High Prevalence of Carbapenemase-Producing Enterobacteriaceae among Hospitalized Children in Luanda, Angola

Nicolas Kieffer, a,b Patrice Nordmann, a,b,c Marta Aires-de-Sousa, d Laurent Poirel, a,b

Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (LEA, Paris, France), University of Fribourg, Fribourg, Switzerland; University of Lausanne and University Hospital Center, Lausanne, Switzerland; Escola Superior de Saúde da Cruz Vermelha Portuguesa (ESSCVP), Lisbon, Portugal

This study aimed to evaluate the prevalence of carbapenemase-producing Enterobacteriaceae in Luanda, Angola. A total of 157 rectal samples were collected from children visiting a pediatric hospital in Luanda in March 2015. Fifty-seven imipenem-nonsusceptible enterobacterial isolates were recovered, most of which were non-clonally related. The blaOXA-181 (50/57) and blaNDM-1 (7/57) carbapenemase genes were identified. Notably, OXA-181-producing Escherichia coli isolates rarely coproduced extended-spectrum β-lactamases and consequently remained susceptible to broad-spectrum cephalosporins. The blaOXA-181 gene was always located on an IncX3 plasmid, while the blaNDM-1 gene was located on either IncFIA or IncA/C plasmids. The study identified a high prevalence of OXA-181 among hospitalized children in Angola.

MATERIALS AND METHODS

Bacterial isolates and susceptibility testing. A total of 157 rectal swabs were collected on 30 and 31 March 2015 from hospitalized patients (n = 100) and from ambulatory patients (n = 57). The samples were incubated in Luria-Bertani (LB) broth supplemented with etepenem (0.25 μg/ml) for 10 h. From each broth, a calibrated inoculated loop (10 μl) was plated onto ChromID CarbSmart selective medium (bioMérieux, La Balme-les-Grottes, France) to select for carbapenem-resistant isolates. The isolates were identified at the species level using the API20E system (bioMérieux). Antimicrobial susceptibility testing was performed according to the disc diffusion method following the CLSI recommendations (8) and using cation-adjusted Mueller-Hinton (MH) plates (Bio-Rad, Cressier, Switzerland).

MICs were determined by Etest (bioMérieux, La Balme-les-Grottes, France) for imipenem, meropenem, and ceftazidime. Carbapenemase activity was assessed using the Rapidide Carba NP test (9) (bioMérieux) for each isolate growing on the ChromID CarbSmart plate.

Molecular analysis. Carbapenemase- and extended-spectrum β-lactamase (ESBL)-encoding genes were identified by PCR amplification using specific primers as described previously (10–12), followed by sequencing (Microsynth, Balgach, Switzerland).

Considering the high-level resistance to all aminoglycosides observed for some isolates, a search of 16S rRNA methylase-encoding genes was performed by multiplex PCR as described previously (13). Similarly, a search of plasmid-mediated Qnr-like encoding genes involved in reduced susceptibility to quinolones was performed by multiplex PCR, as described previously (14). Finally, a search of the plasmid-mediated colistin resistance mcr-1 gene was performed by real-time PCR (15).

The clonal relationship of the isolates was evaluated by pulsed-field gel electrophoresis (PFGE). Total DNA from K. pneumoniae isolates and Escherichia coli isolates was digested by using the XbaI enzyme (New England BioLabs, Ipswich, MA, USA). The generated fragments were separated by pulsed-field gel electrophoresis (PFGE). Total DNA from K. pneumoniae isolates and Escherichia coli isolates was digested by using the XbaI enzyme (New England BioLabs, Ipswich, MA, USA). The generated fragments were separated by PFGE using a CHEF-DR III System (Bio-Rad), followed by multilocus sequence typing (MLST) (16) for one strain of each different PFGE profile. Sequence types (STs) were assigned using the databases (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli/ and http://bigd.ensembl.org/pathoscopefr /klebsiella/klebsiella.html) for E. coli isolates and for K. pneumoniae isolates, respectively. DNAs of plasmids harboring the blaOXA-181 gene were extracted using the Kieser extraction method (17), electroporated into E.
coli TOP10, and selected on LB agar plates supplemented with temocillin (50 μg/ml), which is selective for OXA-48-like β-lactamase producers. Plasmid sizes were evaluated by agarose gel electrophoresis using E. coli NCTC50192 harboring four plasmids of 154, 66, 48, and 7 kb as plasmid size markers. Plasmids carrying bla_{OXA-181} were characterized by PCR-based replicon typing (PBRT) as described previously (18) by including primers specific for IncX3-type plasmid backbones (IncX3 Fw, 5′-GAG GCT TAT CGT GAA GAC AG-3′; IncX3 Rv, 5′-GAA CGA CTT TGT CAA ACT CC-3′) and by restriction fragment length polymorphism (RFLP) using restriction enzymes PvuII and HindIII, respectively. The genetic environment of the bla_{OXA-181} gene was investigated by PCR mapping with primers specific for insertion sequence ISEcp1, ISKpn19, or IS3000, as previously described (6, 19), since previous studies showed they might be located upstream of bla_{OXA-181}.

Conjugation experiments. Mating-out assays were performed using the azide-resistant E. coli J53 as the recipient. E. coli J53 and bla_{OXA-181}-carrying donors were separately inoculated overnight into LB broth and incubated. The samples were then mixed at a ratio of 10:1 (donor/recipient) for 5 h and plated onto LB agar plates supplemented with temocillin (50 μg/ml) and sodium azide (100 μg/ml). Susceptibility testing was performed for all E. coli transconjugants, and positivity for bla_{OXA-181} was checked by PCR.

Ethical approval. The protocol was approved by the institutional review board of the hospital. Informed consent was obtained from the guardians of the children after a verbal presentation of the purpose, method, and design of the study.

RESULTS

All the patients were children from 3 months to 13 years old. They were visiting the hospital for several reasons, either for treating infections (pneumonia, peritonitis, malaria, and hepatitis) or for surgery, tumors, leukemia, malnutrition, or renal failure. Limited data in relation to antimicrobial therapy were available; the only important issue was that penicillins and broad-spectrum cephalosporins are quite often used in the hospital, but none of the children had previously received carbapenems.

From the 157 patients, a total of 57 imipenem-non-susceptible and carbapenemase-producing enterobacterial isolates were isolated (Table 1). They were recovered from a total of 48 patients; 9 patients were colonized with two different carbapenemase producers. Out of the 57 community patients screened, only a single carbapenemase producer was recovered, while 42 out of the 100 hospitalized patients were colonized by at least one carbapenemase-producing isolate.

Among the 57 carbapenemase-producing isolates, 50 were found positive for the bla_{OXA-181} gene and 7 were positive for the bla_{NDM-1} gene. None of the isolates coproduced two carbapenemases. Among the bla_{OXA-181}-positive enterobacterial isolates, 25 E. coli isolates, 24 K. pneumoniae isolates, and a single Enterobacter cloacae isolate were identified. The seven bla_{NDM-1} producers were E. coli (n = 4), K. pneumoniae (n = 1), Providencia stuartii (n = 1), and Providencia retgeri (n = 1). Moreover, six out of the seven bla_{NDM-1}-positive isolates harbored the rmtB or rmtH 16S rRNA methyltransferase gene (Table 1). No isolate was positive for the mcr-1 gene.

Notably, the majority of the isolates belonging to either the E. coli or K. pneumoniae species exhibited low carbapenem MIC values, in particular for imipenem, with most isolates showing MIC values of 0.5 or 1 μg/ml.

The majority of the OXA-181-producing E. coli isolates (64%) did not coproduce any ESBL and remained susceptible to broad-spectrum cephalosporins, whereas almost all the K. pneumoniae isolates (96%) were ESBL producers (Table 1).

Mating-out assays followed by plasmid analysis revealed four different-size plasmids (ca. 30 kb, 64 kb, 70 kb, and >150 kb) carrying the bla_{OXA-181} gene (Table 1). E. coli transconjugants harboring the 30-kb plasmid showed slightly higher MICs of carbapenems than the other transconjugants (4- and 2-fold-increased MICs for imipenem and meropenem, respectively), suggesting that the corresponding carbapenem type could likely be present at higher copy numbers and therefore could be enhancing the expression of the carbapenemase gene. Notably, although no additional β-lactamase gene was identified on the other two plasmid scaffolds, PCR amplification showed that the 150-kb plasmid bearing the bla_{OXA-181} gene coharbored the bla_{TEM-1} and bla_{CTX-M-15} β-lactamase genes.

PCR mapping performed on all the positive isolates revealed that a remnant of the ISEcp1 element was located upstream of the bla_{OXA-181} gene, as previously reported on the IncX3-type plasmid POXA-181 from a Chinese E. coli isolate (20), with ISEcp1 being truncated by the insertion of IS3000. Downstream of bla_{OXA-181} and similar to what was observed on POXA-181, ISKpn19 was identified. Further downstream, the qnrS1 gene, encoding resistance to quinolones and found on POXA-181, was identified. Overall, the same structure as that identified on POXA-181 was detected.

The mating-out assays were successful for all the carbapenemase-producing isolates as donors, except for a single bla_{OXA-181}-positive K. pneumoniae isolate (Table 1). PBRT analysis showed that all the different-size plasmids carrying the bla_{OXA-181} gene belonged to the same IncX3 group, and RFLP confirmed that they shared a common scaffold structure, with similar-size bands (data not shown). The bla_{NDM-1} gene was identified on an IncFIA-type plasmid for three E. coli isolates and on an IncA/C-type plasmid for a single P. retgeri isolate. PFGE and MLST analyses identified nine different E. coli clones and 10 different K. pneumoniae clones (Table 1).

DISCUSSION

Here, we report a high rate of recovery of carbapenemase-producing enterobacterial isolates from children in Angola and an important dissemination of the bla_{OXA-181} carbapenemase gene, which might be considered endemic in that geographical area, through the diffusion of conjugative plasmids. Indeed, 27.4% of the screened individuals were found positive for carbapenemases, and 88% of those carbapenemase-producing isolates harbored the bla_{OXA-181} gene. This is particularly noteworthy considering that none of the patients had received any current or past carbapenem-based antimicrobial therapy.

The occurrence of NDM-1-producing isolates is also noteworthy, since the identification of NDM-1 producers in Tunisia, Morocco, Algeria, and South Africa shows that this carbapenemase, known to be widespread in the Indian subcontinent, may also be widespread in Africa.

The rare association of the bla_{OXA-181} gene with an ESBL-encoding gene in the E. coli isolates contrasts with the frequent associations observed among bla_{OXA-48}-positive K. pneumoniae isolates, in particular with the bla_{CTX-M-15} ESBL gene. This further underlines the fact that the bla_{OXA-48} and bla_{OXA-181} genes, although structurally related, have distinct origins and epidemiologies.
According to our data, the high rate of OXA-181 producers in Luanda results from the spread of some predominant \textit{E. coli} and \textit{K. pneumoniae} clones, but also from the dissemination of a self-conjugative IncX3-type plasmid among different enterobacterial isolates.

The plasmids harboring the \textit{blaOXA-181} gene were different in size; nevertheless, they all shared the same backbone. It might be hypothesized that they derive from a common IncX3 conjugative plasmid. Notably, although all \textit{blaOXA-181}-positive plasmids co-harbored the \textit{qnrS1} gene conferring reduced susceptibility to IPM, imipenem; MEM, meropenem.

Coresistances provided by the carbapenemase-encoding plasmids. AMK, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; TOB, tobramycin.

* Incompatibility group of the plasmid harboring the carbapenemase gene.

\textit{K. pneumoniae} isolates.
quino
no additional resistance markers were detected, with
the exception of a single 150-kb plasmid identified in only
one isolate that coharbored the blaTEM-1 and blaCTX-M-15
β-lactamase genes. In addition, this 150-kb plasmid was not self-conjugative,
in contrast to the other blaOXA-181-bearing plasmids identified.
This might be the consequence of the insertion of the two addi
tional β-lactamase genes in a region of the plasmid that is crucial
for its conjugative property.

Interestingly, the genetic environment of the blaOXA-181 gene
was identical to that identified recently by Liu et al. (20) in China,
also on an IncX3-type plasmid, with the blaOXA-181 gene flanked
upstream by ISEsp1 truncated by IS3000 and downstream by
ISKpn19 followed by the qnrS1 gene. In other reports from differ
ent parts of the world, the blaOXA-181 gene was identified on
different plasmid backbones, including IncN and IncT plasmids (19,
21). IncX3-type plasmids harboring the blaOXA-181 gene seem to be
prevalent in Asia. Indeed, a recent study showed that OXA-
181-producing isolates had been imported into Switzerland on
fresh vegetables originating from Asia (22).

Our data support the importance of active and continuous
surveillance of carbapenemase-producing Gram-negative bacte
ria in health care facilities. They also show that not only Asia, but
also Africa, may act as an important reservoir of OXA-181.

Altogether, most isolates coharbored a high number of resis
tance determinants that represent a major source of concern in
terms of public health.

ACKNOWLEDGMENTS

This work has been funded by the University of Fribourg, Fribourg,
Switzerland, and by projects PTD/DCTP/EP/0842/2014 from Fun
cação para a Ciência e a Tecnologia, Portugal.

FUNDING INFORMATION

This work, including the efforts of Laurent Poirel, was funded by Univer
sity of Fribourg.

REFERENCES

doi.org/10.1016/j.jmmed.2012.03.003.
00091-07.
cilinase-mediated resistance to imipenem in Klebsiella pneumoniae. An
4. Poirel L, Potron A, Nordmann P. 2012. OXA-48-like carbapenemases:
doi.org/10.1093/jac/dks024.
features for OXA-48-like β-lactamases. J Antimicrob Chemother 70:
2011. Characterization of OXA-181, a carbapenem-hydrolyzing class D
β-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother
enemase producers among Enterobacteriaceae worldwide. Clin Microbiol
ards for antimicrobial susceptibility testing: twenty-fourth informa
tional supplement. CLSI, Wayne, PA.
AAC.01297-12.
10. Nordmann P, Boulanger AE, Poirel L. 2012. NDM-4 metallo-β-
lactamase with increased carbapenemase activity from Escherichia coli.
AAC.005961-11.
11. Poirel L, Dortet L, Bernabeu S, Nordmann P. 2011. Genetic features of
blaOXA-181-positive Enterobacteriaceae. Antimicrob Agents Chemother
AAC.01614-06.
http://dx.doi.org/10.1128/AAC.00882-08.
PCR for detection of plasmid-mediated quinolone resistance qnr genes in
ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60:
15. Bontron S, Poirel L, Nordmann P. 2016. Real-time PCR for detection of
plasmid-mediated polymyxin resistance (mcr-1) from cultured bacteria and
1093/jac/dkw139.
locus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin
2005.
1016/0147-619X(84)90063-5.
Identification of plasmids by PCR-based replicon typing. J Microbiol
to transfer of an IncN plasmid harboring blaOXA-181, from Morganella morganii to CTX-M-27-producing sequence type 131 Escherichia coli. Anti
04442-14.
First report of OXA-181-producing Escherichia coli in China and characteriza
tion of the isolate using whole-genome sequencing. Antimicrob Agents
sequence of the IncT-type plasmid PT-OXA-181 carrying the blaOXA-181
carbapenemase gene from Citrobacter freundii. Antimicrob Agents Che
detection of Klebsiella variicola producing OXA-181 carbapenemase in
fresh vegetable imported from Asia to Switzerland. Antimicrob Resist In