Faculté des sciences

In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes

Harris, J. P. ; Hess, Andreas E. ; Rowan, Stuart J. ; Weder, Christoph ; Zorman, C. A. ; Tyler, D. J. ; Capadona, Jeffrey R.

In: Journal of Neural Engineering, 2011, vol. 8, no. 4, p. 046010

We recently introduced a series of stimuli-responsive, mechanically adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet become mechanically compliant to match the... Plus

Ajouter à la liste personnelle
    Summary
    We recently introduced a series of stimuli-responsive, mechanically adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet become mechanically compliant to match the stiffness of the brain tissue and minimize forces exerted on the tissue, attenuating inflammation. Microprobes created from mechanically reinforced nanocomposites demonstrated a significant advantage compared to model microprobes composed of neat polymer only. The nanocomposite microprobes exhibit a higher storage modulus (E' = ~5 GPa) than the neat polymer microprobes (E' = ~2 GPa) and can sustain higher loads (~12 mN), facilitating penetration through the pia mater and insertion into the cerebral cortex of a rat. In contrast, the neat polymer microprobes mechanically failed under lower loads (~7 mN) before they were capable of insertion into cortical tissue. Further, we demonstrated the material's ability to morph while in the rat cortex to more closely match the mechanical properties of the cortical tissue. Nanocomposite microprobes that were implanted into the rat cortex for up to eight weeks demonstrated increased cell density at the microelectrode–tissue interface and a lack of tissue necrosis or excessive gliosis. This body of work introduces our nanocomposite-based microprobes as adaptive substrates for intracortical microelectrodes and potentially for other biomedical applications.