ1,j(x; θ, f) fixed, the quantity gj(θ, f) is sensitive

to an infinitesimal perturbation in parameter f only through the perturbation in the pdf f(·|x0). The

associated short-term sensitivity is measured by functionm·γ1,j , which yields the first term in the RHS

of Equation (2.15). The dependence of the normalized future option-to-stock price ratio γ1,j(x; θ, f)

on the transition density f explains the second term in the RHS of Equation (2.15). Since γ1,j(x; θ, f)

involves a (hj − 1)-fold application of the pricing operator Aθ,f , function γ2,j(x, x̃; θ, f) in the long-

term sensitivity consists of a sum over hj − 1 terms. The term for index l, with 2 ≤ l ≤ hj , involves

a conditional expectation under the risk-neutral probability measure of the option price at date t0 + l

in units of the stock price at date t0, keeping fixed the state variables vector x = [r σ′]′ at date t0 + l.

The expectation is w.r.t. the pathes of Yt that lie in the continuation region between t0 and t0 + l − 1,

and is conditional on Xt0+l−1 = x̃ and Yt0 = yj . The weight fQ
θ,l−1(x̃|x0) accounts for the risk-neutral
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likelihood of the state variables vector transition between xt0 = x0 and xt0+l−1 = x̃. Function γ2,j is

equal to zero if the j-th option has time-to-maturity hj = 1.18

Finally, the gradient of the local constraint vector g w.r.t. θ in Equation (2.16) also involves two

components, that are a conditional expectation given Xt = x0 and a conditional expectation integrated

over the conditioning value x̃ ∈ X , respectively. These two components come from the application of

the product rule for differentiation w.r.t. θ in the RHS of Equation (2.18).

2.3 Semi-parametric estimation

In this section we introduce semi-parametric estimators of the true SDF parameter θ0, of the true

historical transition density f0 and of some of their functionals. To get numerically tractable estimators,

we focus on a two-step estimation procedure. It consists in first getting an estimator of the SDF

parameter, and then using it to derive an estimator of the historical transition density. We consider

a minimum-distance estimator of the SDF parameter that exploits the information in the local no-

arbitrage restrictions at the current date only (Section 2.3.1), and another one that exploits the full set

of no-arbitrage restrictions (Section 2.3.2). We then introduce an estimator of the transition density that

minimizes an information-theoretic criterion subject to the full set of no-arbitrage restrictions (Section

2.3.3). Finally, we introduce an estimator for a class of functionals of θ0 and f0 that includes the prices

of American options (Section 2.3.4).

2.3.1 The cross-sectional estimator of the SDF parameter

The estimators we consider require as input nonparametric estimators of the historical transition den-

sity of process (Xt) and of its stationary density. For this purpose, we use kernel density estimators.

We need some standard assumptions on the serial dependence of process (Xt) (see Bosq [1998]).

Assumption 4. Under the physical probability measure P , the process (Xt) is geometrically strong

mixing, that is, the α-mixing coefficients αj , for j ∈ N, are such that αj = O(%j), as j → ∞, for a

scalar % ∈ (0, 1).

Under Assumption 4 the serial dependence between Xt and Xt−j , for j ∈ N, decays geometrically

fast as the lag j increases. Assumption 4 is satisfied by a wide class of commonly used discrete-

time processes (see e.g. Carrasco and Chen [2002]) and discretely-sampled continuous time diffusion

18The max operator inA does not prevent differentiability of g(θ, .). Indeed, the kinks induced by the exercise decisions
at t0 + l − 1, for 2 ≤ l ≤ hj , are smoothed by a subsequent application of the conditional expectation operator (see the
proof of Proposition 2 in Appendix 4.4), while the kink for the exercise decision at t0 is irrelevant as long as the option is
in the continuation region at t0.
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processes (see e.g. Chen, Hansen and Carrasco [2009] and references therein). The kernel estimator

of the historical transition density of process (Xt) is

f̂(x|x̃) :=
1

hdT

T∑
t=2

K

(
xt − x
hT

)
K

(
xt−1 − x̃
hT

)/ T∑
t=2

K

(
xt−1 − x̃
hT

)
(2.19)

and the kernel estimator of the historical stationary density fX is

f̂X(x) :=
1

ThdT

T∑
t=1

K

(
xt − x
hT

)
, (2.20)

where K is a d-dimensional kernel, hT is the bandwidth (Bosq [1998]) and we have switched to the

simpler notation x1 := xt0−T+1, . . . , xT := xt0 .19

The full set of no-arbitrage restrictions at date t0 includes the derivative market restrictions (2.9)

and the capital market restrictions (2.8) for the state value x0. This set of local restrictions can be

written as

G(θ0, f0) = 0, (2.21)

where the (N + 2)× 1 vector function G(θ, f) is defined by

G(θ, f) = [g(θ, f)′ Ef [ΓU(Xt+1; θ)|Xt = x0]′]′. (2.22)

We follow the minimum distance principle and estimate parameter θ by minimizing a quadratic crite-

rion based on the sample counterpart G(θ, f̂) of the local restrictions at date t0. This sample counter-

part is defined by replacing the transition density f with the kernel estimator f̂ into Equation (2.22).

Then, the vector Ef̂ [ΓU(Xt+1; θ)|Xt = x0] :=

∫
X

ΓU(x; θ)f̂(x|x0)dx is the conditional expectation

of the moment function ΓU(.; θ) w.r.t. the kernel density f̂(.|x0), while vector g(θ, f̂) involves the

empirical American put pricing operator

Aθ,f̂ [ϕ](y) = max
[
(k − 1)+,Ef̂ [m(Xt+1; θ)ert+1ϕ(ke−rt+1 , Xt+1)|Xt = x]

]
, (2.23)

for ϕ ∈ L2(Y) and y ∈ Y , in which the continuation value is computed as a risk-adjusted conditional

expectation under the kernel probability measure.

19In the Monte-Carlo experiment in Section 6, the different components of vector Xt are rescaled before applying the
common bandwidth hT .
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Definition 2. The cross-sectional semi-parametric estimator of the SDF parameter θ0 is

θ̂ := arg min
θ∈Θ

QT (θ), QT (θ) := G(θ, f̂)′ΩTG(θ, f̂),

where ΩT is a positive-definite (N + 2)× (N + 2) weighting matrix for all T , P -a.s.

The estimator θ̂ yields the SDF parameter that minimizes a weighted sum of squared errors on price

ratios at date t0 for the options, the stock and the short-term non-defaultable bond.

2.3.2 The XMM estimator of the SDF parameter

The estimator of the SDF parameter introduced in the previous section can be improved by extending

the set of calibrated constraints to accommodate both the local restrictions at date t0 and the uniform

moment restrictions on the bond and stock at all dates. In this section we build on the Extended Method

of Moments (XMM) estimation for efficient pricing of European derivatives developed in Gagliardini,

Gouriéroux and Renault [2011] and we introduce a second estimator of the SDF parameter.

Definition 3. The XMM semi-parametric estimator of the SDF parameter θ0 is

θ̂∗ := arg min
θ∈Θ

Q∗T (θ),

for the criterion

Q∗T (θ) := hdTG(θ, f̂)′ΩTG(θ, f̂) +
1

T

T∑
t=1

Ef̂ [ΓU(Xt+1; θ)|Xt = xt]
′Ω̃T (xt)Ef̂ [ΓU(Xt+1; θ)|Xt = xt],

where Ω̃T (x) is a positive-definite 2× 2 weighting matrix for all T and x ∈ X , P -a.s., and matrix ΩT

is as in Definition 2.

The objective function Q∗T in Definition 3 involves two components. The first one is a quadratic form

in the estimated local no-arbitrage restrictions at date t0. It corresponds to the objective function QT
of the cross-sectional estimator in Definition 2 multiplied by hdT . The second component in Q∗T is a

sample average of quadratic forms in the vectors Ef̂ [ΓU(Xt+1; θ)|Xt = xt] with weighting matrices

Ω̃T (xt), for t = 1, . . . , T . The sample average is over the state variables observations. The vector

Ef̂ [ΓU(Xt+1; θ)|Xt = xt] is an empirical counterpart of the no-arbitrage restriction vector for the

stock and the bond at state variables vector xt, which is asymptotically equivalent to a Nadaraya-

Watson kernel regression estimator. Thus, the second component of Q∗T (θ) is similar to the minimum

distance criterion introduced in Ai and Chen [2003] to estimate conditional moment restrictions models
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(see also Nagel and Singleton [2011] for an application to conditional asset pricing models). In the

local component of criterion Q∗T (θ) we single out the factor hdT to get the asymptotic distribution of

estimator θ̂∗ in Section 2.4 when ΩT and Ω̃T (x̃) converge to limit positive-definite weighting matrices.

2.3.3 The semi-parametric estimator of the historical transition density

Let us now consider the estimation of the historical transition density f0 of the state variables. The

nonparametric kernel estimator f̂ in Equation (2.19) does not take into account the information con-

tained in the no-arbitrage restrictions. We propose to estimate f0 by the transition density that satisfies

the no-arbitrage restrictions and is the closest to f̂ in the sense of a particular statistical measure. This

measure is based on the Kullback-Leibler divergence of the transition density f from the kernel density

estimator f̂ for given x̃ ∈ X , that is defined as

dKL(f, f̂ |x̃) :=

∫
X

log

(
f(x|x̃)

f̂(x|x̃)

)
f(x|x̃)dx. (2.24)

Definition 4. The semi-parametric estimator of the historical transition density f0 is

f̂ ∗ := arg min
f∈F

DT (f, f̂)

s.t.


G(θ̂∗, f) = 0,

Ef [ΓU(Xt+1; θ̂∗)|Xt = x] = 0, for a.e. x ∈ X ,

where

DT (f, f̂) :=

∫
X
dKL(f, f̂ |x)f̂X(x)dx+ ωTdKL(f, f̂ |x0), (2.25)

estimators f̂ , f̂X and θ̂∗ are defined in Equations (2.19)-(2.20) and Definition 3, set F is the set of

conditional densities of Xt+1 given Xt and the weight ωT is such that ωT > 0, P -a.s.

The first component in criterion DT is the average Kullback-Leibler divergence over X weighted by

the kernel density estimator f̂X . The second component is the local Kullback-Leibler divergence at

x0 weighted by ωT . This local component ensures that the minimization admits a unique solution

for f̂ ∗(·|x0). The constraints involve both the local and the uniform restrictions, written for the SDF

parameter estimate θ̂∗.

Let us now characterize estimator f̂ ∗ in terms of the first-order condition. We start by defining the
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functional Lagrangian corresponding to the criterion and the restrictions:

L := DT (f, f̂)− ωTλ′g(θ̂∗, f)− ωTν ′0Ef [ΓU(Xt+1; θ̂∗)|Xt = x0]− ωTµ0

∫
X
f(x|x0)dx

−
∫
X
f̂X(x)ν(x)′Ef [ΓU(Xt+1; θ̂∗)|Xt = x]dx−

∫
X
f̂X(x̃)µ(x̃)

∫
X
f(x|x̃)dxdx̃. (2.26)

Vectors λ := [λ1 . . . λN ]′ ∈ RN and ν0 := [ν0,1 ν0,2]′ ∈ R2 are the Lagrange multiplier vectors for

the local derivative and capital market restrictions at t0, respectively, while ν(.) := [ν1(.) ν2(.)]′ is a

bivariate functional Lagrange multiplier vector for the uniform no-arbitrage restrictions. The scalar

µ0 is a Lagrange multiplier for the local unit mass constraint
∫
X
f(x|x0)dx = 1 and the Lagrange

multiplier scalar function µ accounts for the unit mass constraint
∫
X
f(x|x̃)dx = 1, that holds for

all x̃ ∈ X . The multipliers λ, ν0 and µ0 in Equation (2.26) are multiplied by the weight ωT , and

functions ν and µ by f̂X , to simplify the expressions of the estimators. The differential of the functional

Lagrangian L w.r.t. the historical transition density f is equal to zero at f̂ ∗:

δL|f=f̂∗ = 0. (2.27)

The differential of the functional Lagrangian is derived in Appendix 4.5 by using Proposition 2. By

solving the first-order condition in Equation (2.27), we deduce the next Proposition 3.

Proposition 3. Under Assumptions 1-4, the estimator f̂ ∗ of the historical transition density and the

estimators λ̂, ν̂0 and ν̂(.) of the Lagrange multiplier vectors are such that

f̂ ∗(x|x̃) =



f̂(x|x0) exp
(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
∫
X
f̂(x|x0) exp

(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
dx
, if x̃ = x0,

f̂(x|x̃) exp
(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
∫
X
f̂(x|x̃) exp

(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
dx

, if x̃ 6= x0,

(2.28)

and 
Ef̂∗

[
γS(Xt+1; θ̂∗, f̂ ∗)

∣∣∣Xt = x0

]
= 0,

Ef̂∗

[
ΓU(Xt+1; θ̂∗)

∣∣∣Xt = x
]

= 0, for a.e. x ∈ X ,
(2.29)

where the vector function γL is defined by

γL(x, x̃; θ, f) := m(x; θ) · [γ2,1(x, x̃; θ, f) . . . γ2,N(x, x̃; θ, f)]′, (2.30)
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for functions γ2,j in Equation (2.17).

Proof. See Appendix 4.5.

The estimator f̂ ∗ of the historical transition density in Proposition 3 is an exponential tilting trans-

formation of the kernel estimator f̂ . When the conditioning value for the historical transition density

is x0, the tilting in Equation (2.28) involves the moment function ΓU of the uniform capital market

restrictions as well as the vector γS with the short-term components of the Frechét derivatives of the

constraints for the options. Otherwise, the tilting involves moment vector ΓU and vector γL, which is

the analogue of vector γS for the long-term components of the Frechét derivatives of the constraints

for the options. The constraints in System (2.29) are empirical counterparts of the constraints in Sys-

tem (2.11). Moreover, the estimator f̂ ∗ is defined implicitly by Equation (2.28) and System (2.29).

Indeed, the vector functions γS and γL involve the estimator f̂ ∗ itself. Proposition 3 extends the

results in Kitamura and Stutzer [1997] and Kitamura, Tripathi and Ahn [2004], where information

based GMM estimators for models with unconditional, respectively conditional, moment restrictions

are considered. In these articles, the tilting function involves the orthogonality function defining the

(conditional) moment restrictions, which is independent of the transition f .

Proposition 3 suggests an iterative algorithm to compute numerically estimator f̂ ∗ and the estima-

tors λ̂, ν̂0 and ν̂(·) of the Lagrange multipliers. The algorithm is as follows:

I) In a preliminary step, we select an initial consistent estimator for f , e.g. f̂ ∗(0) = f̂ based on

λ̂(0) = 0, ν̂(0)
0 = 0 and ν̂(0) = 0.

II) We compute functions γS(x; θ̂∗, f̂ ∗(0)) and γL(x, x̃; θ̂∗, f̂ ∗(0)).

III) We compute λ̂(1) and ν̂(1)
0 as

[
λ̂(1)′ ν̂

(1)′
0

]′
= arg min

λ,ν0

log Ef̂

[
exp

(
ν ′0ΓU(Xt+1; θ̂∗) + λ′γS(Xt+1; θ̂∗, f̂ ∗(0))

)∣∣∣Xt = x0

]
.

IV) We compute ν̂(1)(x̃) for any x̃ 6= x0 as

ν̂(1)(x̃) = arg min
ν

log Ef̂

[
exp

(
ν ′ΓU(Xt+1; θ̂∗) +

ωT

f̂X(x̃)
λ̂(1)′γL(Xt+1, Xt; θ̂

∗, f̂ ∗(0))

)∣∣∣∣∣Xt = x̃

]
.

V) We derive an updated estimator f̂ ∗(1) for f from Equation (2.28) using λ̂(1), ν̂(1)
0 and ν̂(1).

VI) We repeat steps II)-V), by replacing f̂ ∗(0), λ̂(0), ν̂(0)
0 , ν̂(0) with f̂ ∗(1), λ̂(1), ν̂(1)

0 , ν̂(1), and then

iterate the algorithm until convergence.
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The steps III) and IV) are similar to the computation of the Lagrange multipliers in information theo-

retic estimation of moment restrictions models (see e.g. Kitamura and Stutzer [1997] and Kitamura,

Tripathi and Ahn [2004]). The Lagrange multipliers (λ̂, ν̂0) and ν̂ are updated sequentially to ease the

computation. The proof of the numerical convergence of this algorithm is beyond the scope of this

chapter. In the Monte Carlo experiment in Section 2.5 we observe convergence after a few iterations

in most of the replications.

The estimator defined in Proposition 3 can be extended to the case where ωT = 0, that is, when

the local component in criterion (2.25) gets a zero weight. In such a case, the estimator in Systems

(2.28)-(2.29) admits a simple interpretation. Estimate f̂ ∗(·|x̃) is the conditional density which is the

closest to the kernel estimator f̂(·|x̃) in terms of distance dKL(·, ·|x̃) and satisfies the capital and

derivative market restrictions at x̃, if x̃ = x0, and the capital market restrictions at x̃, otherwise.20

The computation of the estimated conditional densities at different conditioning points x̃ can be done

separately.

Finally, while our two-step approach may yield asymptotically inefficient estimates, the joint op-

timization w.r.t. θ and f combined with the grid methods used to evaluate the constraint vector (see

Section 2.5.2) is numerically challenging.

2.3.4 The estimators of functionals of the historical transition density

By the plug-in principle, the estimators θ̂∗ and f̂ ∗ in Definitions 3 and 4 can be used to introduce

semi-parametric estimators for a class of Rr-valued Fréchet differentiable functionals a of the SDF

parameter θ and the historical transition density f . These functionals are characterized by the first-

order expansion around the true parameters value (θ0, f0):

a(θ, f) = a(θ0, f0) +∇θ′a(θ0, f0) (θ − θ0) + 〈Da(θ0, f0),∆f〉+O
(
‖∆f‖2

∞ + ‖θ − θ0‖2
)
,

(2.31)

for ∆f = f − f0, such that the Fréchet derivative of a(θ0, .) w.r.t. f in direction ∆f at f0 can be

written in the form

〈Da(θ0, f0),∆f〉 =

∫
X
αS(x)∆f(x|x?)dx+

∫
X
fX(x̃)

∫
X
αL(x, x̃)∆f(x|x̃)dxdx̃, (2.32)

for some given state variables vector x? ∈ X and Rr-valued functions αS and αL.

20This estimator corresponds to a particular solution of the minimization problem in Definition 4.
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Definition 5. The semi-parametric estimator of the true value a0 := a(θ0, f0) of the Rr-valued func-

tional a is defined as â∗ := a(θ̂∗, f̂ ∗), where θ̂∗ is given in Definition 3 and f̂ ∗ in Definition 4.

We exploit Equations (2.31)-(2.32) to derive the large sample properties of estimator â∗ in Section 2.4.

The class of functionals defined by Equations (2.31)-(2.32) contains several functionals of interest

for financial applications. We provide three examples for which we characterize functions αS and αL.

i) The American put option-to-stock price ratio

From Equation (2.7) we write the American put option-to-stock price ratio for given time-to-maturity

h?, moneyness strike k? and state variables vector x? as

a(θ, f) = Ah?θ,f [v(0, .)](y?), y? = [k? x?′]′.

Proposition 2 shows that this functional satisfies Equations (2.31) and (2.32) with

αS(x) = m(x; θ0)γ?1(x; θ0, f0), αL(x, x̃) = m(x; θ0)γ?2(x, x̃; θ0, f0)/ fX(x̃), (2.33)

where functions γ?1 and γ?2 are defined as γ1,j and γ2,j in Equations (2.13) and (2.17) by setting j = 1,

h1 = h? and y1 = y?. Then, Definition 5 gives the estimator of the American put option-to-stock price

ratio. The continuation value is computed through a nonparametric regression w.r.t. the transition

density f̂ ∗ adjusted for risk by means of the SDF m(·; θ̂∗).

ii) The exercise boundary

For given time-to-maturity h? and state variables vector x?, the critical moneyness k?θ,f is the solution

of the equation Ah?θ,f [v(0, .)](k?θ,f , x
?) =

(
k?θ,f − 1

)+ and depends on (θ, f). This defines a functional

a(θ, f) = k?θ,f , which satisfies Equations (2.31) and (2.32) with

αS(x) =
m(x; θ0)γ?1(x; θ0, f0)

1−∇kv(h?, y?)
, αL(x, x̃) =

m(x; θ0)γ?2(x, x̃; θ0, f0)

(1−∇kv(h?, y?))fX(x̃)
,

where functions γ?1 and γ?2 are as in Equations (2.33) and y? = [k?θ0,f0
x?′]′. By considering the

estimator a(θ̂∗, f̂ ∗) for different values of x?, we get an estimator of the critical region.

iii) Term structure of conditional historical and risk-neutral moments

Let ψ(Xt+h? ; θ) be a function of the state variables at horizon h? and of the SDF parameter. Let us

consider the functional defined by

a(θ, f) = Ef [ψ(Xt+h? ; θ)|Xt = x?] .
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The h?-day conditional expectation in the RHS involves the one-day transition density f only because

of the Law of Iterated Expectations and the Markov property. Functional a satisfies Equations (2.31)

and (2.32) with

αS(x) = E0 [ψ(Xt+h? ; θ0)|Xt+1 = x] , αL(x, x̃) =
h?∑
l=2

E0 [ψ(Xt+h? ; θ0)|Xt+l = x]
fXt+l−1|Xt(x̃|x?)

fX(x̃)
.

The historical conditional moment generating function corresponds to ψ(Xt+h? ; θ) =

exp (urt+h? + v′σt+h?), with u ∈ R and v ∈ Rd−1. The historical first conditional moments and cross-

moments of the one-day stock return and volatility factor correspond to ψ(Xt+h? ; θ) = rmt+h?σ
n
t+h? ,

with m ∈ N and multi-index n ∈ Nd−1. The risk-neutral counterparts of these functionals are

obtained when the functions ψ(Xt+h? ; θ) above are multiplied by the multi-day SDF Mt,t+h? =

Mt,t+1 · · ·Mt+h?−1,t+h? . In particular, when the underlying asset volatility is included in vector σt,

the conditional historical (resp. risk-neutral) cross-moments are the basis for the estimation of the

conditional historical (resp. risk-neutral) leverage effects.

2.4 Large sample properties of the estimators

In this section we study the large sample properties of the semi-parametric estimators introduced in

Section 2.3. The asymptotics is for a long time-series of observations of the state variables, i.e. T →
∞, and a fixed number N of cross-sectionally observed option prices. We use the following notation:

Γ̄U(x) := m(x; θ0)[er 1]′, γ̄S(x) := m(x; θ0)[γ1,1(x; θ0, f0) . . . γ1,N(x; θ0, f0)]′,

Γ̄S(x) := [γ̄S(x)′ Γ̄U(x)′]′, Γ̄L(x, x̃) := [γL(x, x̃; θ0, f0)′ 0 0]′/fX(x̃), (2.34)

ΓS(x) := [γS(x; θ0, f0)′ ΓU(x; θ0)′]′, ΓL(x, x̃) := Γ̄L(x, x̃)− E0

[
Γ̄L(Xt+1, Xt)

∣∣Xt = x̃
]
,

where functions ΓU , γS , γ1,j , for j = 1, ..., N , and γL are defined in Equations (2.12), (2.13) and

(2.30).

2.4.1 The cross-sectional estimator of the SDF parameter

Let us consider the cross-sectional estimator θ̂ in Definition 2. Under the regularity conditions in Ap-

pendix 4.1, the criterionQT (θ) converges uniformly to the limit criterionQ0(θ) = G(θ, f0)′Ω0G(θ, f0),

where Ω0 := plim
T→∞

ΩT is a symmetric (N + 2)× (N + 2) matrix assumed to be positive-definite. Let

us assume the global identification of parameter θ0 w.r.t. the population constraint vector G(θ, f0).

Assumption 5. The unique element θ ∈ Θ such that G(θ, f0) = 0 is θ = θ0.
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Under Assumption 5 the limit criterion Q0 is uniquely minimized by θ0. By the consistency theo-

rem for minimum distance estimators (see Theorem 2.1 in Newey and McFadden [1999]) we get the

following result.

Proposition 4. Under Assumptions 1-5 and A 1-10 in Appendix 4.1, estimator θ̂ is consistent, i.e.

θ̂
P→ θ0 .

Proof. See Appendix 4.6.1.

Let us now prove the asymptotic normality of estimator θ̂. The criterion function QT (θ) is not

everywhere differentiable on Θ because of the maximum operator inAθ,f̂ (see Equation (2.23)). How-

ever, by using Proposition 2, the consistency of kernel estimator f̂ and the fact that the N options are

in the continuation region at t0, we show in Appendix 4.6.2 that the criterion QT (θ) is differentiable

w.r.t. any θ in an open neighborhood of θ0, with probability approaching 1 (w.p.a. 1). Since estimator

θ̂ is consistent (Proposition 4), this is enough to apply the standard approach to prove the asymptotic

normality of extremum estimators as in Newey and McFadden [1999]. For this purpose, we assume

local identification of parameter θ0 w.r.t. the population constraint vector G(θ, f0).

Assumption 6. The (N + 2)× p matrix J0 := ∇θ′G(θ0, f0) is full column-rank.

From Equation (2.22) and Proposition 2 the Jacobian matrix is J0 = JS + JL, where

JS := E0

[
Γ̄S(Xt+1)∇θ′ log (m(Xt+1; θ0))|Xt = x0

]
,

JL := E0

[
Γ̄L (Xt+1, Xt)∇θ′ log (m(Xt+1; θ0))

]
.

(2.35)

Moreover, in Appendix 4.6.2 we derive the following asymptotic expansion of the estimator θ̂:

√
ThdT

(
θ̂ − θ0

)
= (J ′0Ω0J0)

−1
J ′0Ω0

√
ThdTG(θ0, f̂) + op(1). (2.36)

The last two components of vector G(θ0, f̂) are equal to
∫
X

Γ̄U(x)∆f̂(x|x0)dx. We derive an asymp-

totic expansion for the other components by using Equation (2.14) and Proposition 2. We get (see

Appendix 4.6.2)

√
ThdTG(θ0, f̂) =

√
ThdT

∫
X

Γ̄S(x)∆f̂(x|x0)dx

+
√
ThdT

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃+ op(1). (2.37)
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We plug Equation (2.37) into Equation (2.36) and use the asymptotic normality of the integrals of

kernel estimators (see Aı̈t-Sahalia [1992]) to deduce the next Proposition 5.

Proposition 5. Under Assumptions 1-6 and A 1-10 in Appendix 4.1, estimator θ̂ is asymptotically

normal with
√
ThdT -rate of convergence:

√
ThdT

(
θ̂ − θ0

)
D→ N

(
0,

K
fX(x0)

Σθ

)
,

for the constant K :=

∫
X
K2(x)dx and where the p× p matrix Σθ is defined as

Σθ := (J ′0Ω0J0)
−1
J ′0Ω0ΣS(x0)Ω0J0 (J ′0Ω0J0)

−1 (2.38)

and the (N + 2)× (N + 2) matrix ΣS(x0) as ΣS(x0) := V0

[
Γ̄S(Xt+1)|Xt = x0

]
, with V0 [.|Xt = x0]

denoting the conditional variance under the true historical probability measure given Xt = x0.

Proof. See Appendix 4.6.2.

The convergence rate of estimator θ̂ is d-dimensional nonparametric due to the conditioning on Xt =

x0 in the constraints. Moreover, the bias in the asymptotic distribution is negligible under the band-

width conditions in Assumption A 6 in Appendix 4.1. The matrix J0, that is the sum of the matrices

defined in Equations (2.35), and the matrix Σθ in Equation (2.38) are reminiscent of the Jacobian and

the asymptotic variance-covariance matrices of the moment function in the classical GMM setting. The

matrix ΣS(x0) is the conditional variance-covariance matrix of vector function Γ̄S or, equivalently, of

ΓS . This matrix does not involve vector function Γ̄L since the second term in the RHS of Equation

(2.37) is asymptotically negligible. From the analogy with the classical GMM setting, Corollary 6

follows.

Corollary 6. The weighting matrix that minimizes the asymptotic variance-covariance matrix of θ̂ is

Ω0 = ΣS(x0)−1. The minimal asymptotic variance-covariance matrix is
K

fX(x0)
(J ′0ΣS(x0)−1J0)−1.

2.4.2 The XMM estimator of the SDF parameter

The XMM criterion in Definition 3 exploits both the uniform restrictions (2.8) and the restrictions

(2.21) at x0. The global and local identification conditions for parameter θ0 based on this extended set

of restrictions are given below in Assumptions 7 and 8, respectively.

Assumption 7. The unique θ ∈ Θ, such that G(θ, f0) = 0 and E0[ΓU(Xt+1; θ)|Xt = x] = 0 for a.e.

x ∈ X , is θ = θ0.
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Assumption 8. The unique β ∈ Rp, such that∇θ′G (θ0, f0) β = 0 and E0 [∇θ′ΓU (Xt+1; θ0) |Xt = x] β =

0 for a.e. x ∈ X , is β = 0.

Building on Gagliardini, Gouriéroux and Renault [2011], we distinguish between the linear trans-

formations of θ0 that are identifiable from the uniform restrictions (2.8) alone, and the linear trans-

formations of θ0 that are identifiable only when the local restrictions (2.21) at x0 are also taken into

account. The former are called full-information identifiable, the latter full-information unidentifiable.

More precisely, let us define the linear space:

J := {β ∈ Rp : E0 [∇θ′ΓU (Xt+1; θ0) |Xt = x] β = 0, for a.e. x ∈ X} , (2.39)

and let s ≤ p be the dimension of J . Let R = [R1 R2] be an orthogonal p × p matrix, such that

the columns of the p × s matrix R2 span J . Then, the invertible parameter transformation from θ to

η := [η′1 η
′
2]′, defined by  η1

η2

 =

 R
′
1θ

R
′
2θ

 , (2.40)

is such that the (p − s)-dimensional vector η1 involves full-information identifiable parameters only,

while the s-dimensional vector η2 involves full-information unidentifiable parameters only.

The asymptotic distribution of estimator θ̂∗ in Definition 3 is given in Proposition 7 below in terms

of the estimators η̂∗1 = R′1θ̂
∗ and η̂∗2 = R′2θ̂

∗ of the transformed parameters. Let Ω0 := plim
T→∞

ΩT and

Ω̃0(x) := plim
T→∞

Ω̃T (x), for any x ∈ X , be the limit weighting matrices. We prove in Appendix 4.6.3

that the asymptotically optimal weighting matrices are Ω0 = ΣS(x0)−1 and Ω̃0(x) = ΣU(x)−1, where

ΣU(x) := V0[ΓU(Xt+1; θ0)|Xt = x], for any x ∈ X . We state the result directly for this choice.

Proposition 7. Under Assumptions 1-4, 7, 8 and A 1-11 in Appendix 4.1, estimators η̂∗1 and η̂∗2 with

Ω0 = ΣS(x0)−1 and Ω̃0(x) = ΣU(x)−1, for any x ∈ X , are consistent, asymptotically normal and

independent, such that

√
T (η̂∗1 − η1,0)

D−→ N
(

0,
(
R′1E0

[
J̃0(Xt)

′
ΣU(Xt)

−1J̃0(Xt)
]
R1

)−1
)
,

and √
ThdT (η̂∗2 − η2,0)

D−→ N
(

0,
K

fX (x0)

(
R′2J

′

0ΣS (x0)−1 J0R2

)−1
)
,

where J̃0(x) := E0 [∇θ′ΓU (Xt+1; θ0) |Xt = x], matrices R1 and R2 are defined in (2.40) and η1,0, η2,0

denote the true values of parameters η1, η2.

Proof. See Appendix 4.6.3.
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The components of estimator θ̂∗ feature different rates of convergence, that are the parametric

rate
√
T for the full-information identifiable components, and the nonparametric rate

√
ThdT for the

full-information unidentifiable components. Mixed-rates asymptotics are obtained also in a condi-

tional moment restrictions setting with weak identification (see Stock and Wright [2000] and Antoine

and Renault [2010]). The asymptotic variance-covariance matrix of estimator η̂∗1 is the asymptotic

efficiency bound for estimating parameter η1,0 from the uniform moment restrictions assuming η2,0

known (see Chamberlain [1987]). The asymptotic variance-covariance matrix of estimator η̂∗2 equals

the minimal asymptotic variance-covariance matrix of the unfeasible cross-sectional estimator of pa-

rameter η2,0 assuming η1,0 known (see Corollary 6). Moreover, the estimators of the parameters η1,0

and η2,0 are asymptotically independent. Comparing Corollary 6 and Proposition 7 we understand that

accounting for the uniform moment restrictions (2.8) allows us to increase the rate of convergence of

the full-information identifiable parameters and to decrease in general the asymptotic variance of the

full-information unidentifiable parameters.

2.4.3 The estimator of the historical transition density and of its functionals

Let us now consider the estimator f̂ ∗ in Definition 4. We derive its asymptotic distribution by con-

sidering a linearization of the tilting function in Equation (2.28) in a neighborhood of (θ0, f0). Under

Assumption A 12 in Appendix 4.1 the weight ωT converges to the non-negative scalar ω. We get (see

Appendix 4.6.4)

f̂ ∗(x|x̃) '


f̂(x|x0) + f0(x|x0)Λ̂′ΓS(x), if x̃ = x0,

f̂(x|x̃) + f0(x|x̃)
(
ν̂(x̃)′ΓU(x; θ0) + ωΛ̂′ΓL(x, x̃)

)
, if x̃ 6= x0,

(2.41)

where Λ̂ = [λ̂′ ν̂ ′0]′. We prove in Appendix 4.6.4 that the estimators of the Lagrange multipliers Λ̂ and

ν̂(x̃) for x̃ 6= x0 converge in probability to zero at rate 1/
√
ThdT . Thus, we get

f̂ ∗(x|x̃) = f̂(x|x̃) +Op

(
1/
√
ThdT

)
, (2.42)

for any x, x̃ ∈ X . The remainder term is dominated by the convergence rate 1/
√
Th2d

T of the ker-

nel estimator. Hence, estimators f̂ ∗ and f̂ are pointwise asymptotically equivalent, and we get the

following Proposition 8.

Proposition 8. Under Assumptions 1-4, 7, 8 and A 1-12 in Appendix 4.1, the estimator f̂ ∗ is pointwise
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asymptotically normal with
√
Th2d

T -rate of convergence:

√
Th2d

T

(
f̂ ∗(x|x̃)− f0(x|x̃)

)
D→ N

(
0,
K2f0(x|x̃)

fX(x̃)

)
, (2.43)

for any x, x̃ ∈ X , where the kernel constant K is defined in Proposition 5.

Proof. See Appendix 4.6.4.

The asymptotic distribution of the estimators of smooth functionals of f0 and θ0 based on f̂ ∗ and

f̂ differ. We give below the asymptotic distribution of estimator â∗ introduced in Definition 5 for the

case where x? = x0 in Equation (2.32). This corresponds for instance to American put option-to-

stock price ratios, exercise boundary and conditional cross-moments of the state variables for the state

variables vector x0 at the current date (see the examples i)-iii) in Section 2.3.4). The derivation of this

asymptotic distribution is based on the asymptotic expansion obtained from Equation (2.31):

â∗−a0 = ∇θ′a(θ0, f0)
(
θ̂∗ − θ0

)
+
〈
Da(θ0, f0),∆f̂ ∗

〉
+Op

(
‖∆f̂ ∗‖2

∞

)
+Op

(
‖θ̂∗ − θ0‖2

)
, (2.44)

where the Fréchet derivative
〈
Da(θ0, f0),∆f̂ ∗

〉
is given in Equation (2.32) with ∆f = ∆f̂ ∗ :=

f̂ ∗ − f0. Since we expect a nonparametric convergence rate for â∗, estimation of the SDF parameter

affects the asymptotic distribution of â∗ only through estimation of the full-information unidentifiable

component η2 (see Proposition 7). The relevant asymptotic expansion is

√
ThdT

(
θ̂∗ − θ0

)
= −R2

(
R′2J

′
0ΣS(x0)−1J0R2

)−1
R′2J

′
0ΣS(x0)−1

√
ThdTG(θ0, f̂) + op(1), (2.45)

where we use the asymptotically optimal weighting matrix ΣS(x0) (see Appendix 4.6.4). We plug

Expansions (2.37), (2.41) and (2.45) into Equation (2.44), and use the asymptotic normality of integral

transformations of kernel estimators (see Aı̈t-Sahalia [1992]). To state the result, we introduce some

notation. We define the following conditional variance-covariance matrices under the true historical

probability measure:

Σαj ,i(x) := Cov0 [αj(Xt+1),Γi(Xt+1, Xt)|Xt = x] ,

Σi,l(x) := Cov0 [Γi(Xt+1, Xt),Γl(Xt+1, Xt)|Xt = x] ,

(2.46)

for the subscript j = S, L, the subscripts i, l = S, L, U and the state variables vector x ∈ X .21 We

21Even if functions ΓS and ΓU are independent of the lagged value of the state variables, we use Equations (2.46) for a
compact notation. We also omit the dependence of ΓU on θ0.
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further define the matrix

Σi,j⊥l(x) := Σi,j(x)− Σi,l(x)Σl(x)−1Σl,j(x), (2.47)

for the subscripts i, j, l = αS, αL, S, L, U and x ∈ X , that is the conditional covariance between the

vector subscripted by i and the residual of the projection of the vector subscripted by j onto the vector

subscripted by l. We set Σi ≡ Σi,i and Σi⊥j ≡ Σi,i⊥j for the conditional variances and the conditional

variances of the projection residuals, respectively. Moreover we consider the Jacobian matrix

JαL‖U := E0

[
ΣαL,U(Xt)ΣU(Xt)

−1Γ̄U(Xt+1)∇θ′ log (m(Xt+1; θ0))
]
,

that corresponds to the unconditional cross-second moment between ∇θ′ logm and the conditional

orthogonal projection of αL onto Γ̄U , and the Jacobian matrix

JL⊥U := E0

[(
Γ̄L (Xt+1, Xt)− ΣL,U(Xt)ΣU(Xt)

−1Γ̄U (Xt+1)
)
∇θ′ log (m(Xt+1; θ0))

]
,

that corresponds to the unconditional cross-second moment between ∇θ′ logm and the residual of the

conditional orthogonal projection of Γ̄L onto Γ̄U .

Proposition 9. Under Assumptions 1-4, 7, 8 and A 1-12 in Appendix 4.1, the estimator â∗ for x? = x0

is asymptotically normal with
√
ThdT -rate of convergence:

√
ThdT (â∗ − a0)

D−→ N
(

0,
K

fX(x0)
Σa

)
,

where the r × r matrix Σa is defined as

Σa := ΣαS⊥S(x0) +M0(ω)ΣS(x0)M0(ω)′, (2.48)
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constant K is defined in Proposition 5, and matrix M0(ω) is defined as

M0(ω) := ω

(
ΣαS ,S (x0)

(
ΣS (x0) + ωE0 [ΣL⊥U (Xt)]

)−1

E0 [ΣL⊥U(Xt)] ΣS (x0)−1

−E0 [ΣαL,L⊥U(Xt)]
(

ΣS (x0) + ωE0 [ΣL⊥U(Xt)]
)−1
)

+

((
ΣαS ,S (x0) + ωE0 [ΣαL,L⊥U (Xt)]

)(
ΣS (x0) + ωE0 [ΣL⊥U (Xt)]

)−1

·(JS + JL⊥U) + JαL‖U −∇θ′a(θ0, f0)

)
R2

(
R′2J

′
0ΣS(x0)−1J0R2

)−1
R′2J

′
0ΣS(x0)−1,

(2.49)

where ω is the probability limit of weight ωT in Definition 4.

Proof. See Appendix 4.6.4.

If the SDF parameter θ0 is full-information identifiable, that is, the linear space J is null and

R2 = 0, the term in the third and fourth line in the RHS of Equation (2.49) is zero. Then, the asymptotic

variance of estimator â∗ is minimized for ω = 0, that is, when the criterion DT in Equation (2.25) does

not account asymptotically for the local Kullback-Leibler divergence at x0. We get Σa = ΣαS⊥S(x0),

which is the conditional variance of the residual of the orthogonal projection of αS onto ΓS given x0.

To get the intuition, suppose that functional a is the conditional expectation of function αS with true

value a0 = E0[αS(Xt+1)|Xt = x0]. Then, when ω = 0 the estimator â∗ is asymptotically equivalent

to the unfeasible estimator
∫
X
αS(x)f̃ ∗(x|x0)dx, where

f̃ ∗(·|x0) = arg min
f∈F0

dKL(f, f̂ |x0) s.t.

∫
X

ΓS(x)f(x|x0)dx = 0,

and F0 denotes the set of transition densities given x0. A similar interpretation is given for the

estimation of a moment under a moment restriction by Brown and Newey [1998] in an uncondi-

tional setting, and by Antoine, Bonnal and Renault [2007] in a conditional setting. The matrix
K

fX(x0)
[ΣαS(x0) − ΣαS⊥S(x0)] is the efficiency gain from the information in the local no-arbitrage

restrictions. Moreover, estimation of parameter θ0 has no effect on the accuracy of estimator â∗.

If some components of the SDF parameter θ0 are full-information unidentifiable and ω > 0, matrix

M0(ω)ΣS(x0)M0(ω)′ in the RHS of Equation (2.48) is the contribution to the asymptotic variance

of estimator â∗ from including the local Kullback-Leibler divergence at x0 in the criterion DT and

estimating the SDF parameter θ0. The matrix M0(ω)ΣS(x0)M0(ω)′ involves conditional variances
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and covariances of the residual of the orthogonal projection of ΓL onto ΓU because of the interaction

between local and uniform restrictions in the constrained optimization of criterion DT . For a scalar

functional a, the asymptotic weight ω can be selected in order to minimize the asymptotic variance ma-

trix
K

fX(x0)
Σa.22 This optimal choice for ω is the solution of the problem min

ω≥0
M0(ω)ΣS(x0)M0(ω)′,

and depends in general on the functional of interest a.

Finally, let us apply Proposition 9 when the functional of interest a corresponds to the option-to-

stock price ratio at date t0 of an American put option with time-to-maturity h? and moneyness strike

k?. From example i) in Section 2.3.4, the asymptotic variance of the estimator â∗ is obtained by using

αS and αL defined in Equations (2.33), and setting∇θ′a(θ0, f0) = JS? + JL? , where matrices JS? , JL?

are defined as in Equations (2.35) by replacing Γ̄S and Γ̄L by αS and αL, respectively.

2.5 Monte Carlo experiment

In this section we investigate the finite sample properties of the estimators in a Monte Carlo exper-

iment. We consider a scalar volatility factor σt (i.e. d = 2) representing the volatility of the stock

return. We describe the DGP in Section 2.5.1, the numerical implementation in Section 2.5.2 and the

results in Section 2.5.3.

2.5.1 The design

Under the historical probability measure P , the process (rt) is such that

rt = rf + γσ2
t + σtεt, εt

i.i.d.∼ N
(
0, 1
)
, (2.50)

where γ ≥ 0 is the variance-in-mean parameter. The daily risk-free rate rf is constant and equal to

2 · 10−4. The stochastic variance σ2
t follows an Autoregressive Gamma (ARG) Markov process of

order 1 (Gouriéroux and Jasiak [2006]), which is the discrete-time counterpart of the Cox-Ingersoll-

Ross process (Cox, Ingersoll and Ross [1985]). The historical transition density of σ2
t is defined by

the conditional Laplace transform

E0[exp (−uσ2
t )
∣∣σ2

t−1] = exp
(
−ϕ1(u)σ2

t−1 − ϕ2(u)
)
, u ≥ 0, (2.51)

22Weighting matrix Ω0 is considered as given and equal to Ω0 = ΣS(x0)−1, which is asymptotically optimal for the

estimation of θ0. The asymptotic variance
K

fX(x0)
Σa could be minimized by optimizing jointly w.r.t. ω and Ω0, but the

optimization problem becomes more difficult. We do not consider this alternative approach.
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c ρ δ γ
3.65 · 10−6 9.60 · 10−1 1.05 3.60 · 10−1

θ1 θ2 θ3 θ4

4.55 · 10−7 −5.90 · 10−2 1.14 · 10−1 8.60 · 10−1

Table 1: The values of the historical and SDF parameters of the DGP.

where the functions ϕ1 and ϕ2 are defined as ϕ1(u) = ρu/ (1 + cu) and ϕ2(u) = δ log (1 + cu) for

parameters c, δ > 0 and ρ ∈ [0, 1). We consider a 4-dimensional SDF parameter θ = [θ1 θ2 θ3 θ4]′ and

an exponential affine one-day SDF:

Mt,t+1(θ) = exp (−rf ) exp
(
−θ1 − θ2σ

2
t+1 − θ3σ

2
t − θ4 (rt+1 − rf )

)
. (2.52)

Parameters θ2 and θ4 are related to the risk premia associated with the stochastic volatility and the

excess return of the stock, respectively. Exponential affine SDF specifications are common in reduced-

form modeling (see e.g. Duffie, Pan and Singleton [2000], Duffie, Filipovic and Schachermayer [2003]

and Gouriéroux and Monfort [2007]). Under the above DGP, the historical transition density of Xt

given Xt−1 is independent of rt−1. In this case, the conditioning set for option valuation gets smaller.

Corollary 10. When the density ofXt givenXt−1 is independent of rt−1 under P , Proposition 1 holds

with Yt = [kt σ
′
t]
′.

Thus, under the above DGP, the option-to-stock price ratio at time t depends on time-to-maturity h,

moneyness strike kt and volatility σt only. Moreover, in the Definitions 2-3 and in Equations (2.28)-

(2.29), the conditioning variable Xt is replaced by σt. The parametric specification for the DGP is

similar to the example considered in Gagliardini, Gouriéroux and Renault [2011]. They show that

the SDF in Equation (2.52) is admissible for the DGP defined in (2.50)-(2.51). More specifically, the

no-arbitrage conditions for the stock and the non-defaultable bond are satisfied, i.e.

E0 [Mt,t+1(θ0)ert+1|σt = σ] = 1, E0 [Mt,t+1(θ0)erf |σt = σ] = 1, for all σ ∈ R+,

if, and only if, the true parameter value θ0 = [θ0
1 θ0

2 θ0
3 θ0

4]′ is such that θ0
1 = −ϕ2(ξ), θ0

3 = −ϕ1(ξ)

and θ0
4 = 1/2 +γ, where ξ = θ0

2 +γ2/2− 1/8. We report in Table 1 the chosen values of the historical

and SDF parameters. They satisfy the constraints described above and are chosen on the base of a

calibration to real data on liquid assets.

Having presented the parametric family to which the DGP belongs, let us now describe the data

we create. We generate 1000 time series of returns and volatility with length T = 1000 from date
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Figure 2.1: The cross-section of American option-to-stock price ratios at t0 as a function of the mon-
eyness strike, for time-to-maturity h = 20 days. The value of the volatility of the stock at the current
date is 6.50 ·10−3. The values of the historical and SDF parameters are given in Table 1. The solid line
is the true American option-to-stock price ratio function for the selected DGP. The dashed line is the
early exercise-to-stock price ratio. The crosses are the observed American option-to-stock price ratios.
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k1 k2 k3 k4 k5 k6 k7 k8

0.966 0.976 0.983 0.991 0.997 1.007 1.011 1.031

Table 2: The values of the moneyness strikes for the available options at t0.

t0 − T + 1 to current date t0. The volatility σ0 at date t0 is the same across simulations and is equal to

6.50 · 10−3. For this value of volatility, we consider the cross-section of American put option-to-stock

price ratios with time-to-maturity h = 20. We display this cross-section as a function of the moneyness

strike by a solid line in Figure 2.1. We compute it by recursive valuation, using the estimate of the

transition density of the state variables obtained by kernel estimation on a very long simulated time

series of the state variables. From the full cross-section of American put option-to-stock price ratios,

we select N = 8 values, with different moneyness strike kj , for j = 1, . . . , 8, as reported in Table 2.

We display these American put option-to-stock price ratios by crosses in Figure 2.1. For each Monte

Carlo replication, the data available to the econometrician are a different time series of state variables

and the same 8 selected American put option-to-stock price ratios. This simulation design reflects the

analysis in previous sections, where x0 (that in the Monte Carlo experiment reduces to σ0) is assumed

constant and given.

We assume that the econometrician does not know the true DGP under P described in (2.50)-

(2.51) but is aware of the parametric specification of the SDF in Equation (2.52) and the Granger

non-causality of rt−1 on Xt, so that she can use Corollary 10. We then estimate the model parameters

and some American put option-to-stock price ratios for each Monte Carlo replications. We start with

the estimation of parameter θ. In this semi-parametric setting, the full SDF parameter vector θ is not

full-information identifiable (see Gagliardini, Gouriéroux and Renault [2011]). The linear space J
defined in (2.39) is one-dimensional and spanned by vector r2 = [−δc/(1 + cξ), 1,−ρ/(1 + cξ)2, 0]′.

Thus, the SDF parameter θ4 is full-information identifiable, while parameters θ1, θ2 and θ3 are not.

We consider the cross-sectional and XMM estimators of the SDF parameter in Definitions 2-3 with

identity weighting matrices ΩT = IN+2 and Ω̃T = I2. The XMM estimator becomes

θ̂∗ = arg min
θ∈Θ

(
hT

∥∥∥G(θ, f̂)
∥∥∥2

+
1

T

T∑
t=1

∥∥∥Ef̂ [ΓU(Xt+1; θ)|σt]
∥∥∥2
)
. (2.53)

The cross-sectional estimator minimizes the first component of the criterion in the RHS of Equation

(2.53). We then pass to the estimation of the transition density of the state variables and compute the

estimator f̂ ∗ defined in Equations (2.28)-(2.29). Finally, we use the estimators θ̂∗ and f̂ ∗ to compute the

American put option-to-stock price ratios Ah?
θ̂∗,f̂∗

[v(0, .)](y?) for time-to-maturity h? = 20, volatility
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σ? = σ0 and moneyness strikes k? = 0.972, 0.986, 1.000, 1.030.

2.5.2 The numerical implementation

For given parameter θ, the computation of vector g(θ, f̂) in the criterion functions minimized by θ̂ and

θ̂∗ involves recursive applications of the pricing operator Aθ,f̂ to functions ϕ on the bi-dimensional

moneyness-volatility space Y ⊂ R2
+. To make the estimation procedure feasible, functions ϕ are

evaluated on a finite grid with Nk × Nσ grid points on the subset [klow, khigh] × [σlow, σhigh] of

Y . The conditional expectation w.r.t. f̂ in the definition of operator Aθ,f̂ (see Equation (2.23) )

is computed by a Nadaraya-Watson estimator. We take the Gaussian kernel with bandwidth hT =

0.9 min {s, Rq/1.34}T−
1
5 as suggested in Silverman [1986], where s andRq denote the sample volatil-

ity and interquartile range of the observations σt, respectively. When the computation of Aθ,f̂ [ϕ] re-

quires to evaluate function ϕ on a point (k, σ) within [klow, khigh]× [σlow, σhigh] but outside the grid,

the nearest grid point is selected. When k < klow we set ϕ(k, σ) = 0 and when σ < σlow the nearest

grid point is selected. When k > khigh and/or σ > σhigh we use a linear extrapolation procedure.

The use of a finite subset of Y and a finite grid introduce a numerical error, that becomes negligible

as σlow, klow → 0, σhigh, khigh → ∞ and Nk, Nσ → ∞. In the Monte Carlo experiment, we use

Nk = 300 and Nσ = 30 grid points and we set klow = 0.8 and khigh = 1.2 for the moneyness strike

domain, while σlow and σhigh are set equal to the 1% and 99% quantiles of the volatility realizations

in the Monte Carlo repetition. The grid is homogeneous and such that the volatility at date t0 coin-

cides with one of the Nσ points that discretize [σlow, σhigh]. Increasing the domain or the fineness of

the grid w.r.t. our choice does not yield substantial accuracy improvements. We have implemented

our routines in FORTRAN. A commercial 2 GHz processor takes less than a second to evaluate the

American put-option-to stock ratios for h = 20 at all grid points. A numerical minimization of the

criterion in Equation (2.53) is then feasible in less than five minutes. We compute the estimator f̂ ∗ by

the iterative algorithm described in Section 2.3.3 with ωT = 0. At each iteration we use f̂ ∗ for the

estimation of the option-to-stock price ratios of interest. We take as convergence criterion the stability

of these ratios up to 10−5. Less than 10 iterations are enough in most of the Monte Carlo repetitions,

making the procedure feasible in less than five minutes.

2.5.3 The results

We show in Figure 2.2 the kernel smoothed density functions of the XMM estimators of the SDF

parameters. The estimators of parameters θ1, θ2 and θ3 feature small bias and their distributions are

slightly skewed. The skew is more pronounced for parameter θ3. The estimator of parameter θ4 is
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Figure 2.2: The distributions of the estimated SDF parameters. In each panel, the solid line corre-
sponds to the XMM estimator θ̂∗ with weighting matrices ΩT = IN+2 and Ω̃T (x̃) = I2, the dashed line
to the cross-sectional (CS) estimator θ̂ with weighting matrix ΩT = IN+2. The true parameter values
are displayed by the dashed vertical lines.
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downward biased. The estimated values of the parameters have the same sign as the true parameter

values (see Table 1) in most of the Monte Carlo repetitions. For comparison purpose we display in

Figure 2.2 also the smoothed density functions for the components of the cross-sectional estimator in

Definition 2 with identity weighting matrix ΩT = IN+2. The cross-sectional estimates feature larger

standard deviations than the XMM estimates. Hence, accounting for the uniform restrictions (2.8) im-

proves the accuracy of the SDF parameter estimator also in finite sample. The difference between the

XMM and cross-sectional estimators is larger for the full-information identifiable parameter θ4. The

two estimators have similar biases, but the distribution of the cross-sectional estimator features larger

variance and is more skewed and leptokurtic.23 These findings are compatible with the different rates

of convergence of the estimators of θ4, that are parametric for the XMM estimator and nonparametric

for the cross-sectional estimator (see Sections 2.4.1-2.4.2).

We show in Figure 2.3 the kernel smoothed density functions of the estimates of the American

option-to-stock prices for four moneyness strikes k? of interest. For k? = 0.972, 0.986, 1 the bias is

very small and the distribution is close to a Gaussian distribution. For moneyness strike k? = 1.030,

the distribution of the estimated option-to-stock price ratio still admits a peak close to the true value but

is truncated at the exercise value k? − 1 = 0.03. This truncation effect arises because some estimated

continuation values are below the exercise value. Truncation is negligible for the other moneyness

strikes that are far from the critical moneyness strike. For comparison purpose, we display in Figure

2.3 also the smoothed density functions of the estimates of the American option-to-stock price ratios

obtained using the kernel density f̂ as an estimator for the historical transition of the state variables.

This estimator accounts neither for the available option prices nor for the no-arbitrage restrictions on

stock and bond returns. The biases of the two estimators based on f̂ ∗ and f̂ are similar. However, for

each considered moneyness strike, the option price estimator based on f̂ ∗ features a smaller variance

than the estimator based on f̂ . This finding shows that incorporating the informational content of cross-

sectionally observed option prices and imposing the no-arbitrage restrictions for all assets improve

substantially the accuracy of the estimators of the option prices which are not currently observed on

the market.

23The bias of the XMM estimator of θ4 is −3.45 · 10−1, that of the cross-sectional estimator is −5.69 · 10−1.
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Figure 2.3: The distribution of the estimated American option-to-stock price ratios at t0 for time-to-
maturity h? = 20 days and four different moneyness strikes k?. In each panel, the solid line is the
distribution of the estimates when we use f̂ ∗ defined in Equations (2.28)-(2.29) for the estimation of
the American put pricing operator with ωT = 0. The dashed line is the distribution of the estimates
when we use f̂ defined in Equation (2.19). For k? = 0.972, 0.986, 1.000 the dashed vertical line
indicates the true value. For k? = 1.030 the dashed vertical line on the left indicates the exercise value
and the dashed vertical line on the right the true value. The peaks at the left vertical line correspond to
estimated option-to-stock price ratios equal to the exercise value.
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3 An Empirical Study of Stock and American Option Prices

Stock return and its volatility are stochastic. Investors try to understand the properties of their joint

process and require a compensation for the risks of a lower stock excess return and an higher stock

return volatility than expected. The research reported in this paper consists in an empirical analysis

of share prices and quotes for American options written on the shares. The study reaches two results

related to the investors’ behavior, without relying on any parametric specification of the dynamics of

stock return and its volatility. First, share prices and option quotes are both necessary to identify at the

same time the way investors discount future stock excess return and return variance to create prices.

Second, the estimates of some dynamic properties of stock return and its volatility are more stable over

time when an arbitrage-free pricing model is considered in the estimation procedure. The first finding

is consistent with the idea that equity traders are mostly interested in the stock excess return and option

traders in the underlying return volatility. The second finding is the result of adding structure to the

economic model considered in the estimation procedure. The novelty of the method employed in the

study is the fact that it does not depend on any parametric specification of the dynamics of stock return

and its volatility. Therefore, the study does not bear the risk of a wrong specification of this dynamics.

Share and option markets are analyzed as they were arbitrage-free and free of frictions, except

for the option bid-ask spread, with stock return and its volatility as state variables. Lower trading fre-

quency and volume in the derivative market than in the share one prevent from considering option trade

prices. The share and option markets are possibly incomplete and with several admissible stochastic

discount factors. To characterize the way investors discount the future realizations of stock excess

return and return variance and to uniquely identify equity and variance premia, only one Stochastic

Discount Factor (SDF) is assumed to be an exponential-affine function of the state variables. The study

is based on the estimation of the parameters appearing in this function and the historical dynamics of

the state variables in a discrete-time framework. Different estimation procedures, that do not rely on

any parametric specification of the state variables dynamics, either under the risk-neutral or historical

probability measure, are considered. The research focuses on daily IBM share closing prices at NYSE

from January 2006 to August 2008 and closing quotes for IBM American call and put options selected

among U.S. centralized markets in July and August 2008. The daily 1-month T-bill rate is considered

as the reference risk-free rate used by investors to compute excess stock returns. The data generating

process is assumed to be the same for the entire period, characterized by two distinct phases: a (rela-

tively) stable one, before July 2007, and a subsequent (relatively) volatile one. The two phases reflect

two distinct situations of (relative) stability and turmoil in financial markets. The period considered in

the study ends in September 2008 because the plunge of the IBM stock price, occurred during the stock
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markets crash in the fall of 2008, makes questionable the idea of the same data generating process as

before.

The considered estimators of the SDF parameters and the historical dynamics of the state variables

are functions of the realizations of the reference risk-free rate, the stock return and a proxy of its

volatility. In particular, a measure of daily realized volatility, obtained by high-frequency returns, is

taken as a proxy of the spot return volatility. A kernel nonparametric estimator of the joint transition

density of daily equity return and realized volatility is taken as the reference estimate for the transition

density of the state variables. This estimate enters the definition of all the estimators considered in the

study. Nonparametric estimation methods of a stochastic process allow to identify its main empirical

features without assuming a parametric model. These methods have been largely used in financial

applications (see Cai and Hong [2009] for a review on nonparametric methods in finance). The study

is composed by two parts, both made up of a comparison between estimates of the same quantity based

on distinct sets of asset prices. The comparison is between estimates of the SDF parameters in the first

part and between estimates of some properties of the historical dynamics of the state variables in the

second part. The first comparison shows the need of contemporaneous share prices and option quotes

to quantify the equity and variance premia. The second comparison shows that the estimation of the

historical joint dynamic properties of the risk factors is more precise when an arbitrage-free pricing

model is considered.

At every day in July and August 2008, the estimation of the SDF parameters is done in three dif-

ferent ways: using only a time series of share and risk-free asset prices, using only a cross-section

composed by option mid-quotes and share and risk-free asset prices, or using both time series and

cross-section. A different estimation procedure is considered for each set of data. The three tech-

niques are a Generalized Method of Moments (GMM) estimation (see Hansen [1982] and Hansen and

Singleton [1982]), a cross-sectional calibration and an Extended Method of Moments (XMM) estima-

tion (see Gagliardini, Gouriéroux and Renault [2011] and Gagliardini and Ronchetti [2010]). Each

method finds the values for the SDF parameters that best satisfy the empirical counterparts of a set of

no-arbitrage restrictions on the base of a particular criterion. The GMM method considers only the no-

arbitrage restrictions for IBM share and T-bill over time. The calibration technique considers only the

no-arbitrage restrictions for IBM share, T-bill and IBM American option mid-quotes at a given date.

The XMM estimation considers all the restrictions over time and across different assets. For each SDF

parameter, the XMM method is the only one that provides estimates that are similar, in terms of mean

and standard deviation over time, to the ones obtained by at least one of the other two methods. The

results are in accordance with the idea that the informations on the SDF parameters in a time series

of share and risk-free asset prices and a cross-section of option quotes are not redundant. Specifically,
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the time series of share prices and the cross-section of option quotes are informative mostly on the

discount for uncertain stock excess return and return variance, respectively.

In this paper two distinct estimation approaches to the historical dynamics of the state variables

are considered. Both the approaches are nonparametric w.r.t. this dynamics. The first approach is a

kernel estimation. The second approach is an estimation constrained by the no-arbitrage restrictions.

Although the considered estimators share the asymptotic properties, the structure imposed in the sec-

ond estimation procedure leads to a description of the state variables process that is more precise. As

an illustration, estimates of some characteristics of the historical joint dynamics of the state variables

obtained by the two approaches at any day in July and August 2008 are compared. These characteris-

tics are the historical conditional correlation between the state variables, Sharpe ratio of an investment

on the stock, skewness and kurtosis of the returns. The estimates of these characteristics are more

precise when an arbitrage-free pricing model is imposed. In particular, the variation over time of the

point estimates is smaller.

Some empirical studies show that the assumptions of rational investors and absence of frictions

in American option markets are not always met (see e.g. Diz and Finucane [1993] for index options

and Carpenter [1998] and Poteshman and Serbin [2003] for stock options). These assumptions are

necessary to conduct the analysis based on observable arbitrage-free prices reported in the present

paper. The assumptions are justified by the relatively high liquidity of the considered assets and by

ending the analysis to August 2008.

Section 3.1 contains the description of the asset pricing model. Section 3.2 deals with the implica-

tions of absence of arbitrage opportunities and introduces the estimators of the model parameters. The

criteria to select the data are discussed in Section 3.3. Finally, Section 3.4 contains the description and

interpretation of the estimates of SDF parameters and some historical properties of the joint one-day

historical dynamics of the state variables over a one-day horizon. Specifically, the transition density

and the conditional correlation of the state variables, the conditional Sharpe ratio of an investment in

the IBM stock and the conditional skewness and kurtosis of the returns are considered.

3.1 Model

This section introduces the description of the state variables dynamics and the asset price formation.

Section 3.1.1 deals with the representation of the state variables process and the SDF. Section 3.1.2

discusses the way American option prices are generated.
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3.1.1 State variables and stochastic discount factor

The state variables are the daily stock cum-dividend geometric return and return volatility. The former

is denoted by rt, the latter by σt. These variables are gathered in vector Xt = [rt σt]
′ and their joint

process is stationary, time-homogeneous and Markovian of order 1.24 The historical dynamics of this

process is described by means of the transition density f(xt+1|xt), that is the probability density for

the state variables vector to assume value xt+1 at day t+ 1 after assuming value xt at day t. The causal

relationships between the four arguments of this function have been widely studied in the financial

literature. A causal effect of the return on the volatility is known as leverage effect (see e.g. Black

[1977], Christie [1982] and Nelson [1991]). A causal effect of the volatility on the return is known

as volatility feedback (see e.g. French, Schwert and Stambaugh [1987], Campbell and Hentschel

[1992] and Bekaert and Wu [2000]). Both effects can be between variables either at the same day

(contemporaneous effect) or at distinct days (delayed effect). Standard stochastic volatility models

used in asset pricing consider stock return and its volatility as state variables (see e.g. Hull and White

[1987], Stein and Stein [1991], Heston [1993], Bates [1996] and Bakshi, Cao and Chen [1997] for a

continuous time setting and Heston and Nandi [2000] and Christoffersen, Heston and Jacobs [2006]

for a discrete time one). Differently than in most of the literature on American option pricing, in this

paper no fully parametric form for the transition density of the state variables is adopted, either under

the historical or risk-neutral probability measure. Since the true volatility is not observable and the

method relies on empirical realizations of the state variables, a measure of realized volatility is taken

as a proxy for the spot daily volatility (see e.g. Andersen, Bollerslev, Diebold and Ebens [2001] and

Andersen, Bollerslev, Diebold and Labys [2003]).

The stockholders need to be compensated for the risks assumed by investing in the stock. They

require some premia for the risks of a lower excess return and an higher volatility than expected.

Several methods to quantify these premia have been proposed in the literature (see e.g. Mehra and

Prescott [1985] for the equity premium in the CAPM, Lamoureux and Lastrapes [1993] for the volatil-

ity premium and Carr and Wu [2009] for the variance premium). To include these premia in the asset

prices, investors distort the historical transition density and use a risk-neutral one for pricing purposes.

The link between the historical and any risk-neutral transition density is provided by an SDF (see e.g.

Duffie [2001]). While the market is not assumed to be complete and the SDF to be unique, only one

admissible SDF from day t to day t+ 1 is supposed to admit the following parametrization:

Mt,t+1(θ) = exp (−rf,t+1) exp
(
−θ1 − θ2 (rt+1 − rf,t+1)− θ3 (rt − rf,t)− θ4σ

2
t+1 − θ5σ

2
t

)
, (3.1)

24When the state variables are assumed Markovian of higher order, a study similar to the one reported in this paper can
be conducted by extending the state variables vector.
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for the unknown SDF parameters vector θ = [θ1 θ2 θ3 θ4 θ5]′ and the daily risk-free rate rf,t+1 from day

t to day t+1, that is assumed to be known at day t. The functional form of the SDFMt,t+1(θ) from day

t to day t+ 1 is exponential-affine in the state variables at day t and day t+ 1. The parameters θ2 and

θ4 are the coefficients of the stock excess return and the return variance at day t+ 1. These parameters

measure how investors discount the future realizations of the stock excess return and return variance,

respectively, and therefore are the sources of the equity and variance premia. The parameter θ1 repre-

sents the constant part of the SDF. It measures any additional fixed discounting done by the investors,

as the discount for time or to account for sample biases in the estimation of the true return volatility by

a measure of realized volatility. The parameters θ3 and θ5 are the coefficients of the stock excess return

and return variance at day t. The presence of these two variables at day t increases the flexibility of

the SDF. For some common parametric specifications of the historical dynamics, including the state

variables at day t in the SDFMt,t+1 is necessary for considering the risk premia as free parameters. For

instance, when the underlying asset return follows a Cox-Ingersoll-Ross process under the historical

probability measure, if we set θ3 = θ5 = 0 in Equation (3.1) the no-arbitrage restrictions pin down

the value of parameters θ1, θ2, θ4 uniquely as functions of the historical parameters (see Gagliardini,

Gouriéroux and Renault [2011]). This degeneracy is avoided by including rt and σ2
t in the specification

of the SDF and estimating the value of the parameters θ3 and θ5. Since investors can trade a risk-free

asset, they discount future stock returns w.r.t. to the risk-free rate. Therefore, the chosen parametriza-

tion of the SDF given in Equation (3.1) involves the excess return. If investors could trade assets with

a reference level of return variance, they would discount future return variance w.r.t. this level. Daily

volatility swap rates are usually taken as risk-free levels of volatility.25 These rates are derived from

volatility swap contracts, that are OTC contracts, or approximated by using some option portfolios (see

Carr and Wu [2009]). Volatility swap contracts are less liquid than the shares and options considered

in this paper and approximations due to the estimation of volatility swap rates are avoided in the study.

Therefore, the SDF is parametrized as a function of variances and not excess variances w.r.t. risk-free

variance levels.

The exponential-affine specification of Equation (3.1) ensures the positivity of the SDF and then

of the risk-neutral transition density. This parametrization of the SDF is common in the asset pricing

literature. In continuous time, when coupled with affine specifications of the differential equation

for the Markov process of the state variables, an exponential-affine specification of the SDF offers

analytical tractability. A first example is in option pricing. An exponential-affine specification of

25The payoff of a volatility swap contract is the volatility premium converted to monetary units. This contract has zero
market value at initiation. The absence of arbitrage in the market for these contracts makes the volatility swap rate equal to
the true risk-neutral expectation of the value of the volatility multiplied by the gross return on the risk-free asset one day
ahead (see e.g. Section 1.2 in Carr and Wu [2009]).
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the SDF combined with a jump-diffusion state variables dynamics makes the computations of some

transforms of the state variables feasible in closed form (see e.g. Hull and White [1987], Heston

[1993], Duffie, Pan and Singleton [2000] and Duffie, Filipovic and Schachermayer [2003]). A second

example is in equilibrium models. When the representative agent in the CCAPM model (see Lucas

[1978]) has a power or CARA utility function, the implicit SDF is exponential-affine. The same

happens in consumption-based asset pricing models with recursive utility (see e.g. Epstein and Zin

[1989], Campbell and Cochrane [1999] and Bansal and Yaron [2004]). Similar manageability benefits

are offered also in discrete time (see e.g. Gouriéroux, Monfort and Polimenis [2006] and Gouriéroux

and Monfort [2007]).

3.1.2 American options

Let us express an American equity option price by means of the principle of optimality of dynamic

programming (also known as Bellman’s principle). Consider an American put option with strike price

K and written on a share with price S. At its expiration, i.e. if its time-to-maturity h is null, the

price of this contract is (K − S)+. Otherwise, when h ≥ 1, its price is the maximum between the

early exercise payoff (K − S)+ and the discounted risk-neutral expectation of the option price at the

following day, conditional on the current information. The former is the value of the option price if

it is exercised, the second if it is kept alive. Similar equations and definitions hold also for American

call options. This way of representing the value of the option price is the same as in lattice methods

(see e.g. Cox, Ross and Rubinstein [1979], Boyle [1988] and Ritchken and Trevor [1999]), regression-

based Monte Carlo methods (see e.g. Longstaff and Schwartz [2001]) and other iterative integration

methods (see e.g. Sullivan [2000]). The model-implied American option prices depend on both the

SDF parameters vector and the transition density of the state variables. Let us use a notation for the

option prices that highlights this dependence. The model-implied option price at day t of an American

put option with time-to-maturity h and strike price K computed by taking the SDF parameters vector

θ and the transition density f of the state variables is denoted by Pt(h,K; θ, f). If the contract is an

American call option with the same option characteristics, the notation is Ct(h,K; θ, f).

The American put option price for any time-to-maturity and strike price can be expressed as the

product of the underlying share price and the American put option-to-share price ratio p. To have this

expression, let us use a result in Gagliardini and Ronchetti [2010] (GR). They show that, in the frame-

work of the present paper, American-style options with payoff at exercise that is linearly homogeneous

w.r.t. the underlying asset price are linearly homogeneous.26 Hence, the American put option-to-share

26This property is shown in Merton [1973a] and Merton [1990] for more specific settings.

60



price ratio depends on the share price St and the strike price K by means of the moneyness strike

kt = K/St only:

Pt(h,K; θ, f) = Stp(h, kt, Xt; θ, f), (3.2)

for the value Xt of the state variables vector at day t. While the American option price Pt depends on

time, the functional form of the American put option-to-share price ratio is time-invariant and allows

for the description of the price of any American put option written on the same underlying asset. By

using this time-homogeneous ratio we have the advantage of a common representation of the price of

different financial assets. Specifically, if the only options written on the given share are put and call

options, we can express all the option class prices by the share price and the American put and call

option-to-share price ratios. Let us now make the value of the American put option-to-share price ratio

p explicit. Let us consider it for the moneyness strike k and state variables x. At maturity, when the

time-to-maturity h is null, this value is just the exercise-to-share price ratio, i.e.:

p(0, k, x; θ, f) = (k − 1)+ . (3.3)

As shown in GR, at any day before maturity, when h ≥ 1, this value is the maximum between the

exercise-to-share price ratio and a discounted expected value of the American put option-to-share

price ratio one day ahead:

p(h, k, x; θ, f) = max
[
(k − 1)+,Ef

[
Mt,t+1(θ)ert+1p(h− 1, ke−rt+1 , Xt+1; θ, f)

∣∣Xt = x
]]
, (3.4)

where Ef [·|Xt = x] is the conditional expectation w.r.t. the transition density f given the value x of

the state variables. These quantities are the counterparts in ratio terms of the early exercise payoff and

the continuation value of an American put option at day t. The daily share gross return ert+1 = St+1/St

in the continuation value-to-share price ratio accounts for the fact that we deal with option-to-share

price ratios and not just with prices. Similar equations and definitions hold for the American call

option price Ct and the American call option-to-share price ratio c.

3.2 Estimation approaches

In this section the employed estimation approaches are discussed. Section 3.2.1 introduces the no-

arbitrage restrictions on share, risk-free asset and American options. Section 3.2.2 describes how they

are taken into account in the estimation of the model parameters.
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3.2.1 No-arbitrage restrictions

Let us say that at the current day we observe the price of M American put options and N American

call options written on a single share of the considered stock.27 Let us assume that these prices are

consistent with the absence of arbitrage opportunities. This fact and the correct model specification

ensure that the observed option prices coincide with the model-implied ones when the true value of

the model parameters are used for the pricing of the options. Any calibration method is based on this

match. From this relation and the homogeneity property of the American option price (expressed in

Equation (3.2) for a put option) we get some restrictions on the true model parameters θ0 and f0. To

illustrate this concept, let us focus on the j-th observed put option, with moneyness strike kpj , time-

to-maturity hpj and option-to-stock price ratio pj . We can compute the put option-to-stock price ratio

evaluated at the value kpj of the moneyness strike, at the value hpj of the time-to-maturity and at the

current value x0 of the state variables. If we would use the true model parameters, the computed ratio

would coincide with the observed ones:

p(hpj , k
p
j , x0; θ0, f0) = pj, (3.5)

for j = 1, . . .M . A similar match would be satisfied for the i-th observed call option with moneyness

strike kci , time-to-maturity hci and option-to-stock price ratio ci:

c(hci , k
c
i , x0; θ0, f0) = ci, (3.6)

for i = 1, . . . N . Equations (3.5)-(3.6) provide model restrictions, and since the put-call parity does not

hold for American options (for whom only a weaker put-call relationship holds) there is no redundancy

between them.

In addition to the restrictions on option prices, we must impose the infeasibility of any arbitrage

strategy based on trades of the underlying share and a short-term non-defaultable bond. In other words,

we must impose the martingale property for these two assets. The restrictions for the share and a non-

defaultable zero-coupon bond that matures after a day are
Ef0 [Mt,t+1(θ0)ert+1|Xt = x] = 1,

Ef0 [Mt,t+1(θ0)erf,t+1|Xt = x] = 1,

(3.7)

respectively, for any conditioning value x of the state variables.

27The discussion for options written on a lot of shares is equivalent.
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Similar restrictions as Equations (3.5)-(3.6) and System (3.7) are adopted in many option pricing

methodologies. For instance, let us consider a standard binomial tree for the risk-neutral dynamics

of a share price with null risk-free rate and dividend yield and with the share price as unique state

variable. In consecutive days, the share price can move from S to Su, with probability p̃, or to Sd, with

probability 1− p̃. We exclude arbitrage opportunities on the share and impose up̃+d(1− p̃) = 1. This

last martingale restriction plays the role of the first equation in System (3.7) with parameters p̃, u, d.

We then calibrate these parameters to the market price of a cross-section of financial derivatives written

on the share. This last idea is the same as the one expressed by Equations (3.5)-(3.6).

Although all the model restrictions hold for any value of the state variables, not for any value of

the state variables we can find empirical counterparts of all the restrictions. This is the reason why the

restrictions for bond and share price in System (3.7) are introduced for any value x of the state variables

and the restrictions for the options in Equations (3.5)-(3.6) only for the value x0. This difference is

due to the fact that shares, bond and options have different trading frequency and volume, as explained

in Section 3.3. At the current day we have at disposal a time series of arbitrage-free prices only for

the share and the non-defaultable zero-coupon bond. Over the period covered by the time series a

relatively large part of the domain of the state variables is realized. Differently, we have at disposal

prices of the options only for the current value of the state variables. Therefore, we can build empirical

counterparts of the model restrictions holding for several realized values in the case of share and bond

and just for the current value of the state variables in the case of options.

3.2.2 Estimators

In this section the estimation approaches for the true value of the SDF parameters vector and transition

density of the state variables are introduced. These methodologies make use of the empirical counter-

parts of the model restrictions given by Equations (3.5)-(3.6) and System (3.7) in different ways.

All the methodologies need a nonparametric kernel estimator of the historical transition density of

the state variables. This estimator, for a time series sample of length T , is defined as

f̂(x|x̃) =
1

h2
T

T∑
t=2

K

(
xt − x
hT

)
K

(
xt−1 − x̃
hT

)/ T∑
t=2

K

(
xt−1 − x̃
hT

)
, (3.8)

where K is a kernel function, hT is the bandwidth (see e.g. Bosq [1998]) and x, x̃ are generic values

of the state variables vector.28 Kernel estimators are largely used in financial applications (see e.g.

28Since the four arguments of function f̂ are correlated, in the empirical application 2- and 4-dimensional kernel func-
tions with 2- and 4-dimensional bandwidth matrices are used (see Appendix 5.1.1). These matrices are related to the
variance-covariance matrix of the bivariate state variables process (Xt).
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Aı̈t-Sahalia [1996a], Aı̈t-Sahalia [1996b], Aı̈t-Sahalia and Lo [1998], Pritsker [1998], Chapman and

Pearson [2000], Hong and Li [2005], Hong, Tu and Zhou [2007] and Li and Zhao [2009]). Moreover,

all the estimation methodologies use in different ways the no-arbitrage restrictions. In order to present

the estimators in a compact form, let us introduce two vectors that collect these restrictions. The vector

U is defined as

U(x; θ, f) =

 Ef [Mt,t+1(θ)ert+1|Xt = x]− 1

Ef [Mt,t+1(θ)erf,t+1|Xt = x]− 1

 , (3.9)

for any value x of the state variables. The components of vector U are the differences between LHS

and RHS of the equations in System (3.7) computed at the generic value (θ, f) of the model parameters

instead of (θ0, f0). The vector L is defined as

L(θ, f) =


p(hpj , k

p
j , x0; θ, f)− pj, for j = 1, . . . ,M

c(hci , k
c
i , x0; θ, f)− ci, for i = 1, . . . , N

Ef [Mt,t+1(θ)ert+1|Xt = x0]− 1

Ef [Mt,t+1(θ)erf,t+1 |Xt = x0]− 1

 , (3.10)

where the option-to-share price ratios are denoted in the same way as the option-to-stock price ratio

in Section 3.2.1. The first M + N components of vector L are the differences between each model-

implied and observed American option-to-share price ratios, for precise values of moneyness strike

and time-to-maturity. The ratios are observed when the state variables have the current value x0. The

last 2 components of vector L are the components of vector U for the conditioning value x0 of the

state variables. In this way the restrictions that hold for any value of the conditioning state variables

are gathered in vector U and the restrictions that hold just for the current value x0 of the state variables

in vector L. Valuing vectors U and L at the generic value (θ, f) of the model parameters means that

the model-implied American option-to-share price ratios and the conditional risk-neutral expectations

are computed by using this value of the model parameters. From Equations (3.5)-(3.6) and System

(3.7), vectors U and L are null for the true values (θ0, f0) of the model parameters. When they are

valued at (θ, f̂), i.e. they are computed for a generic value θ and the kernel estimator f̂ , they collect the

empirical restrictions for the value θ of the SDF parameters vector. For any given θ, the model-implied

American option-to-share price ratios in the first M + N components of vector L(θ, f̂) are computed

by a dynamic programming approach with kernel regressions.29

Let us now consider the three estimation methods for the SDF parameter θ. The GMM method

29Each regression function in the computation of the continuation value is estimated by a Nadaraya-Watson estimator.
This estimator is asymptotically equivalent to the conditional expectation operator computed by using the transition density
defined in Equation (3.8).
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minimizes a quadratic form in the empirical counterparts of the restrictions that hold for any value of

the conditioning state variables, i.e. in U(x; θ, f̂) for any x. The calibration method does similarly

considering the restrictions that hold just for the current value of the state variables, i.e. L(θ, f̂). The

XMM method does similarly for all the restrictions. The XMM estimator θ̂? of the SDF parameters

vector is defined as

θ̂? = arg min
θ

[
h2
TL(θ, f̂)′L(θ, f̂) +

1

T

T∑
t=1

U(xt; θ, f̂)′U(xt; θ, f̂)

]
, (3.11)

where the time series of the state variables is up to the actual day, so that xT = x0. The criterion

minimized in Equation (3.11) is a weighted sum of a cross-sectional calibration criterion (the first

scalar product) and a GMM criterion (the time-averaged scalar product). The former takes into account

the information contained in the data considered at the current date, the latter exploits the information

contained in the time series of the state variables. The first component is multiplied by the square of

the kernel estimator bandwidth to ensure convergence and asymptotic normality, as in GR. The second

component is similar to the minimum distance criterion introduced in Ai and Chen [2003] to estimate

conditional moment restrictions models and used in Nagel and Singleton [2011] in an application to

conditional asset pricing models. In their most general formulation, the GMM, cross-calibration and

XMM estimators minimize quadratic forms defined by some weighting matrices. The estimation of a

particular weighting matrix, for instance the one that minimizes the asymptotic variance of the SDF

parameters estimator (see Hansen [1982] for the GMM estimator and GR for the XMM estimator),

could introduce additional statistical errors and lower the finite sample properties of the estimators (see

e.g. Altonji and Segal [1996] for the GMM method). For this reason and to lower the computation

burden, identity weighting matrices are used for all the criteria. The no-arbitrage restrictions for the

actual value x0 of the conditioning state variables are included in both vectors L and U(xT ; ., .). GR

show that with this choice the asymptotic efficiency of the XMM estimator increases.

In this paper two nonparametric estimators of the transition density of the state variables are con-

sidered: the kernel estimator f̂ defined in Equation (3.8) and an adjusted kernel estimator that makes

use of an arbitrage-free pricing model. This last estimator, called full-information estimator of the

transition density of the state variables, minimizes a statistical divergence from the kernel density es-

timator subject to the no-arbitrage restrictions. This divergence is derived from the Kullback-Leibler

divergence d of the transition density f from the kernel density estimator f̂ . When the conditioning
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value of the state variables is x̃, the Kullback-Leibler divergence is defined as

d(f, f̂ |x̃) =

∫
log

(
f(x|x̃)

f̂(x|x̃)

)
f(x|x̃)dx. (3.12)

The full-information estimator f̂ ? is defined as

f̂ ? = arg min
f

∫
d(f, f̂ |x)f̂X(x)dx,

s.t.


L(θ̂?, f) = 0,

U(x; θ̂?, f) = 0, for all x,
(3.13)

where f̂X is the kernel estimator of the historical unconditional density of the state variables:

f̂X(x) =
1

Th2
T

T∑
t=1

K

(
xt − x
hT

)
. (3.14)

The transition density f̂ ? is the minimizer of a constrained criterion. This criterion is the average

Kullback-Leibler divergence weighted by the kernel density estimator f̂X . Equivalently, it is the kernel

estimator of the unconditional expected Kullback-Leibler divergence between the transition density

and its kernel estimator. The constraints for the criterion are the no-arbitrage restrictions evaluated

by using the estimated SDF parameters vector θ̂? defined in Equation (3.11). Probability density

estimation through minimization of a statistical divergence subject to conditional moment restrictions

has become popular in the literature on model calibration (see e.g. Buchen and Kelly [1996] and

Stutzer [1996]) and on information-based approaches to GMM (see Kitamura and Stutzer [1997],

Kitamura, Tripathi and Ahn [2004] and Gagliardini, Gouriéroux and Renault [2011]).

The full-information estimator f̂ ? defined in Equation (3.13) is an adaptation of the full-information

estimator introduced in GR. Following similar steps, we get this expression:

f̂ ?(x|x̃) =
f̂(x|x̃)T (x, x̃; θ̂?, f̂ ?)∫
f̂(x|x̃)T (x, x̃; θ̂?, f̂ ?)dx

, (3.15)

where T is a tilting (or twisting) factor. We can adapt the characterization given by GR of their full-

information estimator to the setting considered in this paper and express the tilting factor in terms

of stock returns, SDF and some option-to-share price ratios. These last ratios are obtained by using

the estimator f̂ ? itself. Hence the representation of the full-information estimator given in Equation
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(3.15) is implicit and yields a fixed point problem. In this paper, an iterative procedure to solve this

fixed point problem is implemented, in a similar way as the one suggested by GR. The estimator f̂ ? is

computed numerically on a grid of points.

3.3 Data

In this section the data are described. Section 3.3.1 explains the criteria adopted for their selection.

Section 3.3.2 deals with the empirical characteristics of the state variables and the risk-free rate. Sec-

tion 3.3.3 illustrates the considered options.

3.3.1 Data construction

The IBM stock traded on U.S. centralized markets is considered during the period from 2006 to 2008.

IBM stock is one of the most liquid stock during the period in U.S. centralized markets. The price of

an IBM share traded at the NYSE during the period from 2006/01/03 to 2008/08/29 (671 business

days) is taken from the NYSE TAQ database.30 This price, expressed in USD, is available at high

frequency. The geometric return on an investment in the IBM stock over the considered period is

about 16%, being the last trading price of the day for an IBM share USD 82.07 on 2006/01/03 and

USD 118.19 on 2008/08/29. The lowest and highest trading prices of an IBM share are USD 72.84 on

2006/07/18 and USD 130.89 on 2008/07/23. In the considered period, the IBM stock price showed

an overall upward trend with no noteworthy sequence of returns of the same sign in following days. In

the considered period there are on average 7.9 millions trades of IBM shares per day. The daily dollar

trading volume of the IBM stock is always included between USD 190 millions and 3.2 billions, with

a mean value of USD 985 millions. The difference between the highest ask and the lowest bid price

of the same day for a single IBM share is always less than USD 5. The percentage bid-ask spread

computed by these ask and bid prices is always lower than 7%.31

Let us denote by St and Dt the last trading price of the day of an IBM share and the dividend

announced at day t. IBM’s dividends are usually paid on the 9th or 10th of March, June, September

and December and announced about a month earlier.32 The daily cum-dividend geometric return from

30The NYSE was the primary market for IBM shares. They were also traded in regional markets, as the Philadelphia
Stock Exchange (PHLX) or, in the early 2006, the Pacific Stock Exchange (PSE).

31For an asset ask price ASKt and bid price BIDt, the percentage bid-ask spread is defined as
100 (ASKt −BIDt) / [(ASKt +BIDt) /2].

32IBM announced a dividend of USD 0.2 per share on 2006/02/08, a dividend of USD 0.3 on 2006/05/08, 2006/08/08,
2006/11/08 and 2007/02/07, a dividend of USD 0.4 on 2007/05/08, 2007/08/08, 2007/11/07, 2008/02/06 and a divi-
dend of USD 0.5 on 2008/05/07, 2008/08/06. IBM has a long history of quarterly dividend payments. From 1998/01/01
to 2008/08/29 the time distance between two subsequent dividend announcement days has always been between 87 and
94 calendar days. IBM did not perform any stock split in the considered period. Neither merger nor acquisition took place.
In 2007 IBM spun its Printing Systems Division off.
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day t to day t+ 1 on an IBM share is defined as

rt+1 = log

(
St+1 +Dt+1

St

)
. (3.16)

A daily realized volatility (RV) is taken as a proxy of the true daily spot volatility. This proxy does not

rely on any parametric specification of the stock return dynamics. The RV is defined by 193 intra-day

IBM share trading prices Sj,t, for j = 1, . . . , 193, at 2 minutes frequency33 from 9 : 35 a.m. to 3 : 59

p.m.:

RVt =

√√√√ 193∑
j=2

(
log

(
Sj,t
Sj−1,t

))2

. (3.17)

When the process (St) is a square integrable semi-martingale, the realized volatility RVt converges

in probability to the quadratic variation at day t of the log-price process log (St) as the number of

intra-day trading prices increases (see e.g. Protter [2004]). For instance, this is the case when the

data generating process is a continuous time stochastic volatility or jump-diffusion model (see e.g.

Andersen, Bollerslev, Diebold and Ebens [2001] and Andersen, Bollerslev, Diebold and Labys [2003]).

The bias induced by the micro-structure effects is small. The IBM shares are traded at an extremely

high frequency in the considered period. The NYSE tick-size is USD 0.1, so that the return rounding

and discreteness effects, as staleness, are present but negligible.34 For instance, for the IBM share price

USD 73.58, that is the lowest IBM share closing price in the period, the four possible returns closest to

zero are about ±0.12% and ±0.06%. Even if there is a consistent rise in the absolute value of returns

and RV and a significant decline in the risk-free rate in July 2007 (see Figure 3.1), no structural change

is considered in the time series of the state variables. The last world financial crisis starts, or at least

gets worse, in the summer of 2007 and festers in September 2008.35 The IBM stock plunges in the fall

of 2008: the IBM share price at close is USD 71.595 on 2008/11/19, then with a geometric return of

−21.8% from the end of August 2008. The extreme events occurred after August 2008 make doubtful

the assumption of the same data generating process as before.36 The analysis is then restricted to the

33Two following transaction times are not always distant 2 minutes. For instance, the two transaction times just before
3 o’clock can be 2 : 56 : 39 p.m. and 2 : 58 : 59 p.m.. This inhomogeneity in the time spacing is not considered in the
RV computation. High frequency data were not available at the following days: 2007/04/06, 2007/07/03, 2007/11/23,
2007/12/24, 2008/07/03. At these days the share closing price is taken from the Ivy DB OptionMetrics database and the
volatility is estimated by a linear interpolation between the RV volatility at the previous and following days.

34IBM shares are between the shares of the DJIA with the highest level, so that the return grid for IBM shares is finer
than the one of most of the other members of the index. The method described in Aı̈t-Sahalia, Mykland and Zhang [2005]
is useful to determine the optimal sampling frequency in applications of the estimation method described in this paper
accounting for microstructure effects.

35In the literature there is not consensus about the starting date of the crisis. See The Squam Lake Working Group
on Financial Regulation [2010] for a review of the major episodes and Lo [2011] for a recent review on some different
prospectives.

36In September 2008 the interbank lending froze (the TED spread, measure of tightness in the interbank market, sky-
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Figure 3.1: Time series of stock returns, realized volatility and risk-free rate during the period from
2006/01/03 to 2008/08/29. In the upper left panel we see the daily cum-dividend geometric stock
return. In the upper right panel we see the stock return realized volatility from intraday geometric
returns at the 2 minutes frequency. In the lower left panel we see the scatter plot of the joint realizations
of stock returns and realized volatility. In the lower right panel we see the historical realizations of the
daily risk-free rate obtained by the daily 1-month T-bill rate.
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period from 2006 only up to the end of August 2008. While considering the same data generating

process for the state variables on the whole period, we can distinguish between a (relatively) stable

period, before July 2007 and composed by 376 business days, and a following (relatively) volatile

one, composed by 295 business days. The partial sample median RV is about 0.009 and 0.013 before

and after July 2007, respectively. Moreover, about two thirds of all the RV observations are in the

range [0.007 : 0.011] during the first period and in the range [0.009 : 0.018] during the second period.

The rise in IBM stock return volatility takes place in a period of growing widespread concerns about

prices and ratings of financial assets, liquidity risk and counterparty risk, exacerbated in July 2007.

Interbank lending sharply declines, assets prices drop, liquidity crunch spreads around the shadow

banking system and a sharp contraction in real economies begins to be largely foreseen.37

The mid-quotes for the American call and put options written on IBM shares in the period 2008/07/01

to 2008/08/29 (43 business days), i.e. in the last two months of the considered period, are obtained

by the Ivy DB OptionMetrics database. In these months options on IBM were multiple listed, traded

at the CBOE, PHLX and AMEX (nowadays part of NYSE). The closing time for these exchanges was

4 : 00 p.m. New York time. The Ivy DB OptionMetrics database reports the highest ask and the lowest

bid price at close across the U.S. exchanges. These values are used to compute the mid-quotes at the

close of the exchanges. The unit of trading (or contract lot size) for these options is standard: only

the trades of lots of options on 100 shares are allowed.38 U.S. equity put and call options traded in

centralized markets expire on the third Saturday of the month and are closed for trading the previous

Friday. The markets provide at any business day the quotes of options for at least four different expi-

ration months.39 The two earliest expiration months are the current and the next one. The other two

months are chosen on the base of some options issuing cycles. IBM belongs to the January cycle of

the U.S. equity options so that the last two expiration months are the earliest between January, April,

July and October. Then, at any business day in July and August 2008, 1- and 2-months options and

options expiring in October and January are quoted. The average daily put option volume (that is the

total amount of put contracts traded in a day) is 25490 contracts. The average daily call option volume

rocketed to over 450 basis points), Lehman Brothers failed, Fannie Mae and Freddie Mac were nationalized, Bank of
America acquired Merill Lynch, the FED announced that Goldman Sachs and Morgan Stanley had been asked to turn into
commercial banks, AIG was rescued by the U.S. Government, the Reserve Primary Fund “broke the buck”, JPMorgan
Chase acquired Washington Mutual Bank, short selling on many stocks was banned.

37In July 2007 the market for asset-backed commercial papers began to dry up, the asset-backed securities indices
started a decline, the TED spread started to fluctuate from around 100 to around 200 basis points (see e.g. Figures 1-3
in Brunnermeier [2009] and Figure 1 in Stanton and Wallace [2011]), the rescue of IKB Deutsche Industriebank opened
a series of bailouts in Europe, American Home Mortgage Investment Corporation announced its financial difficulties, the
SEC relaxed the uptick rule for stocks traded at NYSE.

38Each of these contracts has physical settlement, that means that the delivery of 100 IBM shares must take place at
exercise.

39The discussion does not apply to Long-term Equity AnticiPation Securities (LEAPs), that are options with time-to-
maturity greater than two years when first listed. They usually expire in January.
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is 12596 contracts.

Option data are filtered on the base of several criteria. Many options are not considered: options

with percentage bid-ask spread at close higher than or equal 100%, options with daily trading activity

lower than or equal to 500 contracts, options with time-to-maturity longer than 300 business days,

options with a moneyness strike less than 0.75 or bigger than 1.25. The database tick-size is USD

0.05. The lowest option mid-quote that can survive this filter is USD 0.075, and since the maximum

value reached by an IBM share at close in the period from 2008/07/01 to 2008/08/29 is USD 130.03,

the lowest option mid-quote-to-share price ratio that in principle can be considered is 5.8 E−6. As a

consequence, this is the highest precision that can be reached in the computation of option mid-quote-

to-share price ratios. The time-to-maturity filter implies to retain only options with time-to-maturity

shorter than 480 calendar days. The percentage bid-ask spread filter does it for options with an ask

price at close at most three times the contemporaneous bid price. Options with null bid at close are

automatically excluded.

The reference daily risk-free rate is obtained from the 1-month Constant Maturity Treasury Rate.

The U.S. Department of the Treasury provides publicly this rate, that comes from an interpolation of

the daily yield curve, on an annualized basis.40 T-bills, considered as free of default risk, are more

liquid and with a broader secondary market than other assets traded in financial markets at the same

time.

3.3.2 State variables realizations

We see in the two upper panels of Figure 3.1 the time series of the state variables at the NYSE closing

time for the period from 2006/01/03 to 2008/08/29. In Figure 3.1 we see the related scatter plot.

In Table 3 we find sample unconditional mean, standard deviation, skewness, kurtosis, minimum and

maximum values and median for both stock return and RV. The 5th, 10th, 25th, 75th, 90th, 95th

quantiles and the inter-quartile range of their distributions are also reported in this table.41 The sample

mean and median of the return are positive and lower than 0.1%, with standard deviation and inter-

quartile range close to 1.5%. The empirical distribution of the returns is negatively skewed. This means

that the IBM stock suffers the unconditional left tail risk that is typical in the equity markets. The

sample kurtosis of the returns exceeds by about 1.91 the kurtosis of the standard normal distribution:

the unconditional return distribution is leptokurtic. The sample unconditional Sharpe ratio over a one-

day horizon is 0.0443: the expected excess return for an investment in the IBM stock normalized by its

40The Treasury yield curve is estimated daily using a cubic spline proprietary model. Inputs to the model are primarily
bid-side yields for on-the-run Treasury securities. See more at http://www.ustreas.gov.

41For the descriptive statistics of IBM stock return in the period from 1970/01/02 to 2008/12/31 see also Tsay [2010],
p. 11.
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standard deviation is slightly positive.42 The time series of the RV has mean and median close to 1%,

with standard deviation and inter-quartile range close to 0.4%. The distribution of the RV is positively

skewed with excess kurtosis equal to 4.60. Also Andersen, Bollerslev, Diebold and Ebens [2001] find

positive skewness and kurtosis for the RV of the 30 DJIA stocks, among which there is the IBM stock,

in the period from January 1993 to May 1998 (see Table 2 in their article).

In the lower right panel of Figure 3.1 the time series of the risk-free rate is displayed. The value

of this rate is quite stable at about 1.35 E−4 before July 2007 and declines afterwards, reflecting the

weakening of financial markets. Some of the sample unconditional properties of this rate are reported

in Table 3. The sample mean and median are close to one sixth and one fifth of the corresponding

statistics of the IBM stock return, respectively.

For the purpose of data description, let us consider some contemporaneous and lagged statistical

relationships between the state variables and between the return and the logarithmic RV. Let us first

consider some correlation properties and then the estimation results of a linear vector autoregressive

model for the return and logarithmic RV.

We see in the four panels of Figure 3.2 the values of some sample coefficients of unconditional

auto- and cross-correlation of stock return, RV and logarithmic RV. The correlation coefficients are

denoted by ρ and are displayed as functions of the lag index. For a given lag index, the coefficients

pertaining to the RV and logarithmic RV are coupled. The coefficient related to the RV is always

displayed on the left, the other on the right. The 95% confidence level bounds are represented by

the horizontal lines. We see in the upper panels the first 20 coefficients of auto-correlation for the

returns and the first 40 coefficients for the RV and logarithmic RV. At the 95% confidence level, the

autocorrelation coefficients for the return are not significant, with the exception of the 8-th lag. The

autocorrelation coefficients for the RV and the logarithmic RV are statistically significant at this level

instead. We see in the lower panels the first 20 sample coefficients of the correlation between the

return and RV and the return and logarithmic RV. Few of these coefficients are marginally significant,

all the others are not significant. In particular, the contemporaneous correlation coefficients between

the return and RV or logarithmic RV are negative and marginally significant, indicating a contempora-

neous leverage effect. The first three correlation coefficients between the return and the lagged RV or

logarithmic RV are negative and statistically significant, indicating a lagged volatility feedback effect.

Then, the returns are serially uncorrelated, the RV and logarithmic RV are auto-correlated and there is

a cross-correlation between the return and the contemporaneous or lagged RV and logarithmic RV.

To conclude the description of the historical realizations of the state variables, let us consider a

42Treasury rate data are not available at 2007/10/08 and 2007/11/12 and a linear interpolation to get their proxies is
used.
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Figure 3.2: Sample auto- and cross-correlation for the daily cum-dividend geometric return, real-
ized volatility and logarithmic realized volatility for the IBM stock price in the period 2006/01/03 −
2008/08/29. The correlations are displayed as functions of the lag index. The coefficients concerning
the RV or logarithmic RV for the same lag index are coupled, with the former displayed on the left
and the latter on the right. The 95% confidence interval (2 standard error bounds) for the coefficients
is [−0.0773 : 0.0773] and its borders are displayed by the straight horizontal lines.
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linear vector autoregressive model of order 1 for the return and logarithmic RV:
rt = µ1 + φ1,1rt−1 + φ1,2log (RVt−1) + ε1,t,

log (RVt) = µ2 + φ2,1rt−1 + φ2,2log (RVt−1) + ε2,t,

(3.18)

where the exogenous innovations ε1,t and ε2,t at time t are i.i.d. over time, have zero mean and finite

variance and are possibly correlated. The coefficients φ1,1 and φ2,2 are the autoregressive coefficients

that describe the impact on the current value of return and logarithmic RV of its own lagged value.

The coefficient φ1,2 is a measure of the impact of lagged logarithmic RV on the current return and then

of the one-day delayed volatility feedback effect (see e.g. French, Schwert and Stambaugh [1987]

and Campbell and Hentschel [1992]). The coefficient φ2,1 is a measure of the impact of lagged return

on the current logarithmic RV and then of a one-day delayed leverage effect (see e.g. Black [1977],

Christie [1982] and Nelson [1991]). The ordinary least squares estimates of the model coefficients

are reported in Table 4. Every root of the characteristic polynomial lies inside the unit circle. The

coefficients of the first equation are not statistically significant at the 95% confidence level and the R2

of this regression equation is lower than 0.1%. This last finding is consistent with the idea that the

returns cannot be predicted by past state variables (see e.g. Fama [1970] and Leroy [1982]). On the

contrary, the coefficients of the second equation are statistically significant at the 5% confidence level

and the R2 of this regression is 55%. This is consistent with the hypothesis that the logarithmic RV

is predictable to some extent by lagged state variables. The estimate of the coefficient φ2,1 is −1.44.

This last negative estimate is in agreement with the assumption of a delayed leverage effect.43 The

estimate of the autoregressive parameter φ2,2 for the logarithmic RV is 0.73. The positive estimate is

in agreement with the observed volatility persistence that we can recognize in the upper right panel

of Figure 3.1 and with the sample auto-correlation coefficients displayed in the upper right panel of

Figure 3.2. In Table 5 the ordinary least squares estimates of variance, covariance and correlation of

the innovations ε1,t and ε2,t are reported. Every estimate is reported with its 95% bias-corrected and

accelerated bootstrap confidence interval (see e.g. Efron and Tibshirani [2000], ch. 14), computed by

using 9999 bootstrap samples (see Andrews and Buchinsky [2003] for this number). The estimates

of the variance of innovations ε1,t and ε2,t are 1.44 E−4 and 0.05, respectively. The former value is

very close to the sample variance of the return, the latter is smaller than the sample variance of the

logarithmic RV, that is about 0.34. This finding is consistent with the fact that only the coefficients

of the second equation of System (3.18) are statistically significant at the 95% confidence level. The

43The scale on log (RVt) is bigger than the scale on r. This explains the greater magnitude of the point estimate of
parameter φ2,1 than the magnitude of the other point estimates.
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estimated covariance and correlation between ε1,t and ε2,t are −4.13 E−4 and −0.15, respectively.

This negative correlation is statistically significant at the 5% confidence level.
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3.3.3 Options

By filtering the Ivy DB OptionMetrics database as described in Section 3.3.1, the considered dataset is

composed by 248 put options and 221 call options. The mean percentage bid-ask spread for the options

is 11.16%, with 10.68% for the put options and 11.69% for the call options. The 90th percentile of the

percentage bid-ask spread is 28.57%, with 25% for the put options and 28.57% for the call options.

At each day the total number of selected options is between 4 and 23. The number of put options

considered at a given day varies from 2 to 12 and its mean value is 5. For the call options the same

numbers apply.

The upper panel of Figure 3.3 shows the moneyness strike for the considered options as a function

of the date. The moneyness strike varies approximatively in the range [0.71 : 1.06] for the put options

(indicated by crosses) and in the range [0.85 : 1.18] for the call options (indicated by circles). Only 1%

of the put options and 1.8% of the call options are at-the-money and 22% of the put options and 26%

of the call options are in-the-money. Most of the considered options in the dataset are then out-of-the-

money. 24% of the put options and 32% of the call options are close to the money, with moneyness

strike ranging from 0.98 to 1.02.44 The lower panel of Figure 3.3 shows the time-to-maturity for the

considered options as a function of the date. The time-to-maturity varies from 1 to 163 business days

for the put options and to 137 business days for the call options, once again indicated by circles and

crosses, respectively. 82% of the put options and 84% of the call options have time-to-maturity up to

70 business days. These options are the ones with the highest trading volume and lowest percentage

bid-ask spread in the dataset. This characteristic of the data is explained by the fact that closer is the

expiration, higher is the rate of change in option value due to time (i.e. higher is the option theta in

absolute value) and higher are the potential return and leverage.

The imaginary investor able to trade at the mid-quote and without incoming in frictions would not

find any arbitrage opportunity in the considered option sample. At any day, the mid-quote C of an

American call option written on a single share with price S, with strike price K and time-to-maturity

h is not greater than S and smaller than (Se−δh − Ke−rfh)+, for the dividend yield δ and risk-free

rate rf . Similarly, the mid-quote P of the put option with the same option characteristics is not greater

then Ke−rfh and smaller than (Ke−rfh − Se−δh)+. Then, there would not be any discount arbitrage

opportunity. There would not be any bull and bear spread arbitrage opportunity: for any couple of

contemporaneous mid-quotes of call (put) options with the same maturity, the mid-quote of the call

44During July and August 2008 some deep out-of-the-money options have been traded, but with lower trading volume
and bigger percentage bid-ask spread than the other traded options. More volatile is the stock, more attractive is the trading
of deep out-of-the-money options because of the return and leverage opportunities. The volatility in the considered two
months did not provide an incentive to (relatively) large trades in deep out-of-the-money options.
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(put) with the lower strike is not lower (higher) than the other.45 There would not be any calendar

spread arbitrage opportunity: for any couple of contemporaneous mid-quotes of call (put) options with

the same strike price, the mid-quote of the call (put) option with the longer maturity is not valued less

than the other.

3.4 Estimation results

This section discusses the estimates of the SDF and some characteristics of the historical joint dynam-

ics of the state variables. Section 3.4.1 describes the results of the kernel estimation of the historical

conditional correlation of the state variables, Sharpe ratio of an investment in the IBM stock and skew-

ness and kurtosis of the returns. Section 3.4.2 reports the results of the XMM estimation of the SDF

parameters vector. Section 3.4.3 describes the tilting factor T introduced in Equation (3.15) on the

kernel estimator of the transition density. Finally, Section 3.4.4 describes the differences between the

estimates of correlation function, Sharpe ratio, skewness and kurtosis of the returns obtained by using

the kernel estimator f̂ and the full-information estimator f̂ ?.

3.4.1 Dynamic properties of the state variables without a no-arbitrage model

In this section fully nonparametric estimates of some properties of the historical dynamics of the state

variables are described. The historical conditional correlation function between the state variables, the

conditional Sharpe ratio of an investment in the IBM stock over a one-day horizon and the conditional

skewness and kurtosis of the returns are considered. These quantities are estimated by using the kernel

estimator f̂ of the transition density of the state variables defined in Equation (3.8). The conditional

expectations involved in the definitions of these quantities are estimated by a Nadaraya-Watson kernel

regression function estimator. The matrix bandwidth for the kernel estimation is proportional to the

one chosen by the multivariate generalized Scott’s rule of thumb (see e.g. Hardle, Muller, Sperlich and

Werwatz [2004], p. 73, and Simonoff [1996], ch. 4). The proportional constants for the four quantities

are 2.5, 2.2, 2, 1.25, respectively in the order they have been introduced in this section.46 For these

estimations, the full time series of the state variables for the period from 2006/01/03 to 2008/08/29

is used. The four considered estimators are asymptotically normal. The derivation of this behavior is

reported in Appendix 5.1.2. The width of the 95% confidence interval derived from the estimate of

the asymptotic variance is smaller than the 10% of the absolute value of the point estimate for most of

values of the conditioning stock return and RV.

45For a given maturity, the call (put) option mid-quotes are convex decreasing (increasing) in the strike price.
46The development of a data-driven method for the selection of the optimal bandwidth matrix for the considered appli-

cations is beyond the scope of this paper.
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We see the estimates of the four quantities as functions of both the conditioning state variables in

Figure 3.4. The value of each quantity is displayed by a contour plot. Each plot is presented along

with its color legend on the right side. Darker (lighter) is the color of a point in the plot, higher (lower)

is the value of the function. Because of space constraints, the 95% confidence bounds are not reported.

The figure is composed by eight panels. In the upper panels the axes cover the 1st to 99th inter-quantile

range of the marginal sample distribution of stock return and RV, that is about [−0.03 : 0.03] for the

former and [0.006 : 0.022] for the latter. In the lower panels the axes cover the 10th to 90th inter-

quantile range of the marginal sample distribution of the variables, that is about [−0.014 : 0.014] for

the return and [0.007 : 0.016] for the RV. All the estimated quantities vary over the conditioning state

variable space, particularly for relatively high value of the conditioning RV. As a result, each condi-

tional quantity can greatly differ from the values of its unconditional counterpart. As an implication

for the analyzed time series of the state variables, in the (relatively) volatile period of the considered

sample, i.e. after July 2007, the quantities are more sensitive to the variations in the conditioning

return than before. In each of the upper panels a rectangle surrounds the area that is zoomed in the

lower panel. The joint historical realizations of the state variables outside the rectangle depicted in

the upper panels are more sparse than inside. We see this in the lower left panel of Figure 3.1. Let us

restrict in this section the analysis of the considered quantities for the values of the conditioning state

variables considered in the lower panels. For these values the estimation is quite accurate.47 For a

positive conditioning return, the correlation between the state variables is negative, the Sharpe ratio is

positive and the third and fourth moments of the distribution of the return are relatively close to those

of a normal distribution. For a negative conditioning return, the correlation between the state variables

is negative and stronger than for a positive conditioning return, the Sharpe ratio is almost null and the

distribution of the return is leptokurtic and negatively skewed.

In the first lower panel of Figure 3.4 we see the estimated conditional correlation of the state

variables. For most of the values of the conditioning state variables, the correlation is negative, consis-

tently with a contemporaneous leverage effect. While the unconditional contemporaneous correlation

between the state variables is about −0.1, as displayed in the two lower panels of Figure 3.2, its con-

ditional counterpart varies approximatively in the range [−0.2 : 0]. The qualitative behavior of this

function is increasing in the conditioning stock return. For a positive conditioning return, the function

is increasing in the conditioning RV, while for a negative conditioning return the contemporaneous

correlation between the state variables is quite stable at around −0.2. The overall behavior of this

function is consistent with a contemporaneous leverage effect that gets more pronounced (i.e. more

negative correlation between the state variables) for a negative conditioning return.

47The loss of accuracy in the estimation for values of the state variables outside the rectangle is due to boundary effects.
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In the second lower panel of Figure 3.4 we see the estimated conditional Sharpe ratio over a one-

day horizon. It varies approximatively in the range [−0.05 : 0.1], corresponding to an annualized

Sharpe ratio ranging in [−0.79 : 1.58]. This variation means that there is not a direct proportionality

between the estimated conditional expectation of the excess return and the standard deviation of the

return. The highest values of the Sharpe ratio are for very low values of the conditioning RV and for

very high values of both the conditioning state variables. Its lowest values are for very high values of

the conditioning RV and negative values of the conditioning return. In the former case the IBM stock

is expected to outperform the T-bill, in the latter case to do the opposite. We can distinguish between

two different behaviors of the Sharpe ratio for values of the conditioning RV that are lower than 0.013,

that is about the RV sample 75th quantile, and higher values. In the former case, the Sharpe ratio

varies weakly around 0 as a function of the conditioning return. In the latter case, the Sharpe ratio is

an increasing function of the conditioning return and varies in the range [−0.05 : 0.1]. This finding is

consistent with the idea that higher is the RV, more strongly bad and good news on the return affect

the expectation of the performance of the IBM stock.

In the third lower panel of Figure 3.4 we see the estimated conditional skewness of the returns.

This function varies approximatively in the range [−0.4 : 0.1]. For most of the conditioning values of

the state variables it is negative, pointing out the presence of a conditional left tail risk over a one-day

horizon. The entity of this risk varies as the values of the conditioning state variables change. Higher

are the values of the conditioning state variables, higher is the value of the conditional skewness, i.e.

less negative return are expected to realize and lower is the conditional left tail risk. For extremely

high values of the conditioning state variables, the estimated conditional skewness is positive. Only

for these values of the conditioning state variables the stockholder does not face the left tail risk.

In the fourth lower panel of Figure 3.4 we see the estimated conditional kurtosis of the return. The

function varies approximatively in the range [3.5 : 5], showing that the sample conditional distribution

of the returns is always leptokurtic. The highest (respectively lowest) values of this quantity are for

high values of the conditioning RV and negative (respectively positive) values of the conditioning

return. The estimated conditional kurtosis varies especially for high values of the conditioning RV. In

this case, lower is the return, more extreme events are expected to occur.

3.4.2 Stochastic discount factor parameters

This section contains the description of the XMM estimates of the SDF parameters vector at each day

of July and August 2008. These estimates are compared with the cross-sectional calibration (CS) and

GMM estimates of the same vector, i.e. the estimates obtained by a minimization of only the first or

second part of the criterion in Equation (3.11).
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In Figure 3.5 we see the estimates of the SDF parameters vector as functions of the date. The

XMM estimates are indicated by a solid line and the GMM and CS estimates by two different dashed

lines. When estimates of the same parameter obtained by different methodologies vary in different

ranges, their plots are on different axis scales. Specifically, the smaller inner graph plots the estimate

that varies in the widest range. We find in Table 6 the sample mean value and standard deviation over

time of the estimates of each SDF parameter obtained by using the three estimators.48 The XMM

and GMM methods give similar results in the estimation of θ2, θ3 and θ5, in terms of both mean and

standard deviation over time. The XMM and CS methods do it for θ4 and all the three methodologies

do it for θ1. The fact that neither the CS nor the GMM method provides the same results as the XMM

supports the idea that the time series of state variables and the cross-section of option mid-quotes

carry informations on the SDF parameters that are not redundant. The GMM method, that exploits

the information content of the time series of share and non-defaultable zero-coupon bond prices, is

able to estimate the market discount for future realizations of the excess return. It then provides a

reliable estimate of parameter θ2, but it does not do the same for parameter θ4. Differently, the CS

method, that exploits the information content of the cross-section of asset prices at the current date, is

able to provide a reliable estimate of the market discount for future realizations of the return variance,

measured through parameter θ4. It does not do the same for parameter θ2. This is consistent with the

idea that the price of share and non-defaultable zero-coupon bond are sources of information mostly

on the premium for the risk of a different excess return than expected and that option quotes have a

similar role w.r.t. the return variance. The benefit given by the XMM method is combining the time

series and cross-sectional information to get at the same time reliable estimates of parameters θ2 and

θ4.

The quantity−θ2 (rt+1 − rf,t+1)−θ4σ
2
t+1 at the exponent in the RHS of Equation (3.1) depends on

the realizations of the state variables at day t+1 and gives rise to the discount for risks. The mean over

time of the XMM and GMM estimates of parameter θ2 is about 0.49, with a standard deviation that

is lower than 0.001. For this value of parameter θ2, the discount of the asset-to-stock price ratios for

the risk of a lower excess return than expected is about 1.0098, 0.9997 and 0.9910 for the 5th quantile,

median value and 95th quantile of the excess returns distribution. The mean over time of the XMM

and CS estimates of parameter θ4 is about −0.15, with a standard deviation over time that is about

0.01. For this value of parameter θ4, the discount of the asset-to-stock price ratios for the risk of an

higher return variance than expected is about 1 + (0.61 E−5), 1 + (1.41 E−5) and 1 + (5.30 E−5),

respectively, for the 5th quantile, median value and 95th quantile of the RV distribution. The estimated

positive sign of θ2 and negative sign of θ4 cause an overall shift of probability towards lower stock

48GR show that the XMM estimator of the SDF parameters vector is asymptotically normal.
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XMM GMM CS

θ1
1.9063 E−6

(0.6255 E−6)
2.4837 E−6

(0.5058 E−6)
1.9007 E−6

(0.7301 E−6)

θ2
0.4906

(0.0005)
0.4909

(0.0005)
0.0531

(2.7723)

θ3
−0.0013
(0.0001)

−0.0012
(0.0001)

0.1719
(2.2241)

θ4
−0.1483
(0.0095)

0.0081
(0.0540)

−0.1571
(0.0100)

θ5
0.0061

(0.0189)
−0.0068
(0.0350)

0.8351
(3.9606)

Table 6: Estimates of the SDF parameters. The mean (upper number) and the standard deviation
(lower number in brackets) over time of the estimates of each SDF parameter are reported. They are
obtained by the Extended Method of Moments (XMM), Generalized Method of Moments (GMM) and
Cross-Sectional (CS) estimation methodologies.

return and higher RV values when passing from the historical to the risk-neutral transition density of

the state variables. Therefore, for pricing purpose more weights is put on negative stock return and

high RV values. This result is consistent with the idea of risk averse investors more concerned about

adverse outcomes than favorable ones. The CS estimate of parameter θ2 and the GMM estimate of the

parameter θ4 vary strongly over time and do not lead to clear economic interpretations of the discount

for risks.

The quantity −rf,t+1 − θ1 − θ3 (rt − rf,t) − θ5σ
2
t at the exponent in the RHS of Equation (3.1)

depends on the values of the state variables at day t and generates the fixed-discount. The estimate

for parameter θ5 varies greatly at different days. The CS estimates for parameter θ3 are unstable over

time. The estimate of parameter θ1 is of order E−6 and the GMM and XMM estimate of parameter θ3

are of order E−3. The risk-free rate is at least of order E−5 and about half of its realizations are of

order E−4 (see Table 3). Since the excess return is at most of order E−2, the main contribution to the

fixed-discount is given by the risk-free rate.

The dispersion in the estimates of the model parameters can be due to the statistical variability

of the estimators and the model misspecification. We have model misspecification if no admissible

SDF has the specification in Equation (3.1) or if some state variables are omitted. The first possibility

realizes if no admissible SDF is monotonically decreasing in the state variables. The second possibility

realizes if not only stock return and return volatility but also other factors affect the price of IBM

shares. For instance, this is case if the IBM stock price is correlated with other financial assets or

factors linked to the business IBM strategy or to the supply and demand of IBM shares. There is

no statistical evidence in the data against the chosen model specification, and in particular against
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the presence of a discount for the risks of a lower excess return and an higher return variance than

expected.

3.4.3 Tilting factor

This section contains the description of the tilting factor T introduced in Equation (3.15) at some

days and for some values of the conditioning state variables. When moving from the historical to

the risk-neutral transition density, we expect a shift of probability density toward a certain part of the

state variables space. We expect this shift because of the hypothesis of risk-adverse investors who

weight adverse outcomes more than positive ones for pricing. The findings reported in Section 3.4.2

and in particular the estimated signs of parameters θ2 and θ4 are consistent with this idea. Differently,

since functions f̂ are f̂ ? are both estimators of the historical transition density of the state variables,

we do not expect any monotonic shift of probability density when passing from a function to the

other. At most, if the economic model is not redundant for the estimation, we can just expect the

full-information estimator f̂ ? to be a more precise estimator of the historical transition density of the

state variables than the kernel estimator f̂ . In this case, we can expect that the estimates obtained by

using the former estimator are more stable over time than the ones obtained by using the latter. This is

exactly what it is empirically found and described in the following Section 3.4.4.

As an illustration, let us consider the estimated tilting factor just at 2008/08/06 and 2008/08/20

and for the contemporaneous value of the conditioning state variables. At both these days the RV has

an intermediate value between its median for the entire period from January 2006 to August 2008 and

its median for the (relatively) volatile period after July 2007. At 2008/08/06 the value of the return

is about 0.003 and the one of the RV is about 0.011. The options considered at this day are 6 put

and 6 call options. The put options have time-to-maturities up to 31 business days and moneyness

strikes included in the range [0.81 : 1.00]. For the call options these numbers are 50 and [0.96 : 1.08],

respectively. At 2008/08/20 the value of the return is almost null and the one of the RV is about

0.012. The cross-section of options considered at this day is composed by 8 put and 5 call options.

The put options have time-to-maturities up to 101 business days and moneyness strikes included in

the range [0.77 : 1.06]. For the call options these numbers are 101 and [1.02 : 1.14], respectively. At

these two days the adjustments provided by the tilting factor to the kernel estimator of the transition

density of the state variables is different. Specifically, for most of the conditioning values of the state

variables, considering the option quotes leads to a correction of the point estimate that is opposite at

the two days. At 2008/08/06 the tilting factor concentrates more weight at around the mean of the

kernel distribution. At 2008/08/20 it shifts some probability weights towards the tails of the kernel

distribution.
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Figure 3.6: Level plots for the kernel estimator of the transition density of the state variables (left
panels) and for the tilting factor normalized by its kernel expectation (right panels). The upper panels
refer to 2008/08/06, when 6 put and 6 call options with time-to-maturities up to 50 business days are
considered for the computation of the tilting factor, the value of the return is about 0.003 and the value
of the RV is about 0.011. The lower panels refer to 2008/08/20, when 8 put and 5 call options with
time-to-maturities up to 101 business days are considered for the computation of the tilting factor, the
value of the return is almost null and the value of the RV is about 0.012. In the right panels, the lines
are level curves of the corresponding kernel estimator on the left, while the numbers indicate the value
of the normalized tilting factor at the point where they are located.
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We see in the left panels of Figure 3.6 the kernel estimator of the transition density of the state

variables. The conditioning state variables are fixed to the value they assume on the considered day.

The estimator is displayed in the form of a contour plot. The axes cover the values of the stock return

and RV that correspond to their 10th to 90th inter-quantile ranges. The estimated kernel transition

densities are both unimodal. The one that refers to 2008/08/06 (upper panel) is more peaked than the

other. The future outcomes are less uncertain at the first day, when the value of the RV is lower.

We see in the right panels of Figure 3.6 the estimator of the normalized tilting factor defined in

Equation (3.15). It is the tilting factor normalized by its kernel expected value, i.e. the pointwise

f̂ ? to f̂ ratio. The conditioning stock return and RV are again fixed to the value they assume on the

considered day. The bandwidth matrix is twice the one chosen by the Scott’s rule of thumb. The

normalized tilting factor is plotted in the form of a contour plot with the axes covering the same ranges

as in the left panels. We see in these panels also some level curves of the kernel estimator of the

transition density on the left and numbers indicating the value of the normalized tilting factor at some

points. These level curves help to distinguish the areas where the option data bring a greater correction

to the estimator of the transition density. In the areas with color level equal to 1 the estimators f̂ ? and f̂

coincide. The main modifications made by the tilting factor are on the tails of the transition density, i.e.

close to the borders of the panels. At 2008/08/06 the normalized tilting factor varies approximatively

in the range [0.9 : 1.15] (see upper right panel). It reaches its minimum for extremely high values of

the state variables and its maximum for very low values of RV. At this day the tilting factor shifts the

probability distribution toward lower values of RV. At 2008/08/20 the normalized tilting factor varies

approximatively in the range [0.7 : 1.4] (see lower right panel). It reaches its minimum for low values

of the RV and its maximum for very high values of stock return and RV. At this day the the tilting

factor shifts the probability distribution toward higher values of the state variables. The contribution

given by the options to a more accurate estimation of the quantities is more appreciable less accurate is

the kernel estimation of the transition density of the state variables. Specifically, because of boundary

effects, the kernel estimation is less accurate for extreme values of the conditioning state variables.

The difference between the ranges of variation for the tilting factor at every day at July and August

2008 is consistent with the idea that at a day with more uncertainty the adjustment provided by the

options on the expected future outcomes is relatively greater.

3.4.4 Dynamic properties of the state variables with a no-arbitrage model

This section contains a comparison between the estimates of some dynamic properties of the state

variables obtained by using the kernel estimator f̂ and the full-information estimator f̂ ? at each day

of July and August 2008. As in Section 3.4.1, the considered quantities are the historical conditional
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correlation function between the state variables, the conditional Sharpe ratio of an investment in the

IBM stock over a one-day horizon and the conditional skewness and kurtosis of the returns. In the

first four panels of Figure 3.7 the estimates of the four quantities are displayed as functions of the

date. They are computed for the contemporaneous value of the conditioning state variables. For each

quantity, the dotted line, labeled “Kernel”, indicates the estimate obtained by using f̂ , while the solid

line, labeled “Tilted”, indicates the estimate obtained by using f̂ ?. We can see the daily stock return

and RV during the two considered months in the center and right lower panels.
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The variation of the estimated quantities over time has potentially three causes: the change in the

values of the conditioning state variables, the statistical variability in the estimation and any possible

model misspecification. First, stock return and RV vary over time and the considered quantities are

conditional on specific values of these variables. Second, the estimation of the model parameters is

performed with different data samples. Third, the choices of the state variables and the parametrization

of Equation (3.1) are assumptions. The contribution given by the two last points to the time variation

of the estimated quantities is small. Concerning the different data samples, let us make two general

considerations. First, the application of the kernel estimator to time series that consist of hundreds of

observations that differ only for few of them most likely does not lead to statistically different results.

Second, it seems reasonable to assume that the quotes of the considered options carry similar informa-

tion about the data generating process. Moreover, as shown in Section 3.4.2, the XMM estimates of

the SDF parameter vector are quite stable over time and this stability supports the validity of the as-

sumptions. Then, as a whole, a major part of the variation in the time series of the estimated quantities

is caused by the changing value of the conditioning state variables and only a minor part is due to the

statistical variability.

The range of variation over time of the estimates obtained by f̂ ? is mainly smaller than the one of

the estimates obtained by f̂ . Moreover, the range of variation of the latter estimates has two regimes:

it is broader before 2008/07/17, when the state variables have extreme values, and lower afterwards,

when the state variables assume very high but not extreme values. In the first period the stock return

varies approximatively in the range [−0.03 : 0.03] and the RV does it in [0.01 : 0.025], while in the

second period the return varies approximatively in the range [−0.015 : 0.015] and the RV does it in

[0.01 : 0.015]. While we observe two regimes of variability for the estimates obtained by f̂ , no clear

separation in different regimes appear when the estimation is performed by f̂ ?. Adopting an arbitrage-

free pricing model leads to estimates of some dynamic properties of the state variables that are more

stable over time.

We see in the left upper panel of Figure 3.7 the time series of the estimates of the conditional

correlation between the state variables. The estimates obtained by f̂ ? are almost always negative,

while the estimates obtained by f̂ vary approximatively in the range [−0.25 : 0.15] before 2008/07/17

and are negative afterwards. While the former estimates support the presence of a contemporaneous

leverage effect, the latter does it only after 2008/07/17.

We see in the center upper panel the time series of the estimates of the conditional conditional

Sharpe ratio of an investment in the IBM stock over a one-day horizon. The estimates obtained by f̂

and by f̂ ? give very different results. The former are almost always positive, varying approximatively

in the range [−0.02 : 0.14] before 2008/07/17 and in the range [−0.02 : 0.06] afterwards. The latter
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are extremely stable over time with value at about−0.01. Then, while considering only the time series

of stock return and RV encourages, in terms of Sharpe ratio, almost always a long position in the

IBM stock, taking into account this time series and the option data in an arbitrage-free pricing model

provides an opposite suggestion.

We see in the right upper panel the time series of the estimates of the conditional skewness of the

returns. The estimates obtained by f̂ vary approximatively in the range [−0.5 : 0.5] before 2008/07/17

and are almost always negative afterwards. Differently, the estimates obtained by f̂ ? are almost always

negative before 2008/07/17 and positive afterwards. Considering both the time series of the state

variables and the option data under an arbitrage-free pricing model makes the shareholder fear the left

tail risk only before 2008/07/17.

Finally, we see in the left lower panel the time series of the estimates of the conditional kurtosis

of the returns. The estimates obtained by both the estimators of the transition density vary approxi-

matively in the range [1.5 : 6] before 2008/07/17 and in the range [3 : 5.5] afterwards. In the second

period, the transition density, estimated in both ways, is leptokurtic. Before 2008/07/17, the informa-

tion content in the option quotes suggest to take into account a greater fat tail risk, almost at any day.

The opposite happens in the second period.
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4 Appendix to Chapter 2

4.1 Regularity Assumptions

In this appendix we list the additional regularity assumptions used to derive the theoretical results of

the paper.

Assumption A 1. The support X = R× S ⊂ Rd of process (Xt) is compact.

Assumption A 2. The stationary pdf fZ of the vector Zt := [X ′t X
′
t−1]′ is of differentiability class

C ρ(R2d), for integer ρ ≥ 2, with uniformly continuous ρ-th order derivatives, and such that fZ > 0 in

the interior of the support X × X . The same conditions are satisfied by the stationary pdf fX of Xt.

Assumption A 3. The stationary pdf’s fZ and fX are such that
∫
X

∫
X

[
fZ(x, x̃)

fX(x)fX(x̃)

]q
fZ(x, x̃)dxdx̃ <

∞ for real q > 1.

Assumption A 4. There exists a growing sequence of sets XT := RT ×ST ⊂ X , for T ∈ N, and real

constants c1, c2 > 0 such that

sup
x∈XT

P
[
Xt+1 ∈ XC

T |Xt = x
]
→ 0, for T →∞,

inf
x,x̃∈XT

fZ (x, x̃) ≥ c1

log (T )c2
, inf
x∈XT

fX (x) ≥ c1

log (T )c2
.

Assumption A 5. The kernel function K is a bounded and Lipschitz function on Rd such that∫
Rd
‖x‖ρK(x)dx <∞ , where ρ is defined in Assumption A 2, and

∫
Rd
xjK(x)dx = 0, for all multi-

indices j ∈ Nd such that |j| ≤ ρ− 1.

Assumption A 6. The bandwidth hT = o(1) is such that
log (T )2

Th3d
T

= o(1), Th2ρ
T = o(1).

Assumption A 7. The parameter θ0 is in the interior of compact set Θ ⊂ Rp.

Assumption A 8. The SDF m(x; θ) is of differentiability class C 1(Θ) w.r.t. θ ∈ Θ, for all x ∈ X .

Assumption A 9. The SDF m(x; θ) satisfies: (i) E
[
|m(Xt+1; θ0)|2p

]
< ∞ for real p > 1 such that

1/p+ 1/q = 1, where q > 1 is defined in Assumption A 3; (ii) sup
θ∈Θ
x∈X

E
[
|m(Xt+1; θ)|2+δ

∣∣Xt = x
]
<∞,

for real δ > 0.

Assumption A 10. The matrix ΩT converges in probability to the positive-definite matrix Ω0.

Assumption A 11. The matrix Ω̃T (x) converges in probability to the positive-definite matrix Ω̃0(x),

uniformly in x ∈ X .
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Assumption A 12. The weight ωT converges in probability to the non-negative scalar ω.

Assumptions A 1-4 concern the distribution of process (Xt). In particular, the condition of com-

pact support in Assumption A 1 simplifies the proofs and can be relaxed at the expense of additional

technical burden. Assumption A 2 is standard for kernel estimation. Assumption A 3 restricts the

dependence between Xt and Xt−1 at the boundaries of the support. It is used to prove that the Ameri-

can put pricing operator A maps L2(Y) into L2(Y) in Appendix 4.3. Assumption A 4 constraints the

decay behavior of the stationary densities of Xt and [X ′t X
′
t−1]′ at the boundary of their supports. The

sequence of sets XT , T ∈ N, is such that these densities are bounded away from zero from below on

XT and XT × XT , respectively, at an inverse logarithmic rate as T increases. This sequence of sets is

introduced to define trimmed versions of the kernel regression estimators (see the proof of Proposition

4 in Appendix 4.6.1) and control for boundary effects.

Assumptions A 5-6 concern the kernel and the bandwidth. FunctionK is a kernel of order ρ, that is

the same as the differentiability order of the densities in Assumption A 2. The bandwidth conditions in

Assumption A 6 are stronger than the standard ones used for d-dimensional kernel estimation. The first

condition ensures that the second-order terms in the Fréchet expansions are negligible asymptotically

(see the proof of Proposition 5 in Appendix 4.6.2). The second condition is used to show that the

bias of estimators constructed by averaging kernel regression estimators over the conditioning value

is asymptotically negligible (see the proof of Proposition 7 in Appendix 4.6.3). When hT = cT−η for

real constants c, η > 0, Assumption A 6 is satisfied if
1

2ρ
< η <

1

3d
.

Assumption A 7 is standard for parametric estimation. Assumptions A 8-9 concern the SDF. They

involve a differentiability condition w.r.t. parameter θ, as well as a uniform boundedness condition for

higher-order conditional moments of the SDF. Finally, Assumptions A 10-12 concern the weighting

matrices in the criteria to estimate vector θ, and the scalar weight in the criterion of the estimator of

density f in Definition 4. These assumptions ensure well-defined large sample limits for these criteria

and are used to prove uniqueness of the extrema.

4.2 Proof of Proposition 1

At maturity, i.e. for h = 0, the American put option price is Vt(0, K) = (K − St)+ = St(kt − 1)+ =

Stv(0, yt). The proof proceeds by induction w.r.t h. Let us assume that the homogeneity property

holds at time-to-maturity h − 1, i.e., Vt+1(h − 1, K) = St+1v(h − 1, Yt+1). From Equation (1.9), the
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definition of the moneyness strike and the Markov property of Yt under Q we get

Vt(h,K) = max
[
(K − St)+,EQ

[
Vt+1(h− 1, K)|Yt

]]
= max

[
(K − St)+,EQ

[
K

kt+1

v(h− 1, Yt+1)

∣∣∣∣Yt]]

= St max

[
(kt − 1)+, EQ

[
kt
kt+1

v(h− 1, Yt+1)

∣∣∣∣Yt]] = Stv(h, Yt).

4.3 Domain and range of the American put pricing operator

Let ϕ ∈ L2(Y) and define the operator E by

E [ϕ](yt) := EQ

[
kt
kt+1

ϕ(Yt+1)

∣∣∣∣Yt = yt

]
. (4.1)

From Equation (2.5) and by the Cauchy-Schwarz inequality we get

|E [ϕ](ỹ)| ≤
(∫
X
erϕ(k̃e−r, x)2fX(x)dx

)1/2(∫
X
m(x; θ0)2er

f(x|x̃)2

fX(x)
dx

)1/2

, (4.2)

for any ỹ = [k̃ x̃′]′ ∈ Y . Then we have∫
Y
|E [ϕ](ỹ)|2 fX(x̃)

k̃2
dỹ

≤
(∫

R+

∫
X
erϕ(k̃e−r, x)2fX(x)

1

k̃2
dk̃dx

)(∫
X

∫
X
m(x; θ0)2er

f(x|x̃)2

fX(x)
fX(x̃)dxdx̃

)

=

(∫
Y
ϕ(y)2fX(x)

k2
dy

)(∫
X

∫
X
m(x; θ0)2er

fZ(x, x̃)2

fX(x)fX(x̃)
dxdx̃

)
<∞, (4.3)

where we use the change of variable from k̃ to k = k̃e−r and that the double integral in the RHS of

(4.3) is finite from Assumptions A 1, A 3 and A 9 (i) and the Hölder inequality. Thus, E [ϕ] ∈ L2(Y).

Since v(0, .) ∈ L2(Y), it follows A [ϕ] = max [v(0, .), E [ϕ]] ∈ L2(Y). Thus, operator A maps L2(Y)

into L2(Y).

4.4 Proof of Proposition 2

In this appendix we use the simplified notation A = Aθ,f , m(.) = m(.; θ), g = g(θ, f), EQ = EQ
θ,f ,

E = Eθ,f and fQ
l−1 = fQ

θ,l−1. Moreover, we denote by FQ
Y (·|y) the conditional cdf of Yt+1 given Yt = y
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under the risk-neutral probability measure.

4.4.1 Differentiability of g almost everywhere

Let us first consider the differentiability of g w.r.t. θ. The holding-to-stock price u(h, .) and the Amer-

ican put option-to-stock price v(h, .) depend on the SDF parameter θ for any h > 0. For expository

purpose, we omit this dependence in the notation. By Definition 1, Equations (2.6) and (4.1) and the

linearity of operator E , we can write the holding-to-stock price ratio as

u(h, y) = E [v(h− 1, .)] (y) = E [max [v(0, .), u(h− 1, .)]] (y)

= E [max [0, u(h− 1, .)− v(0, .)]] (y) + E [v(0, .)] (y). (4.4)

We know that u(h− 1, y)− v(0, y) ≥ 0 if and only if k ≤ k∗(h− 1, x), where the critical moneyness

strike k∗(h− 1, x) is the solution of the equation

k − 1 = u(h− 1, k, x) (4.5)

in k ∈ R+. Thus from Equations (2.5) and (4.4)

u(h, y) =

∫
X
m(x̃)er̃1{ke−r̃ ≤ k∗(h− 1, x̃)}[u(h− 1, ke−r̃, x̃)− v(0, ke−r̃, x̃)]f(x̃|x)dx̃

+

∫
X
m(x̃)er̃v(0, ke−r̃, x̃)f(x̃|x)dx̃,

for y = [k x′]′ and the indicator function 1{.}. For expository purpose, let us assume that ke−r̃ ≤
k∗(h− 1, x̃) if and only if r̃ ≥ r∗(h− 1, k, σ̃), where r∗(h− 1, k, σ̃) is the solution of the equation

ke−r̃ = k∗(h− 1, r̃, σ̃) (4.6)

in r̃ ∈ R, for given [k σ̃]′ ∈ R+ × S .49 Then we have:

u(h, y) =

∫
S

∫ b

r∗(h−1,k,σ̃)

m(x̃)er̃[u(h− 1, ke−r̃, x̃)− v(0, ke−r̃, x̃)]f(x̃|x)dr̃dσ̃

+

∫
X
m(x̃)er̃v(0, ke−r̃, x̃)f(x̃|x)dx̃, (4.7)

49This holds for instance when the transition density of Xt given Xt−1 does not depend on rt−1. The argument of the
proof extends easily when the set {r̃ : ke−r̃ ≤ k∗(h − 1, x̃)} can be written as the union of a finite number of intervals,
but the notation is more cumbersome.
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where b is the upper boundary of R. Let us now show that u is continuous and differentiable w.r.t.

θ by induction. This is true for h = 0. Now, let us assume that u(h − 1, .) is continuous and dif-

ferentiable w.r.t. θ. From Equations (4.5) and (4.6) and the implicit function theorem, it follows that

r∗(h − 1, k, σ̃) is differentiable w.r.t. θ. Then, by the Leibniz integral rule for differentiation of a

definite integral applied to Equation (4.7) and Assumption A 8, u(h, .) is differentiable w.r.t. θ. By

using Ah[v(0, .)](y) = max [v(0, y), u(h, y)], we get that Ah[v(0, .)](y) is continuous for all θ and

differentiable for all θ apart from the values such that v(0, y) = u(h, y). By replacing the differen-

tiability w.r.t. θ with the Fréchet differentiability w.r.t. f , and by following a similar argument, we

can show that Ah[v(0, .)](y) is Fréchet-differentiable w.r.t. f , for all f , apart from the values such that

v(0, y) = u(h, y).

4.4.2 Total differential of g w.r.t. the parameters

Let us consider a generic payoff-to-stock price ratio ϕ ∈ L2(Y) and the mapping (θ, f) 7→ E [ϕ]. The

differential of E [ϕ] w.r.t. (θ, f) is given by

δE [ϕ](y) =

∫
X
m(x̃)er̃ϕ(ke−r̃, x̃)δf(x̃|x)dx̃+

∫
X
∇θ′m(x̃)er̃ϕ(ke−r̃, x̃)f(x̃|x)dx̃δθ, (4.8)

where δf and δθ denote infinitesimal variations of parameters f and θ, respectively. Let us now

consider the mapping (θ, f) 7→ Ah[v(0, .)], for a given integer h ≥ 1, and compute its differential

w.r.t. (θ, f) in terms of the differential of E given in Equation (4.8). We write

Ah[v(0, .)](y) =
(
E ◦ Ah−1[v(0, .)](y)− v(0, y)

)+
+ v(0, y),

where ◦ denotes operator composition. The right derivative of function (.)+ is the indicator 1{. ≥ 0}.
Then, by the chain rule and the product rule for differentiation and the total differential, we get

δAh[v(0, .)](y) = 1C(h)(y)
(
δE [v(h− 1, .)] (y) + E ◦ δAh−1[v(0, .)](y)

)
, (4.9)
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where we make use of the definitions of the continuation region in Equation (2.4) and the American

put option-to-stock price ratio in Equation (2.7). We can iterate Equation (4.9) to get

δAh[v(0, .)](y) = 1C(h)δE [v(h− 1, .)] (y) + 1C(h)E ◦ 1C(h−1)δE [v(h− 2, .)] (y)

+1C(h)E ◦ 1C(h−1)E ◦ 1C(h−2)δE [v(h− 3, .)] (y) + . . .

+1C(h)E ◦ 1C(h−1)E ◦ . . . ◦ 1C(2)E ◦ 1C(1)δE [v(0, .)] (y), (4.10)

where operator 1C(h)E is such that 1C(h)E [ϕ] (y) = 1C(h)(y)E [ϕ] (y). By using v(h−l, .) = Ah−l [v(0, .)],

for 1 ≤ l ≤ h, we rewrite Equation (4.10) as:

δAh[v(0, .)](y) =
h∑
l=1

1C(h)E ◦ 1C(h−1)E ◦ . . . ◦ 1C(h−l+2)E ◦ 1C(h−l+1)δE ◦ Ah−l [v(0, .)] (y). (4.11)

Thus, the total differential of vector g w.r.t. f and θ is given by

δgj =

hj∑
l=1

1C(hj)E ◦ 1C(hj−1)E ◦ . . . ◦ 1C(hj−l+2)E ◦ 1C(hj−l+1)δE ◦Ahj−l [v(0, .)] (yj), if j = 1, . . . , N.

(4.12)

4.4.3 Fréchet derivative of g w.r.t. the historical transition density

To compute the Fréchet derivative of the vector g w.r.t. f , we replace δE in Equation (4.12) from

Equation (4.8) with δf(x̃|x) = ∆f(x̃|x) and δθ = 0. Let us focus on the quantity

1C(hj)E ◦ . . . ◦ 1C(hj−l+2)E ◦ 1C(hj−l+1)δE ◦ Ahj−l [v(0, .)] (yj),

for some integers l and hj such that 1 ≤ l ≤ hj , and let us write it explicitly. For l = 1 this quantity is

equal to

1C(hj)δE ◦ Ahj−1 [v(0, .)] (yj)

= 1C(hj)(yj)

∫
X
Ahj−1[v(0, .)](kje

−rt+1 , xt+1)m(xt+1)ert+1∆f(xt+1|x0)dxt+1. (4.13)

Let us now consider the case l ≥ 2. First, the operator A is applied hj − l times to discount the

payoff-to-stock price ratio v(0, .) from date t + hj back to date t + l. Second, 1C(hj−l+1)δE is applied
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to discount from date t+ l back to date t+ l − 1:

1C(hj−l+1)δE ◦ Ahj−l [v(0, .)] (yt+l−1)

= 1C(hj−l+1)(yt+l−1)

∫
X
m(xt+l)e

rt+lAhj−l[v(0, .)](kt+l−1e
−rt+l , xt+l)∆f(xt+l|xt+l−1)dxt+l.

Third, 1C(hj−l+2)E is applied to discount from date t+ l − 1 back to date t+ l − 2:

1C(hj−l+2)E ◦ 1C(hj−l+1)δE ◦ Ahj−l [v(0, .)] (yt+l−2)

= 1C(hj−l+2)(yt+l−2)

∫
X
m(xt+l−1)ert+l−11C(hj−l+1)(kt+l−2e

−rt+l−1 , xt+l−1)
(∫
X
m(xt+l)e

rt+l

Ahj−l[v(0, .)](kt+l−2e
−rt+l−1−rt+l , xt+l)∆f(xt+l|xt+l−1)dxt+l

)
f(xt+l−1|xt+l−2)dxt+l−1.

Fourth, operators 1C(hj−l+3)E , . . . ,1C(hj)E are applied successively to discount from date t+ l−2 back

to date t to get

1C(hj)E ◦ . . . ◦ 1C(hj−l+2)E ◦ 1C(hj−l+1)δE ◦ Ahj−l [v(0, .)] (yj)

=

∫
Y
. . .

∫
Y
1C(hj)(yj) . . .1C(hj−l+2)(yt+l−2)

kj
kt+l−2

·
∫
X
m(xt+l−1)ert+l−11C(hj−l+1)(kt+l−2e

−rt+l−1 , xt+l−1)

·
(∫
X
m(xt+l)e

rt+lAhj−l[v(0, .)](kt+l−2e
−rt+l−1−rt+l , xt+l)∆f(xt+l|xt+l−1)dxt+l

)
·f(xt+l−1|xt+l−2)dxt+l−1dF

Q(yt+l−2|yt+l−3) . . . dFQ(yt+1|yj).

By rearranging the terms, the RHS of the previous equation is equal to

1C(hj)(yj)

∫
X

∫
X
m(xt+l)e

rt+lζ(hj, l, xt+l, xt+l−1; yj)∆f(xt+l|xt+l−1)dxt+ldxt+l−1,
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where

ζ(hj, l, x, x̃; yj) := m(x̃)er̃
∫
Y
. . .

∫
Y
1C(hj−1)(yt+1) . . .1C(hj−l+2)(yt+l−2)

kj
kt+l−2

·1C(hj−l+1)(kt+l−2e
−r̃, x̃)Ahj−l[v(0, .)](kt+l−2e

−r̃−r, x)f(x̃|xt+l−2)

·dFQ(yt+l−2|yt+l−3) . . . dFQ(yt+1|yj). (4.14)

Thus, we get

1C(hj)E ◦ . . . ◦ 1C(hj−l+1)δE ◦ Ahj−l [v(0, .)] (yj)

= 1C(hj)(yj)

∫
X

∫
X
m(x)erζ(hj, l, x, x̃; yj)∆f(x|x̃)dxdx̃, (4.15)

for l ≥ 2. From Equations (4.13) and (4.15) we deduce the Fréchet derivative w.r.t. f :

〈Dgj,∆f〉 = 1C(hj)(yj)

∫
X
m(x)erAhj−1[v(0, .)](kje

−r, x)∆f(x|x0)dx

+1C(hj)(yj)

hj∑
l=2

∫
X

∫
X
m(x)erζ(hj, l, x, x̃; yj)∆f(x|x̃)dxdx̃, (4.16)

for j = 1, . . . , N . To conclude the proof, we rewrite function ζ in terms of a risk-neutral expectation

using

er̃1C(hj−l+1)(kt+l−2e
−r̃, x̃)Ahj−l[v(0, .)](kt+l−2e

−r̃−r, x)

= EQ

[
kt+l−2

kt+l−1

1C(hj−l+1)(Yt+l−1)Ahj−l[v(0, .)](kt+l−1e
−r, x)

∣∣∣∣Xt+l−1 = x̃, Yt+l−2 = yt+l−2

]
.

Moreover, by the Markov property of Yt and Xt under Q, and Assumption 2, we have the following

equalities:

fQ(yt+l−2, . . . , yt+1|xt+l−1, yt) =
fQ(xt+l−1, yt+l−2, . . . , yt+1|yt)

fQ(xt+l−1|yt)

=
fQ(xt+l−1|xt+l−2)fQ(yt+l−2, . . . , yt+1|yt)

fQ(xt+l−1|xt)
=
m(xt+l−1)f(xt+l−1|xt+l−2)fQ(yt+l−2, . . . , yt+1|yt)

fQ(xt+l−1|xt)
,
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where we omit the subscripts for sake of notation. Hence:

m(x̃)f(x̃|xt+l−2)dFQ
Y (yt+l−2, . . . , yt+1|yj) = fQ

l−1(x̃|x0)dFQ
Y (yt+l−2, . . . , yt+1|Xt+l−1 = x̃, Yt = yj).

Thus, from (4.14) and the Law of Iterated Expectations:

ζ(hj, l, x, x̃; yj) = fQ
l−1(x̃|x0)EQ

[
1C(hj−1)(Yt+1) . . .1C(hj−l+2)(Yt+l−1)

kj
kt+l−1

Ahj−l[v(0, .)](kt+l−1e
−r, x)

∣∣∣∣Xt+l−1 = x̃, Yt = yj

]
.

Equation (2.15) follows.

4.4.4 Gradient of g w.r.t. the SDF parameter

The gradient of the vector g w.r.t. θ is obtained by replacing δE in Equation (4.12) with the expression

in Equation (4.8) for δf(x̃|x) = 0 and δθ = dθ. By similar arguments as in Appendix 4.4.3 we get

Equation (2.16).

4.5 Proof of Proposition 3

The differential w.r.t. the historical transition density f of the functional Lagrangian in Equation (2.26)

is

δL = δDT (f, f̂)− ωTλ′δg(θ̂∗, f)− ωTν ′0
∫
X

ΓU(x; θ̂∗)δf(x|x0)dx− ωTµ0

∫
X
δf(x|x0)dx

−
∫
X
f̂X(x̃)ν(x̃)′

∫
X

ΓU(x; θ̂∗)δf(x|x̃)dxdx̃−
∫
X
f̂X(x̃)µ(x̃)

∫
X
δf(x|x̃)dxdx̃. (4.17)
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Let us compute explicitly the first two differential terms in the RHS of Equation (4.17). The differential

of the criterion DT is

δDT (f, f̂) =

∫
X
f̂X(x̃)

∫
X

(
1 + log

(
f(x|x̃)

f̂(x|x̃)

))
δf(x|x̃)dxdx̃

+ωT

∫
X

(
1 + log

(
f(x|x0)

f̂(x|x0)

))
δf(x|x0)dx

=

∫
X
f̂X(x̃)

∫
X

log

(
f(x|x̃)

f̂(x|x̃)

)
δf(x|x̃)dxdx̃+ ωT

∫
X

log

(
f(x|x0)

f̂(x|x0)

)
δf(x|x0)dx,

where we use that f ∈ F satisfies the unit mass constraint and hence
∫
δf(x|x̃)dx = 0 for any x̃ ∈ X .

We get the expression of the differential δg(θ̂∗, f) from Proposition 2 by replacing θ with θ̂∗ and ∆f

with δf into Equation (2.15), and using the definition of vectors γS and γL:

δg(θ̂∗, f) =

∫
X
γS(x; θ̂∗, f)δf(x|x0)dx+

∫
X

∫
X
γL(x, x̃; θ̂∗, f)δf(x|x̃)dxdx̃.

Then, the differential of the functional Lagrangian L is

δL =

∫
X
ωT

(
log

(
f(x|x0)

f̂(x|x0)

)
− λ′γS(x; θ̂∗, f)− ν ′0ΓU(x; θ̂∗)− µ0

)
δf(x|x0)dx

+

∫
X

∫
X

(
log

(
f(x|x̃)

f̂(x|x̃)

)
− ωTλ

′γL(x, x̃; θ̂∗, f)
/
f̂X(x̃)

−ν(x̃)′ΓU(x; θ̂∗)− µ(x̃)

)
f̂X(x̃) δf(x| x̃)dxdx̃. (4.18)

By the optimality condition in Equation (2.27) and the fundamental lemma of the calculus of variations

we get

log

(
f̂ ∗(x|x0)

f̂(x|x0)

)
− λ̂′γS(x; θ̂∗, f̂ ∗)− ν̂ ′0ΓU(x; θ̂∗)− µ̂0 = 0, (4.19)

for a.e. x ∈ X , and

log

(
f̂ ∗(x|x̃)

f̂(x|x̃)

)
− ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)− ν̂(x̃)′ΓU(x; θ̂∗)− µ̂(x̃) = 0, (4.20)
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for a.e. x, x̃ ∈ X with x̃ 6= x0. From Equations (4.19) and (4.20) we get

f̂ ∗(x|x0) = f̂(x|x0) exp
(
µ̂0 + λ̂′γS(x; θ̂∗, f̂ ∗) + ν̂ ′0ΓU(x; θ̂∗)

)
, (4.21)

for a.e x ∈ X , and

f̂ ∗(x|x̃) = f̂(x|x̃) exp
(
µ̂(x̃) + ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
, (4.22)

for a.e. x, x̃ ∈ X with x̃ 6= x0. By imposing the unit mass constraints, Equation (2.28) follows.

Finally, by imposing that the empirical counterpart of System (2.11) holds for (θ̂∗, f̂ ∗), System (2.29)

follows.

4.6 Large sample properties

In this section we denote by Aθ,f and Eθ,f the operators A and E with generic parameters θ, f .

4.6.1 Proof of Proposition 4

For technical reasons, the empirical operators used to define the components of the sample counter-

part G(θ, f̂) of the local restrictions are based on a trimmed kernel estimator of the historical tran-

sition density. More precisely, we have G(θ, f̂) = [g(θ, f̂)′ Ef̂ [ΓU(Xt+1; θ)|Xt = x0]′]′. Here,

Ef̂ [ΓU(Xt+1; θ)|Xt = x0] =

∫
XT

ΓU(x; θ)f̂(x|x0)dx and the components of g(θ, f̂) are defined

through the pricing operator Aθ,f̂ such that Aθ,f̂ [ϕ](y) = max
[
(k − 1)+, Eθ,f̂ [ϕ](y)

]
, where

Eθ,f̂ [ϕ](y) =

∫
XT
m(xt+1; θ)ert+1ϕ(ke−rt+1 , xt+1)f̂(xt+1|x)dxt+1 (4.23)

and (XT ) is the sequence of sets defined in Assumption A 4. We prove Proposition 4 by checking the

Assumptions i-iv of Theorem 2.1 in Newey and McFadden [1999].

i) Let us consider the limit criterion Q0(θ) = G(θ, f0)′Ω0G(θ, f0), for θ ∈ Θ, that is the asymptotic

limit of the criterion QT minimized by θ̂ (see Definition 2). This criterion is uniquely mini-

mized at θ0 by the identification condition in Assumption 5 and since Ω0 is positive-definite

(Assumption A 10).

ii) The set Θ is compact by Assumption A 7.
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iii) The criterion Q0(θ) is continuous. Indeed, the mapping θ → E0[ΓU(Xt+1; θ)|Xt = x0] is contin-

uous and, as shown in Appendix 4.4.1, the functions gj , for j = 1, . . . , N , are continuous w.r.t.

θ as well.

iv) Let us verify that QT (θ) converges to Q0(θ) uniformly in θ ∈ Θ. By uniform convergence of

kernel estimators (see Hansen [2008]) and Assumptions A 1-2, A 4-6 and A 9, we can show that

sup
θ∈Θ

∥∥∥Ef̂ [ΓU(Xt+1; θ)|Xt = x0]− E0[ΓU(Xt+1; θ)|Xt = x0]
∥∥∥ = op(1). (4.24)

Let us now consider the uniform convergence of g(θ, f̂). For this purpose, let us start with some

definitions and a lemma. Let a, b > 0 be such that kj ∈ [e−a, ea], for all j = 1, . . . , N , and

R ⊂ [e−b, eb] (see Assumptions 1 and A 1). We consider the sets YT := [e−a, ea] × XT and

Y ′T := [e−(a+b), e(a+b)] × XT . The supremum norm of a continuous function ϕ ∈ C 0(Rd+1) on

set YT is defined as ‖ϕ‖YT ,∞ := sup
y∈YT
|ϕ(y)|. The supremum norm on set Y ′T is defined similarly.

Lemma 1. Let ϕθ ∈ L2(Y) ∩ C 0(Y) be a function that may depend on parameter θ ∈ Θ and is

such that

sup
θ∈Θ

y∈[e−a,ea]×X

E0

[
ϕθ(Yt+1)2

∣∣Yt = y
]
<∞. (4.25)

Let ϕ̂θ be an estimator of ϕθ such that

sup
θ∈Θ
‖ϕ̂θ − ϕθ‖Y ′T ,∞ = op(1). (4.26)

Then, under Assumptions A 1-2, A 4-6 and A 9, we have sup
θ∈Θ
‖Eθ,f̂ [ϕ̂θ]−Eθ,f0 [ϕθ]‖YT ,∞ = op(1).

Proof.

We use the uniform convergence of the kernel estimator to prove Lemma 1. Let us now write

the American option pricing operator as

Aθ,f [ϕ] = v(0, .) + (Eθ,f [ϕ]− v(0, .))+ (4.27)

and do similarly for its estimatorAθ,f̂ [ϕ]. Since |max [t, 0]−max [s, 0]| ≤ |t−s|, for all t, s ∈ R,

we get from Lemma 1 that for any ϕθ satisfying Inequality (4.25)

sup
θ∈Θ
‖ϕ̂θ − ϕθ‖Y ′T ,∞ = op(1) ⇒ sup

θ∈Θ
‖Aθ,f̂ [ϕ̂θ]−Aθ,f0 [ϕθ]‖YT ,∞ = op(1). (4.28)
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Lemma 2. Under Assumption A 9, if

sup
θ∈Θ

y∈[e−a−b,ea+b]×X

E
[
Ahθ,f0

[v(0, .)](Yt+1)2
∣∣Yt = y

]
<∞, (4.29)

for h ∈ N, then

sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah+1
θ,f0

[v(0, .)](Yt+1)2
∣∣Yt = y

]
<∞. (4.30)

Proof.

By Lemma 2, we can iterate h ≥ 1 times the Implication (4.28) starting with ϕθ = ϕ̂θ = v(0, .)

and a sufficiently large moneyness strike support, and get

sup
θ∈Θ
‖Ah

θ,f̂
[v(0, .)]−Ahθ,f0

[v(0, .)]‖YT ,∞ = op(1). (4.31)

We deduce that vector g(θ, f̂) converges to g(θ, f0) uniformly in θ ∈ Θ. Then, from Equation

(4.24), vector G(θ, f̂) converges to G(θ, f0) uniformly in θ ∈ Θ. By Assumption A 10, QT (θ)

converges to Q0(θ) uniformly in θ ∈ Θ.

4.6.2 Proof of Proposition 5

We prove Proposition 5 in two steps.

a) First, we show that there exists an open neighborhood Θ0 ⊂ Θ such that θ0 ∈ Θ0 and the criterion

QT (θ) is differentiable w.r.t. θ ∈ Θ0 w.p.a. 1.

b) Second, by the consistency of estimator θ̂, we deduce that θ̂ ∈ Θ0 w.p.a. 1. From part a), it

follows that θ̂ satisfies the first-order condition ∇θQT (θ̂) = 0 w.p.a. 1. Hence, we can follow

the approach in the proof of Theorem 3.2 in Newey and McFadden [1999] to prove Equation

(2.36) and conclude.

Let us first prove part a). Since yj ∈ Cθ0,f0(hj) for all j = 1, . . . , N , by using the consistency of

estimator f̂ and the fact that the continuation region Cθ,f (h) depends continuously on θ and f , for

given h ≥ 1, we deduce that there exists an open set Θ0 ⊂ Θ such that θ0 ∈ Θ0, and yj ∈ Cθ,f̂ (hj) for

all j = 1, . . . , N and θ ∈ Θ0, w.p.a. 1. By the argument in Appendix 4.4.1, this implies that gj(θ, f̂)

is differentiable w.r.t. θ ∈ Θ0, for all j = 1, . . . , N , w.p.a. 1. By using that Ef̂ [ΓU(Xt+1; θ)|Xt = x0]

is differentiable w.r.t. θ, part a) follows.

For part b), let us check the conditions of Theorem 3.2 in Newey and McFadden [1999].
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i) The true parameter value θ0 is an interior point of Θ0 by part a).

ii) Vector G(θ, f̂) is differentiable w.r.t. θ ∈ Θ0, w.p.a. 1, as shown in part a).

iii) Let us now show thatG(θ0, f̂) is asymptotically normal. Let us introduce the quantity ∆f̂(x|x̃) :=

f̂(x|x̃)− f0(x|x̃). From Equation (2.14) and Proposition 2 we get

√
ThdTg(θ0, f̂) =

√
ThdT

∫
X
γ̄S(x)∆f̂(x|x0)dx

+
√
ThdT

∫
X

∫
X
γL(x, x̃; θ0, f0)∆f̂(x|x̃)dxdx̃+Op

(√
ThdT‖∆f̂‖

2
∞

)
. (4.32)

Then, by using that the last two components of G(θ0, f̂) are equal to
∫

Γ̄U(x; θ̂)∆f̂(x|x0)dx,

we get

√
ThdTG(θ0, f̂) =

√
ThdT

∫
X

Γ̄S(x)∆f̂(x|x0)dx

+
√
ThdT

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃+Op

(√
ThdT‖∆f̂‖

2
∞

)
. (4.33)

From the uniform convergence of kernel density estimators (see e.g. Hansen [2008]), the supre-

mum norm of ∆f̂ is such that

‖∆f̂‖∞ = Op

(√
log (T )

Th2d
T

+ hρT

)
. (4.34)

Then, the remainder term in the RHS of Equation (4.33) is such that

Op

(√
ThdT‖∆f̂‖

2
∞

)
= Op

(√
ThdT

(
log(T )

Th2d
T

+ h2ρ
T

))
= op(1), (4.35)

under the bandwidth conditions in Assumption A 6. Equations (4.33) and (4.35) yield Equation

(2.37). Moreover, from the asymptotic normality of kernel density estimators (see Aı̈t-Sahalia

[1992]), the asymptotic distribution of the first term in the RHS of Equation (4.33) is

√
ThdT

∫
X

Γ̄S(x)∆f̂(x|x0)dx
D→ N

(
0,

K
fX(x0)

ΣS(x0)

)
. (4.36)

The bias term is asymptotically vanishing under Assumption A 6 on the bandwidth. Let us now

consider the second term of the RHS of Equation (4.33). The integration w.r.t. x̃ ∈ X increases
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the rate of convergence, namely∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃ = Op

(
log (T )√

T
+ hρT

)
= op

(
1/
√
ThdT

)
, (4.37)

from the bandwidth conditions in Assumption A 6. Thus, the second term of the RHS of Equa-

tion (4.33) is negligible as T →∞ and

√
ThdTG(θ0, f̂)

D→ N
(

0,
K

fX(x0)
ΣS(x0)

)
. (4.38)

iv) By a similar argument as in Appendix 4.4.1, the function ∇θ′G(θ, f0) is continuous w.r.t. θ ∈ Θ0

and, by a similar argument as in Appendix 4.6.1, we have sup
θ∈Θ0

∥∥∥∇θ′G(θ, f̂)−∇θ′G(θ, f0)
∥∥∥ =

op(1).

v) Finally, the matrix J ′0Ω0J0 is nonsingular since J0 = ∇θ′G(θ0, f0) is full column-rank (Assumption

6) and Ω0 is positive definite (Assumption A 10).

Then, the same arguments as in the proof of Theorem 3.2 in Newey and McFadden [1999] imply

Equation (2.36), and by using Expression (4.38) the conclusion follows.

4.6.3 Proof of Proposition 7

The first order condition for estimator θ̂∗ is

hdT

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ̂∗, f̂

)
+

1

T

T∑
t=1

Ef̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂

[
ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]
= 0.

By the mean-value theorem we get

hdT

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ0, f̂

)
+

1

T

T∑
t=1

Ef̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt]

+

(
hdT

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩT

[
∇θ′G

(
θ̃, f̂
)]

+

+
1

T

T∑
t=1

Ef̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂

[
∇θ′ΓU

(
Xt+1; θ̃

)∣∣∣Xt = xt

])
·
(
θ̂∗ − θ0

)
= 0, (4.39)
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where θ̃ is between θ̂∗ and θ0 componentwise. Let RT = [T−1/2R1

(
ThdT

)−1/2
R2]. By multiplying

the two sides of Equation (4.39) by TR′T and using that

R−1
T

(
θ̂∗ − θ0

)
=

(√
T (η̂∗1 − η1,0)′

√
ThdT (η̂∗2 − η2,0)′

)′
,

we get

AT

 √
T (η̂∗1 − η1,0)√
ThdT (η̂∗2 − η2,0)

 = −ThdTR
′

T

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ0, f̂

)

− 1

T

T∑
t=1

TR
′

TEf̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt] ,

(4.40)

where

AT := ThdTR
′

T

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩT

[
∇θ′G

(
θ̃, f̂
)]
RT

+
1

T

T∑
t=1

TR
′

TEf̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂

[
∇θ′ΓU

(
Xt+1; θ̃

)∣∣∣Xt = xt

]
RT .

By using that J̃0(x)R2 = 0 for a.e. x ∈ X , we get

AT =

 R
′
1E0

[
J̃0(Xt)

′
Ω̃0(Xt)J̃0(Xt)

]
R1 0

0 R
′
2J
′
0Ω0J0R2

+ op(1).

Moreover, in the RHS of Equation (4.40) we have

ThdTR
′

T

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ0, f̂

)
=

 0

R
′
2J
′
0Ω0

√
ThdTG

(
θ0, f̂

) + op(1)

and

1

T

T∑
t=1

TR
′

TEf̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt]

=

 1√
T

∑T
t=1R

′
1J̃0 (xt)

′
Ω̃0 (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt]

0

+ op(1).
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Therefore, we get √
T (η̂∗1 − η1,0)√
ThdT (η̂∗2 − η2,0)



= −

 (
R
′
1E0

[
J̃0(Xt)

′
Ω̃0(Xt)J̃0(Xt)

]
R1

)−1

0

0
(
R
′
2J
′
0Ω0J0R2

)−1

ΨT + op(1), (4.41)

where

ΨT :=

 1√
T

∑T
t=1R

′
1J̃0 (xt)

′
Ω̃0 (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt]

R
′
2J
′
0Ω0

√
ThdTG

(
θ0, f̂

)  .

By similar arguments as in Lemma A.1 in Gagliardini, Gouriéroux and Renault [2011] we have ΨT
D→

N (0,W ), where

W =

 R
′
1E0

[
J̃0 (Xt)

′
Ω̃0 (Xt) ΣU(Xt)Ω̃0 (Xt) J̃0 (Xt)

]
R1 0

0 R
′
2J
′
0Ω0ΣS (x0) Ω0J0R2

 .

The bias induced by the nonparametric estimator vanishes asymptotically since Th2ρ
T = o(1) in As-

sumption A 6. Hence,
√
T (η̂∗1 − η1,0) and

√
ThdT (η̂∗2 − η2,0) are asymptotically normal, independent,

with asymptotic variances

AsV ar
[√

T (η̂∗1 − η1,0)
]

=
(
R
′

1E0

[
J̃0(Xt)

′
Ω̃0(Xt)J̃0(Xt)

]
R1

)−1

·
(
R
′

1E0

[
J̃0 (Xt)

′
Ω̃0 (Xt) ΣU(Xt)Ω̃0 (Xt) J̃0 (Xt)

]
R1

)(
R
′

1E0

[
J̃0(Xt)

′
Ω̃0(Xt)J̃0(Xt)

]
R1

)−1

,

AsV ar

[√
ThdT (η̂∗2 − η2,0)

]
=
(
R
′

2J
′

0Ω0J0R2

)−1 (
R
′

2J
′

0Ω0ΣS (x0) Ω0J0R2

)(
R
′

2J
′

0Ω0J0R2

)−1

,

respectively. By the standard argument for the efficient GMM, these asymptotic variances are mini-

mized by choosing Ω0 = ΣS (x0)−1 and Ω̃0(x) = ΣU(x)−1, for any x ∈ X .

4.6.4 Proof of Propositions 8 and 9

In this section we sketch the derivation of the asymptotic distribution for the estimators of the density

f̂ ∗, of the Lagrange multipliers λ̂, ν̂0 and ν̂(x), for x 6= x0, and of functional â∗.
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4.6.5 Asymptotic expansion of the density estimator

Let us consider the tilting function in Equation (2.28) and derive its first-order Taylor expansion. Since

f̂ and f̂ ∗ converge in probability to f0, vector θ̂∗ to θ0, Lagrange multipliers λ̂, ν̂0 and ν̂(x) to 0 and

weight ωT to ω, we keep only the terms of first-order in the Lagrange multipliers estimators. For

x̃ = x0 we have

exp
(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
' 1 + ν̂ ′0ΓU(x; θ0) + λ̂′γS(x; θ0, f0) = 1 + Λ̂′ΓS(x),

where Λ̂ = [λ̂′ ν̂ ′0]′ and ΓS is defined in Equations (2.34), so that∫
X
f̂(x|x0) exp

(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
dx ' 1 + Λ̂′E0 [ΓS(Xt+1)|Xt = x0] = 1.

Similarly, for any x̃ 6= x0 we have

exp
(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
' 1 + ν̂(x̃)′ΓU(x; θ0) + ωΛ̂′Γ̄L(x, x̃),

where Γ̄L is defined in Equations (2.34). Then∫
X
f̂(x|x̃) exp

(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
dx

' 1 + ωΛ̂′E0

[
Γ̄L(Xt+1, x̃)|Xt = x̃

]
,

where we have used that E0 [ΓU(Xt+1; θ0)|Xt = x̃] = 0 for a.e. x̃ ∈ X . Thus, we can approximate the

tilting function for the value x̃ = x0 of the conditioning volatility factor as

exp
(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
∫
X
f̂(x|x0) exp

(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
dx

' 1 + Λ̂′ΓS(x), (4.42)
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and for any value x̃ 6= x0 as

exp
(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
∫
X
f̂(x|x̃) exp

(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
dx

' 1 + ν̂(x̃)′ΓU(x; θ0) + ωΛ̂′ΓL(x, x̃),

(4.43)

where ΓL is defined in Equations (2.34). By plugging Approximations (4.42) and (4.43) into Equation

(2.28) and keeping only the first-order terms in the estimators we get Approximation (2.41).

4.6.6 Asymptotic expansion of the Lagrange multipliers

Let us consider the constraints in System (2.29). They can be rewritten as:
G(θ̂∗, f̂ ∗) = 0,∫
X

ΓU(x; θ̂∗)f̂ ∗(x|x̃)dx = 0, for a.e. x̃ 6= x0.

(4.44)

Let us expand the LHS of the first equation in System (4.44) around (θ0, f0):

〈
DG(θ0, f0),∆f̂ ∗

〉
+ J0

(
θ̂∗ − θ0

)
+Op

(
‖∆f̂ ∗‖2

∞

)
+Op

(
‖θ̂∗ − θ0‖2

)
= 0, (4.45)

where matrix J0 is defined in Assumption 6 and is the sum of the matrices defined in Equations (2.35).

Similarly, the expansion of the LHS of the second equation of System (4.44) around (θ0, f0) is∫
X

Γ̄U(x)∆f̂ ∗(x|x̃)dx+ J̃0(x̃)
(
θ̂∗ − θ0

)
+Op

(
‖θ̂∗ − θ0‖2

)
= 0, (4.46)

for a.e. x̃ 6= x0, where the 2 × p Jacobian matrix J̃0(x̃) is defined in Proposition 7 and is such

that J̃0(x̃) = E0

[
Γ̄U(Xt+1)∇θ′ log (m(Xt+1; θ0))|Xt = x̃

]
. We use Proposition 2 and Approximation
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(2.41) and keep only the leading terms to approximate the first term in the LHS of Equation (4.45) as

〈
DG(θ0, f0),∆f̂ ∗

〉
=

∫
X

Γ̄S(x)∆f̂ ∗(x|x0)dx+

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂ ∗(x|x̃)dxdx̃

'
∫
X

Γ̄S(x)∆f̂(x|x0)dx+

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃

+

[ ∫
X

Γ̄S(x)ΓS(x)′f0(x|x0)dx+ ω

∫
X

∫
X

Γ̄L(x, x̃)ΓL(x, x̃)′f0(x|x̃)dxfX(x̃)dx̃

]
Λ̂

+

∫
X

∫
X

Γ̄L(x, x̃)ΓU(x; θ0)′f0(x|x̃)dxν̂(x̃)fX(x̃)dx̃

=
〈
DG(θ0, f0),∆f̂

〉
+

(
ΣS(x0) + ω

∫
X

ΣL(x)fX(x)dx

)
Λ̂ +

∫
X

ΣL,U(x)ν̂(x)fX(x)dx.(4.47)

Similarly, we use Approximation (2.41) to approximate the first term in the LHS of Equation (4.46) as∫
X

Γ̄U(x)∆f̂ ∗(x|x̃)dx '
∫
X

Γ̄U(x)∆f̂(x|x̃)dx+ ωΣU,L(x̃)Λ̂ + ΣU(x̃)ν̂(x̃), (4.48)

for x̃ 6= x0. We use then Equation (2.14), Approximation (4.47) in Equation (4.45) and Approximation

(4.48) in Equation (4.46) to get a linearization of the constraints in System (4.44):
G(θ0, f̂) +

(
ΣS(x0) + ω

∫
X

ΣL(x)fX(x)dx

)
Λ̂ +

∫
X

ΣL,U(x)ν̂(x)fX(x)dx+ J0

(
θ̂∗ − θ0

)
' 0,∫

X
Γ̄U(x)∆f̂(x|x̃)dx+ ωΣU,L(x̃)Λ̂ + ΣU(x̃)ν̂(x̃) + J̃0(x̃)

(
θ̂∗ − θ0

)
' 0,

(4.49)

for x̃ 6= x0. We now solve System (4.49) w.r.t. the Lagrange multipliers. Since matrix ΣU(x̃) is

invertible for any x̃, we can solve the second approximation of System (4.49) w.r.t. ν̂(x̃):

ν̂(x̃) ' −ΣU(x̃)−1

(∫
X

Γ̄U(x)∆f̂(x|x̃)dx+ J̃0(x̃)
(
θ̂∗ − θ0

)
+ ωΣU,L(x̃)Λ̂

)
, (4.50)

for x̃ 6= x0. We plug Approximation (4.50) into the first approximation of System (4.49) and omit the

negligible terms:

G(θ0, f̂) +

(
ΣS(x0) + ω

∫
X

ΣL⊥U(x)fX(x)dx

)
Λ̂ +

(
J0 − JL‖U

) (
θ̂∗ − θ0

)
' 0, (4.51)

for the (N + 2) × p matrix JL‖U := E0

[
ΣL,U(Xt)ΣU(Xt)

−1Γ̄U(Xt+1)∇θ′ log (m(Xt+1; θ0))
]
. By

inverting Equation (2.40), i.e. θ = Rη, and using the Equation (4.41) with Ω0 = ΣS(x0)−1 and
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Ω̃0(x) = ΣU(x)−1, for any x ∈ X , we get

θ̂∗ − θ0 = R1 (η̂∗1 − η1,0) +R2 (η̂∗2 − η2,0)

' −R2

(
R′2J

′
0ΣS(x0)−1J0R2

)−1
R′2J

′
0ΣS(x0)−1G(θ0, f̂)

' −P
∫
X

ΓS(x)∆f̂(x|x0)dx, (4.52)

for the p × (N + 2) matrix P := R2 (R′2J
′
0ΣS(x0)−1J0R2)

−1
R′2J

′
0ΣS(x0)−1. Thus, Approximation

(4.51) yields

Λ̂ ' −A
∫
X

ΓS(x)∆f̂(x|x0)dx, (4.53)

for the (N + 2)× (N + 2) matrix A defined as

A :=

(
ΣS(x0) + ω

∫
X

ΣL⊥U(x)fX(x)dx

)−1 (
IN+2 −

(
J0 − JL‖U

)
P
)
. (4.54)

Finally, we use Approximations (4.50) and (4.52) to approximate ν̂(x̃), for any x̃ 6= x0, as

ν̂(x̃) ' ΣU(x̃)−1

((
J̃0(x̃)P + ωΣU,L(x̃)A

) ∫
X

ΓS(x)∆f̂(x|x0)dx−
∫
X

Γ̄U(x)∆f̂(x|x̃)dx

)
. (4.55)

4.6.7 Asymptotic distribution of the Lagrange multipliers

Let us first derive the asymptotic distribution of Λ̂. From Approximation (4.53) and Expression (4.36),

we get √
ThdT Λ̂

D→ N
(

0,
K

fX(x0)
AΣS(x0)A′

)
. (4.56)

Let us now consider estimator ν̂(x), for any x 6= x0. By a similar argument as for Expression (4.36),

we deduce that the two integrals in Approximation (4.55), standardized by the appropriate rate of

convergence, are asymptotically normal and independent, since they involve different conditioning

values in ∆f̂ . Then we get √
ThdT ν̂(x)

D→ N (0,Σν(x)) , (4.57)
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for any x 6= x0, where the 2× 2 matrix Σν is defined as

Σν(x) =
K

fX(x0)
ΣU(x)−1

(
J̃0(x)P + ωΣU,L(x)A

)
ΣS(x0)

(
J̃0(x)P + ωΣU,L(x)A

)′
ΣU(x)−1

+
K

fX(x)
ΣU(x)−1.

4.6.8 Pointwise asymptotic normality of the estimator of the historical transition density

From Approximation (2.41) and the asymptotic distribution of the Lagrange multipliers is Section

4.6.7, Equation (2.42) follows. Then, we deduce Proposition 8 by standard results on the pointwise

asymptotic normality of the kernel density estimator (see e.g. Bosq [1998]).

4.6.9 Asymptotic distribution of the functionals of the historical transition density

From Equation (2.44) and Approximation (4.52) we get

â∗ − a0 ' −∇θ′a(θ0, f0)P

∫
X

ΓS(x)∆f̂(x|x0)dx+
〈
Da(θ0, f0),∆f̂ ∗

〉
. (4.58)

Let us focus on the last term of the RHS of Approximation (4.58) and proceed in a similar way as done

in Section 4.6.6. From Equation (2.32) for direction ∆f̂ ∗ and state variables vector x? = x0, Approx-

imation (2.41) and a similar argument as for Equations (4.37), we get the following approximation of

the Fréchet derivative:

〈
Da(θ0, f0),∆f̂ ∗

〉
'
∫
X
αS(x)∆f̂(x|x0)dx+

∫
X

ΣαL,U(x)ν̂(x)fX(x)dx

+

(
ΣαS ,S(x0) + ω

∫
X

ΣαL,L(x)fX(x)dx

)
Λ̂. (4.59)

Moreover, from Approximation (4.55) and a similar argument as for Equations (4.37) we have∫
X

ΣαL,U (x) ν̂ (x) fX(x)dx '
(
ω

∫
X

ΣαL,U (x) ΣU (x)−1 ΣU,L (x) fX(x)dxA

+JαL‖UP

)∫
X

ΓS(x)∆f̂(x|x0)dx.
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Thus, by using Approximation (4.53) we get

〈
Da(θ0, f0),∆f̂ ∗

〉
'

∫
X
αS(x)∆f̂(x|x0)dx+

(
JαL‖UP − ΣαS ,S (x0)A

−ω
∫
X

ΣαL,L⊥U (x) fX(x)dxA

)∫
X

ΓS(x)∆f̂(x|x0)dx.

By using that (B1 +B2)−1 = B−1
1 − (B1 +B2)−1B2B

−1
1 for invertible matrices B1 and B2, the matrix

A defined in Equation (4.54) can be written as

A =

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1

−
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1

·
(
J0 − JL‖U

)
P

= ΣS (x0)−1 −
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
P

−ω
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΣL⊥U (x) fX(x)dxΣS (x0)−1 .
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Thus, we get

〈
Da(θ0, f0),∆f̂ ∗

〉
'
∫
X

(
αS(x)− ΣαS ,S (x0) ΣS (x0)−1 ΓS(x)

)
∆f̂(x|x0)dx

+ ωΣαS ,S (x0)

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΣL⊥U (x) fX(x)dx

·ΣS (x0)−1

∫
X

ΓS(x)∆f̂(x|x0)dx

+ ΣαS ,S (x0)

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
P

∫
X

ΓS(x)∆f̂(x|x0)dx

− ω

∫
X

ΣαL,L⊥U (x) fX(x)dx

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΓS(x)∆f̂(x|x0)dx

+ ω

∫
X

ΣαL,L⊥U (x) fX(x)dx

·
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
P

∫
X

ΓS(x)∆f̂(x|x0)dx

+ JαL‖UP

∫
X

ΓS(x)∆f̂(x|x0)dx.

Then, from Approximation (4.58) we get

â∗ − a0 '
∫
X

(
αS(x)− ΣαS ,S (x0) ΣS (x0)−1 ΓS(x)

)
∆f̂(x|x0)dx

+
(
ωB(ω) + C(ω)P

)∫
X

ΓS(x)∆f̂(x|x0)dx, (4.60)

where the matrix B(ω) is defined as

B(ω) := ΣαS ,S (x0)

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΣL⊥U (x) fX(x)dxΣS (x0)−1

−
∫
X

ΣαL,L⊥U (x) fX(x)dx

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1
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and the matrix C(ω) as

C(ω) :=

(
ΣαS ,S + ω

∫
X

ΣαL,L⊥U (x) fX(x)dx

)(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1

·
(
J0 − JL‖U

)
+ JαL‖U −∇θ′a(θ0, f0),

for any non-negative scalar ω. The integrand αS − ΣαS ,SΣS(x0)−1ΓS in the first term in the RHS

of Approximation (4.60) is the residual of the projection of αS onto ΓS , and hence orthogonal to ΓS .

Then, by a similar argument as for Expression (4.36) and using that J0−JL‖U = JS+JL⊥U , we deduce

that the difference â∗ − a0, standardized by the appropriate rate of convergence, is asymptotically

normal with variance given in Equation (2.48).

4.6.10 Proof of Lemma 1

By the triangular inequality we get

∥∥∥Eθ,f̂ [ϕ̂θ]− Eθ,f0 [ϕθ]
∥∥∥
YT ,∞

≤
∥∥∥Eθ,f̂ [ϕ̂θ]− Eθ,f̂ [ϕθ]∥∥∥YT ,∞ +

∥∥∥Eθ,f̂ [ϕθ]− Eθ,f0 [ϕθ]
∥∥∥
YT ,∞

. (4.61)

The first term in the RHS of Inequality (4.61) is the supremum norm on setYT of the function Eθ,f̂ [ϕ̂θ]−
Eθ,f̂ [ϕθ], which can be written as

Eθ,f̂ [ϕ̂θ](ỹ)− Eθ,f̂ [ϕθ](ỹ) =

∫
XT
m(x; θ)er [ϕ̂θ − ϕθ] (k̃e−r, x)f̂(x|x̃)dx,

for any ỹ := [k̃ x̃′]′ in Y . Then we have

∥∥∥Eθ,f̂ [ϕ̂θ]− Eθ,f̂ [ϕθ]∥∥∥YT ,∞ ≤ ‖ϕ̂θ − ϕθ‖Y ′T ,∞ sup
x̃∈XT

∫
XT

∣∣∣∣∣m(x; θ)er

[
∆f̂(x|x̃)

f0(x|x̃)
+ 1

]
f0(x|x̃)

∣∣∣∣∣dx
≤ ‖ϕ̂θ − ϕθ‖Y ′T ,∞

[
sup

x,x̃∈XT

∣∣∣∣∣∆f̂(x|x̃)

f0(x|x̃)

∣∣∣∣∣+ 1

]
eb sup

x∈X
E [ |m(Xt+1; θ)||Xt = x] ,

where b > 0 is defined at point iv) of Section 4.6.1 and ∆f̂ := f̂ − f0.

Lemma 3. Under Assumptions A 1-2 and A 4-6, sup
x,x̃∈XT

∣∣∣∣∣∆f̂(x|x̃)

f0(x|x̃)

∣∣∣∣∣ = op(1).

Proof. See Section 4.6.12.
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From the Cauchy-Schwarz inequality, Assumption A 9, Lemma 3 and Equation (4.26) we get

sup
θ∈Θ

∥∥∥Eθ,f̂ [ϕ̂θ]− Eθ,f̂ [ϕθ]∥∥∥YT ,∞ = Op

(
sup
θ∈Θ
‖ϕ̂θ − ϕθ‖Y ′T ,∞

)
= op(1). (4.62)

The second term in the RHS of Inequality (4.61) is the supremum norm on set YT of the function

Eθ,f̂ [ϕθ]− Eθ,f0 [ϕθ] given by

Eθ,f̂ [ϕθ](ỹ)− Eθ,f0 [ϕθ](ỹ)

=

∫
XT
m(x; θ)erϕθ(k̃e

−r, x)∆f̂(x|x̃)dx−
∫
XCT

m(x; θ)erϕθ(k̃e
−r, x)f0(x|x̃)dx.

Then by the triangle inequality we have

∥∥∥Eθ,f̂ [ϕθ]− Eθ,f0 [ϕθ]
∥∥∥
YT ,∞

≤ sup
x,x̃∈XT

∣∣∣∣∣∆f̂(x|x̃)

f0(x|x̃)

∣∣∣∣∣ sup
ỹ∈Y

∫
XT
m(x; θ)er

∣∣∣ϕθ(k̃e−r, x)
∣∣∣ f0(x|x̃)dx

+sup
ỹ∈Y

∫
XCT

m(x; θ)er
∣∣∣ϕθ(k̃e−r, x)

∣∣∣ f0(x|x̃)dx. (4.63)

By the Cauchy-Schwarz inequality we get∫
XT
m(x; θ)er

∣∣∣ϕθ(k̃e−r, x)
∣∣∣ f0(x|x̃)dx

≤ eb
(
E
[
m(Xt+1; θ)2

∣∣Xt = x̃
]) 1

2

(
E
[
|ϕθ(k̃e−rt+1 , Xt+1)|2

∣∣∣Xt = x̃
]) 1

2
.

Similarly, we get the counterpart of this inequality for the set-theoretical complement XC
T of the do-

main of integration:∫
XCT

m(x; θ)er
∣∣∣ϕθ(k̃e−r, x)

∣∣∣ f0(x|x̃)dx

≤ eb
(

E
[
m(Xt+1; θ)21XCT (Xt+1)

∣∣∣Xt = x̃
]) 1

2
(

E
[
|ϕθ(k̃e−rt+1 , Xt+1)|2

∣∣∣Xt = x̃
]) 1

2
.

Let us focus on the square of the second term in the RHS of the previous inequality. By the Hölder
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inequality we get

E
[
m(Xt+1; θ)21XCT (Xt+1)

∣∣∣Xt = x̃
]
≤
(
E
[
|m(Xt+1; θ)|2p̄

∣∣Xt = x̃
]) 1

p̄

(
E
[
1XCT (Xt+1)

∣∣∣Xt = x̃
]) 1

q̄︸ ︷︷ ︸
=(P[Xt+1∈XCT |Xt=x̃])

1
q̄

,

where p̄, q̄ > 1 are such that
1

p̄
+

1

q̄
= 1. Thus from Inequality (4.63) we get

∥∥∥Eθ,f̂ [ϕθ]− Eθ,f0 [ϕθ]
∥∥∥
YT ,∞

≤ eb

{
sup

x,x̃∈XT

∣∣∣∣∣∆f̂(x|x̃)

f0(x|x̃)

∣∣∣∣∣ sup
x∈X

(
E
[
m(Xt+1; θ)2

∣∣Xt = x
]) 1

2

+ sup
x∈XT

(
E
[
|m(Xt+1; θ)|2p̄

∣∣Xt = x
]) 1

p̄ sup
x∈XT

(
P
[
Xt+1 ∈ XC

T

∣∣Xt = x
]) 1

q̄

}

· sup
y∈[e−a,ea]×X

(
E
[
|ϕθ(Yt+1)|2

∣∣Yt = y
]) 1

2 .

Let us choose p̄ such that 2p̄ = 2 + δ, where δ > 0 is defined in Assumption A 9. From Lemma 3,

Assumptions A 4 and A 9 and Inequality (4.25) we get

sup
θ∈Θ

∥∥∥Eθ,f̂ [ϕθ]− Eθ,f0 [ϕθ]
∥∥∥
YT ,∞

= op(1). (4.64)

Thus, from Inequality (4.61) and Equations (4.62) and (4.64), we get sup
θ∈Θ

∥∥∥Eθ,f̂ [ϕ̂θ]− Eθ,f0 [ϕθ]
∥∥∥
YT ,∞

=

op(1).

4.6.11 Proof of Lemma 2

We use the notation E = Eθ,f0 and A = Aθ,f0 . Let h ∈ N and assume that

sup
θ∈Θ

y∈[e−a−b,ea+b]×X

E
[
Ah[v(0, .)](Yt+1)2

∣∣Yt = y
]
<∞. (4.65)

Let us now prove Inequality (4.30). We write the (h+ 1)-fold application of operatorA as in Equation

(4.27):

Ah+1[v(0, .)] = v(0, .) +
(
E ◦ Ah[v(0, .)]− v(0, .)

)+
. (4.66)
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Since (t− s)+ ≤ |t|+ |s|, for all t, s ∈ R, we get

Ah+1[v(0, .)]2 ≤
(
2v(0, .) + E ◦ Ah[v(0, .)]

)2
. (4.67)

From Inequality (4.67) we get

sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah+1[v(0, .)](Yt+1)2

∣∣Yt = y
]

≤ 4A+ sup
θ∈Θ

y∈[e−a,ea]×X

E
[(
E ◦ Ah[v(0, .)](Yt+1)

)2
∣∣∣Yt = y

]

+ 4 sup
θ∈Θ

y∈[e−a,ea]×X

E
[
v(0, Yt+1)E ◦ Ah[v(0, .)](Yt+1)

∣∣Yt = y
]
. (4.68)

We apply the Cauchy-Schwarz inequality and the Law of Iterated Expectations to the second term in

the RHS of Inequality (4.68) to get

sup
θ∈Θ

y∈[e−a,ea]×X

E
[(
E ◦ Ah[v(0, .)](Yt+1)

)2
∣∣∣Yt = y

]

= sup
θ∈Θ

y∈[e−a,ea]×X

E

[(∫
X
m(x̃; θ)er̃Ah[v(0, .)](kt+1e

−r̃, x̃)f(x̃|Xt+1)dx̃

)2
∣∣∣∣∣Yt = y

]

≤ e2b sup
θ∈Θ

y∈[e−a,ea]×X

E
[
E
[
m(Xt+2; θ)2

∣∣Xt+1

]
E
[
Ah[v(0, .)](Yt+2)2

∣∣Yt+1

]∣∣Yt = y
]

≤ e2b C2 sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah[v(0, .)](Yt+2)2

∣∣Yt = y
]
, (4.69)

where C2 := sup
θ∈Θ
x∈X

E
[
|m(Xt+1; θ)|2

∣∣Xt = x
]

is finite from Assumption A 9 (ii). We apply the Cauchy-

Schwarz inequality to the last term in the RHS of Inequality (4.68) and we make use of Inequality
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(4.69):

sup
θ∈Θ

y∈[e−a,ea]×X

E
[
v(0, Yt+1)E ◦ Ah[v(0, .)](Yt+1)

∣∣Yt = y
]

≤

A sup
θ∈Θ

y∈[e−a,ea]×X

E
[(
E ◦ Ah[v(0, .)](Yt+1)

)2
∣∣∣Yt = y

]
1
2

≤

e2b C2A sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah[v(0, .)](Yt+2)2

∣∣Yt = y
]

1
2

. (4.70)

By grouping Inequalities (4.65) and (4.68)-(4.70) we get

sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah+1[v(0, .)](Yt+1)2

∣∣Yt = y
]

≤ 4A+ e2b C2 sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah[v(0, .)](Yt+2)2

∣∣Yt = y
]

+

e2b C2A sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah[v(0, .)](Yt+2)2

∣∣Yt = y
]

1
2

. (4.71)

By using the Law of Iterated Expectations and kt+1 = kte
−rt+1 with |rt+1| ≤ b, we have:

sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah[v(0, .)](Yt+2)2

∣∣Yt = y
]
≤ sup

θ∈Θ
y∈[e−a−b,ea+b]×X

E
[
Ah[v(0, .)](Yt+2)2

∣∣Yt+1 = y
]
<∞,

from Inequality (4.65). The conclusion follows.

4.6.12 Proof of Lemma 3

Let us consider the kernel estimator f̂X of the stationary pdf fX of Xt defined in Equation (2.20) and

the kernel estimator f̂Z of the stationary pdf fZ of [X ′t X
′
t−1]′ defined by

f̂Z(x, x̃) =
1

Th2d
T

T∑
t=2

K

(
Xt − x
hT

)
K

(
Xt−1 − x̃

hT

)
.

140



Let us define ∆f̂Z(x, x̃) := f̂Z(x, x̃) − fZ(x, x̃) and ∆f̂X(x) := f̂X(x) − fX(x). From the uniform

convergence of the kernel density estimation (see Hansen [2008]) and Assumptions A 1-2 and A 5-6

we have

sup
x,x̃∈XT

∣∣∣∆f̂Z(x, x̃)
∣∣∣ = Op

(√
log (T )

Th2d
T

+ hρT

)
, sup

x∈XT

∣∣∣∆f̂X(x)
∣∣∣ = Op

(√
log (T )

ThdT
+ hρT

)
. (4.72)

From Assumptions A 4 and A 6 and Equations (4.72), we have

sup
x,x̃∈XT

∣∣∣∣∣∆f̂Z(x, x̃)

fZ(x, x̃)

∣∣∣∣∣ = Op

(
(log (T ))c1

(√
log (T )

Th2d
T

+ hρT

))
= op(1),

sup
x∈XT

∣∣∣∣∣∆f̂X(x)

fX(x)

∣∣∣∣∣ = Op

(
(log (T ))c2

(√
log (T )

ThdT
+ hρT

))
= op(1).

(4.73)

Since f0(x|x̃) = fZ(x, x̃)/fX(x̃) and f̂(x|x̃) = f̂Z(x, x̃)/f̂X(x̃) we get

∆f̂(x|x̃)

f0(x|x̃)
=

f̂(x|x̃)

f0(x|x̃)
− 1 =

f̂Z(x, x̃)

f̂X(x̃)f0(x|x̃)
− 1 =

fZ(x, x̃) + ∆f̂Z(x, x̃)[
fX(x̃) + ∆f̂X(x̃)

] fZ(x, x̃)

fX(x̃)

− 1

=

1 +
∆f̂Z(x, x̃)

fZ(x, x̃)

1 +
∆f̂X(x̃)

fX(x̃)

− 1 =

∆f̂Z(x, x̃)

fZ(x, x̃)
− ∆f̂X(x̃)

fX(x̃)

1 +
∆f̂X(x̃)

fX(x̃)

, (4.74)

for any x, x̃ ∈ XT . From Equations (4.73)-(4.74) the conclusion follows.
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5 Appendix to Chapter 3

5.1 Kernel estimation

This section describes the kernel estimators. Section 5.1.1 deals with their implementation. Section

5.1.2 with their large sample properties.

5.1.1 Implementation

The multivariate kernel density estimators defined in Equations (3.8) and (3.14) and any Nadaraya-

Watson estimator of the regression function is computed by using the bandwidth matrix H = T−
1
6V

1
2 ,

where V is the sample unconditional variance-covariance matrix of the state variables and T is the

sample size. This bandwidth matrix is chosen for its ease of computation (see e.g. Hardle, Muller,

Sperlich and Werwatz [2004], p. 73, and Simonoff [1996], ch. 4). The estimation of conditional

and unconditional densities with this bandwidth matrix is equivalent to a three steps estimation proce-

dure: standardizing the data, applying a linear transformation to make them uncorrelated and finally

transforming the density back to the original scale.50

The estimates considered in this paper are obtained trough the estimation of several regression

functions. Any conditional expectation for the transition density f̂ of Equation (2.19) of a generic

stochastic variable Zt conditional to the value x of the state variables is estimated by a Nadaraya-

Watson estimator:

Ef̂ [Zt+1|Xt = x] '
T−1∑
t=1

Zt+1K
(
H−1 (xt − x)

)/ T−1∑
t=1

K
(
H−1 (xt − x)

)
. (5.1)

For any given θ, the American put option-to-stock price ratio is estimated in an iterative way, using

Equations (3.3)-(3.4) evaluated at the kernel estimator f̂ of the transition density. The estimation of the

ratio at time-to-maturity h > 0 passes through the estimation of the discounted conditional expectation

of the ratio at time-to-maturity h − 1. In particular, this estimation requires the value of the ratio at

time-to-maturity h − 1 for any historical realization of the state variables and for any value of the

moneyness strike. Therefore, at any day the value of the American put option mid-quote-to-share

price ratio is computed recursively on a grid on the state variables and moneyness strike domain. The

American call option mid-quote-to-share price ratio is computed in a similar way. For any computation

of the American option-to-share price ratio, when the ratio on a point outside the grid is necessary, the

nearest grid point is selected. The lowest and highest returns on the grid are 1.5 times the most negative

50The first two steps are known in statistics as Mahalanobis transformation.
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and positive return on the return time series. The extremes for the realized volatility grid are the 1%

and 99% of the realized volatility time series. The extremes of the moneyness strike grid are 0.75 and

1.25. Both the return and moneyness strike ranges are divided in 100 equally spaced points and the

RV range is divided in 30 equally spaced points. The option mid-quote-to-share price ratio when the

considered moneyness strike is higher than 1.25, for a put option, or lower than 0.75, for a call option,

is obtained by a linear extrapolation procedure. When the considered moneyness strike is lower than

0.75, for a put option, or greater than 1.25, for a call option, the option-to-share price ratio is set to 0.

5.1.2 Large sample properties

This appendix provides a derivation of the large sample properties of the estimators introduced in

Section 3.4.1. The properties are first obtained for a generic quantity that depends on the transition

density of the state variables and then adapted to the considered quantities.

Let us indicate the true value of a generic function that depends on the transition density of the

state variables by Q0 and let us consider a real scalar function g and a real stochastic vector Zt such

that this generic function can be written in the form

Q0(x) = g (Ef0 [Zt+1|Xt = x]) .

The kernel estimator Qf̂ of this function is defined by considering the kernel regression estimator

Ef̂ [Zt+1|Xt = x] in place of the true conditional expected value. Each quantity considered in Section

3.4.1 can be written in the form of function Q0 for an appropriate choice of g and Zt. Let us rescale the

state variables such that a common bandwidth hT can be used. From the theory of kernel estimators, for

any value x of the state variables, the kernel regression estimator is pointwise asymptotically normal

with
√
Th2

T -rate of convergence:

√
Th2

T

(
Ef̂ [Zt+1|Xt = x]− Ef0 [Zt+1|Xt = x]

)
D→ N (0, V (x)) ,

where V (x) is defined as

V (x) = Vf0 [Zt+1|Xt = x]

(∫
K2(x)dx

/
fX(x)

)
,

for the conditional variance operator Vf0 [.|Xt = x] under the true historical probability measure (see
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e.g. Bosq [1998]). The asymptotic distribution of estimator Qf̂ (x) can be derived by the delta method:

√
Th2

T

(
Qf̂ (x)−Q0(x)

)
D→ N (0, γ(x)′V (x)γ(x)) ,

where the vector γ(x) is defined as

γ(x) =
∂g

∂b
(E0 [Zt+1|Xt = x]) .

for the real vector b with the same dimension of Zt.

Let us adapt the expressions to the quantities considered in Section 3.4.1.

i) Conditional correlation between the state variables

Let us take the vector Zt = [rt σt r
2
t σ

2
t (rtσt)]

′ and the scalar function g that depends on the real

5-dimensional vector b = [b1 b2 b3 b4 b5]′:

g(b) = (b5 − b1b2)
(
b3 − b2

1

)−0.5 (
b4 − b2

2

)−0.5
.

The derivative of g w.r.t. b at a = [a1 a2 a3 a4 a5]′ is

∂g

∂b
(a) = g(a)



a1

(
a3 − a2

1

)−1 − a2 (a5 − a1a2)−1

a2

(
a4 − a2

2

)−1 − a1 (a5 − a1a2)−1

−0.5
(
a3 − a2

1

)−1

−0.5
(
a4 − a2

2

)−1

(a5 − a1a2)−1


.

ii) Conditional Sharpe ratio

Let us take the vector Zt = [(rt − rf,t) (rt − rf,t)2]′ and the real scalar function g that depends on the

real 2-dimensional real vector b = [b1 b2]′:

g(b) = b1

(
b2 − b2

1

)−0.5
.

The derivative of g w.r.t. b at a = [a1 a2]′ is

∂g

∂b
(a) =

 g(a)
(
1 + g2(a)

)
a−1

1

−0.5 g3(a)a−2
1

 .
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iii) Conditional skewness

Let us take the vector Zt = [rt r2
t r

3
t ]
′ and the real scalar function g that depends on the real 3-

dimensional real vector b = [b1 b2 b3]′:

g(b) =
(
b3 − 3b1b2 + 2b3

1

) (
b2 − b2

1

)−1.5
.

The derivative of g w.r.t. b at a = [a1 a2 a3]′ is

∂g

∂b
(a) =


(
−3a2 + 6a2

1 + 3a1

(
a2 − a2

1

)0.5
g(a)

) (
a2 − a2

1

)−1.5(
−3a1 − 1.5 (a2 − a2

1)
0.5
g(a)

)
(a2 − a2

1)
−1.5

(a2 − a2
1)
−1.5

 .

iv) Conditional kurtosis

Let us take the vector Zt = [rt r2
t r

3
t r

4
t ]
′ and the real scalar function g that depends on the real

4-dimensional real vector b = [b1 b2 b3 b4]′:

g(b) =
(
b4 − 4b1b3 + 6b2

1b2 − 3b4
1

) (
b2 − b2

1

)−2

The derivative of g w.r.t. b at a = [a1 a2 a3 a4]′ is

∂g

∂b
(a) =


(
−4a3 + 12a1a2 − 12a3

1 + 4a1

(
a2 − a2

1

)
g(a)

) (
a2 − a2

1

)−2

(6a2
1 − 2 (a2 − a2

1) g(a)) (a2 − a2
1)
−2

−4a1 (a2 − a2
1)
−2

(a2 − a2
1)
−2

 .
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