Direct and indirect effects based on difference-in-differences with an application to political preferences following the Vietnam draft lottery

Eva Deuchert, Martin Huber, and Mark Schelker
Direct and indirect effects based on difference-in-differences

with an application to political preferences following the Vietnam draft lottery

Eva Deuchert, Martin Huber, Mark Schelker
University of Fribourg, Department of Economics

Abstract: This paper proposes a difference-in-differences approach for disentangling a total treatment effect on some outcome into a direct impact as well as an indirect effect operating through a binary intermediate variable – or mediator – within strata defined upon how the mediator reacts to the treatment. We show under which assumptions the direct effects on the always and never takers, whose mediator is not affected by the treatment, as well as the direct and indirect effects on the compliers, whose mediator reacts to the treatment, are identified. We provide an empirical application based on the Vietnam draft lottery. The results suggest that a high draft risk due to the lottery leads to a relative increase in the support for the Republican Party and that this increase is mostly driven by those complying with the lottery outcome.

Keywords: treatment effects, causal mechanisms, direct and indirect effects, Vietnam War lottery, political preferences, difference-in-differences

JEL classification: C21, C22, D70, D72

We have benefitted from comments by seminar participants in Hong Kong (HKUST) and Taipei (Academia Sinica). Addresses for correspondence: Eva Deuchert (eva.deuchert@gmail.com), Martin Huber (martin.huber@unifr.ch), Mark Schelker (mark.schelker@unifr.ch), University of Fribourg, Department of Economics, Bd. de Pérolles 90, 1700 Fribourg, Switzerland.
1 Introduction

Policy and treatment evaluation typically aims at assessing the causal effect of an intervention or treatment on an outcome of interest. In many cases, however, not only the (total) treatment effect appears interesting, but also the causal mechanisms through which it materializes. Causal mediation analysis (Robins and Greenland, 1992; Pearl, 2001; Robins, 2003) therefore aims at disentangling the direct effect of the treatment on the outcome as well as the indirect effects operating through one or more intermediate variables, also called mediators.

The main contribution of this paper is the proposition of a difference-in-differences (DiD) approach for separating direct and indirect effects within subpopulations (or strata) defined upon the reaction of a binary mediator to the treatment. Borrowing from the nomenclature in Angrist, Imbens, and Rubin (1996), we demonstrate under which assumptions direct effects for “always” and “never takers”, whose binary mediator is independent of the treatment always or never one, or of the direct and indirect effects on the compliers, whose mediator value always corresponds to the treatment state, are identified. Among others, random treatment assignment, monotonicity of the mediator in the treatment, and specific common trend assumptions across strata are imposed for identification.

In contrast to our approach, a good part of the literature on causal mediation analysis assumes conditional exogeneity of the treatment (given observed covariates) and the mediator (given the treatment and the covariates), which requires observing all confounders of the treatment and the mediator. Such “sequential ignorability” is for instance imposed in Petersen, Sinisi, and van der Laan (2006), Flores and Flores-Lagunes (2009), VanderWeele (2009), Imai, Keele, and Yamamoto (2010), Hong (2010), Tchetgen Tchetgen and Shpitser (2012), Zheng and van der Laan (2012), and Huber (2014). Alternatively, relatively few contributions consider identification based on instruments, see for instance Imai, Tingley, and Yamamoto (2013), Yamamoto (2013), and Frölich and Huber (2014). Our paper is to the best of our
knowledge the first one to offer an alternative to sequential ignorability and instrumental variable assumptions based on a DiD approach in the context of mediation analysis.

While most mediation studies focus on the total population, comparably few contributions discuss effects in subpopulations (or principal strata, see Frangakis and Rubin, 2002) defined upon the value of the binary mediator as a function of the treatment, see for instance Rubin (2004). Principal stratification in the context of mediation has been criticized for typically not permitting a decomposition of direct and indirect effects among compliers and focussing on subgroups that may be less interesting than the entire population, see VanderWeele (2008; 2012). We contribute to this discussion by showing that direct and indirect effects on compliers are identified in a DiD framework under particular conditions and by presenting an empirical application in which the effect on subgroups is relevant for political decision making.

We apply our method to investigate the effect of the Vietnam draft lottery in the years 1969 to 1972 in the US on political preferences, personal views on war policies, and personal attitudes. Our mediator of interest is military service during the Vietnam War. We note that a subset of individuals (compliers) was induced by the lottery to serve in the army either through being drafted or “voluntarily” joining the military in case of an unfavourable lottery outcome (Angrist, 1991), while others avoided the draft (never takers) for instance through college deferments (Card and Lemieux, 2001; Kuziemko, 2010; Deuchert and Huber, 2014), or would have served in any case (always takers). We aim at estimating the direct effects of the draft lottery on the never takers, as well as the direct and indirect effect (via military service) on the compliers.

This is a particularly interesting application for several reasons: First, the recent literature argues that party preferences and political attitudes are endogenous to policy changes (Bergan, 2009; Erikson and Stoker, 2011), which is in contrast to most economic models. Erikson and Stoker (2011) use the Vietnam draft lottery to estimate the impact of receiving an unfavourable
lottery number on party preferences and political attitudes in a highly selected sample of young college-bound men and conclude that a change in the draft risk increases support for the Democratic Party. Using a sample of 115 male students from the 1972 class of the University of Virginia, Bergan (2009) shows that the draft induced those with unfavourable lottery numbers to be more strongly in favour of an immediate withdrawal from Vietnam. We challenge these results, estimating the impact of the draft on political preferences in a more representative sample. Second, we go beyond the intention to treat effect and specifically consider heterogeneity in the response to the draft across strata. The previous literature analysing the impact of the Vietnam War lottery typically assumes that the Vietnam War lottery impacts outcomes only via military service and thus assumes that the direct effect of the lottery is equal to zero (Angrist, Chen, and Frandsen, 2010; Angrist, 1990) for any population. We challenge this assumption, too.

In contrast to Erikson and Stoker (2011) and Bergan (2009), we find that the draft lottery significantly increases the probability to vote Republican, but has no effects on Vietnam War attitudes. When decomposing the average treatment effect into direct and indirect effects within strata, the electoral results are no longer significant. Taken at face value, the point estimates suggest that the overall effect appears to be largely driven by compliers who increase their relative support for the Republicans. However, both the total and indirect effects on compliers are far smaller than the local average treatment effect (LATE) estimate on compliers, which relies on the lottery being a valid instrument for military service. This points to the non-robustness of the results across various econometric approaches, as the true LATE equals the true indirect effect among compliers (for whom the first stage is one by definition) in the absence of direct effects.

The remainder of this paper is organized as follows. Section 2 outlines the econometric framework, i.e., the effects of interest and the identifying assumptions underlying our DiD
approach. Section 3 presents an empirical application to the Vietnam draft lottery in which the
total effects as well as the direct and indirect effects on political preferences and personal views
on war and other governmental policies are estimated for various strata. Section 4 concludes.
The appendix includes among other a simulation study to provide some intuition for scenarios
in which the various identifying assumptions are satisfied or violated.

2 Econometric framework

2.1 Notation and definition of direct and indirect effects

Let Z denote a binary treatment (e.g., being chosen for military service in a draft lottery) and
D a binary intermediate variable or mediator that may be a function of Z (e.g., an indicator for
actual military service). Furthermore, let T indicate a particular time period: $T = 0$ denotes
the baseline period prior to assignment of Z and D, $T = 1$ the follow up period after
measuring D and Z in which the effect of the outcome is evaluated. Finally, let Y_t denote the
outcome of interest (e.g., political preference) in period $T = t$. Indexing the outcome by the
time period $t \in \{1,0\}$ implies that it may be measured both in the baseline period and after the
assignment of Z and D. To define the parameters of interest, we make use of the potential
outcome notation, see for instance Rubin (1974), and denote by $Y_t(z, d)$ the potential outcome
for treatment state $Z = z$ and mediator state $D = d$ in time $T = t$, with $z, d, t \in \{1,0\}$.
Furthermore, let $D(z)$ denote the potential mediator as a function of the treatment state
$z \in \{1,0\}$. For notational ease, we will not use a time index for D and Z, because each of these
parameters are assumed to be measured at a single period between $T = 0$ and $T = 1$ (but not
necessarily the same period, as D causally precedes Z).

Using this notation, the average treatment effect (ATE) in the follow up period is defined as
$\Delta_1 = E[Y_1(1, D(1)) - Y_1(0, D(0))]$. That is, the ATE corresponds to the cumulative effect of Z
on the outcome that either affects the latter directly (i.e., net of any effect on the mediator) or
indirectly through an effect on D. Indeed, the total ATE can be disentangled into the direct and indirect effects, denoted by $\theta_1(z) = E[Y_1(1,D(z)) - Y_1(0,D(z))]$ and $\delta_1(z) = E[Y_1(z,D(1)) - Y_1(z,D(0))]$, by adding and subtracting $Y_1(1,D(0))$ or $Y_1(0,D(1))$, respectively:

$$\Delta_1 = E[Y_1(1,D(1)) - Y_1(0,D(0))]$$
$$= E[Y_1(1,D(0)) - Y_1(0,D(0))] + E[Y_1(1,D(1)) - Y_1(1,D(0))]$$
$$= \theta_1(0) + \delta_1(1)$$
$$= E[Y_1(1,D(1)) - Y_1(0,D(1))] + E[Y_1(0,D(1)) - Y_1(0,D(0))]$$
$$= \theta_1(1) + \delta_1(0)$$

Distinguishing between $\theta_1(1)$ and $\theta_1(0)$ or $\delta_1(1)$ and $\delta_1(0)$, respectively, implies the possibility of interaction effects between Z and D such that the effects could be heterogeneous across values $z = 1$ and $z = 0$. For instance, $\delta_1(1)$ and $\delta_1(1)$ might differ if the military unit (and war experience) one is assigned to when being chosen through the draft lottery is different than when joining the army voluntarily without being drafted, which may have an impact on political attitude. Furthermore, note that if Z was a valid instrument for D that satisfied the exclusion restriction, as for instance assumed in Angrist (1990) in the context of the Vietnam draft lottery, any direct effect $\theta_t(z)$ would be zero and the indirect $\delta_1(1) = \delta_1(0) = \delta_1$ would correspond to the so-called intention to treat effect. In our empirical application outlined below, we do not impose this strong assumption, which has for instance been challenged in Deuchert and Huber (2014), but explicitly allow for direct effects.

In our approach we consider the concepts of direct and indirect effects within subgroups or so-called principal strata in the denomination of Frangakis and Rubin (2002) that are defined upon the values of the potential mediator. As outlined in Angrist, Imbens, and Rubin (1996) in the context of instrumental variable-based identification, any individual i in the population belongs to one of four strata, henceforth denoted by τ, according to their potential mediator
status (now indexed by i) under either treatment state: always takers ($a: D_i(1) = D_i(0) = 1$) whose mediator is always one, compliers ($c: D_i(1) = 1, D_i(0) = 0$) whose mediator corresponds to the treatment value, defiers ($d: D_i(1) = 0, D_i(0) = 1$) whose mediator opposes the treatment value, and never takers ($n: D_i(1) = D_i(0) = 0$) whose mediator is never one. Note that τ cannot be pinned down for any individual, because either $D_i(1)$ or $D_i(0)$ is observed, but never both.

Introducing some further stratum-specific notation, let $\Delta_1^\tau = E[Y_1(1,D(1)) - Y_1(0,D(0))|\tau]$ denote the ATE conditional on $\tau \in \{a,n,c,d\}$; $\theta_1^\tau(z)$ and $\delta_1^\tau(z)$ denote the corresponding direct and indirect effects. Because $D_i(1) = D_i(0) = 0$ for any never taker, the indirect effect for this group is by definition zero ($\delta_1^n(z) = E[Y_1(z,0) - Y_1(z,0)|n] = 0$) and $\Delta_1^n = E[Y_1(1,0) - Y_1(0,0)|n] = \theta_1^n(1) = \theta_1^n(0) = \theta_1^n$ corresponds to the direct effect (and an analogous argument applies to the always takers). For the compliers, both direct and indirect effects may exist. Note that $D(z) = z$ due to the definition of compliers. Therefore, $\theta_1^c(z) = E[Y_1(1,z) - Y_1(0,z)|c]$ and $\delta_1^c(z) = E[Y_1(z,1) - Y_1(z,0)|c]$. Furthermore, in the absence of any direct effect, the indirect effects on the compliers are homogenous, $\delta_1^c(1) = \delta_1^c(0) = \delta_1^c$, and correspond to the LATE.

2.2 Identifying assumptions

We subsequently discuss the identifying assumptions along with the effects that may be obtained. We start by assuming independence between the treatment and potential mediators or outcomes:

Assumption 1: Independence of Z and potential mediators/outcomes

\[\{Y_t(z,d), D(z)\} \perp Z, \text{ for all } z,d,t \in \{1,0\} \]
Assumption 1 implies that there are no confounders jointly affecting the treatment and the mediator and/or outcome and is satisfied under treatment randomization as in successfully conducted experiments or (draft) lotteries. Our subsequent identification results could easily be adjusted to the case that independence only holds conditional on a vector of observed covariates. However, for the sake of ease of notation, we do not consider covariates and note that under conditional independence, any result holds within cells defined upon covariate values.

Assumption 2: Weak monotonicity of D in Z

$$\Pr(D_i(1) \geq D_i(0)) = 1$$

Assumption 2 is standard in the literature on local average treatment effects (see Imbens and Angrist, 1994, and Angrist, Imbens, and Rubin, 1996) and rules out the existence of defiers.

Assumption 3: No anticipation effect of D and Z in the baseline period

$$E[Y_0(z, d) - Y_0(z', d')|r] = 0, \text{ for } z, z', d, d' \in \{1,0\}$$

Assumption 3 rules out anticipation effects of the treatment or the mediator w.r.t. to the outcome in the baseline period.

As shown in the appendix, Assumptions 1 to 3 imply that $E[Y_0(1,1) - Y_0(0,0)|c] = \Delta_0^c = 0 = E(Y_0|Z = 1) - E(Y_0|Z = 0)$. Therefore, a rejection of the testable implication $E(Y_0|Z = 1) - E(Y_0|Z = 0) = 0$ in the data would point to a violation of our identifying assumptions. Furthermore, Assumption 1 allows identifying the average treatment effect in the total population

$$\Delta_1 = E[Y_1|Z = 1] - E[Y_1|Z = 0].$$
Moreover, Assumptions 1 and 2 yield the strata proportions, which we denote by $p_\tau = \Pr(\tau)$, as functions of the conditional treatment probabilities given the instrument, which we denote by $p_{d|z} = \Pr(D = d | Z = z)$ for $d, z \in \{1, 0\}$:

$$
p_\alpha = p_{1|0}, p_c = p_{1|1} - p_{1|0}, p_n = p_{0|1}.
$$

Finally, under Assumptions 1 to 3, the differences in average baseline outcomes across always or never takers and compliers are identified by

$$
E[Y_{0}(0,0)|\alpha] - E[Y_{0}(0,0)|c] = \frac{p_\alpha + p_c}{p_c} [E(Y_0|Z = 0, D = 1) - E(Y_0|Z = 1, D = 1)],
$$

$$
E[Y_{0}(0,0)|n] - E[Y_{0}(0,0)|c] = \frac{p_n + p_c}{p_c} [E(Y_0|Z = 1, D = 0) - E(Y_0|Z = 0, D = 0)],
$$

see equations (A5) and (A16) in the appendix. However, to identity direct and indirect effects for any of these groups, we need to impose some further assumptions.

In contrast to the previous literature which mainly relies on sequential conditional independence or (in considerably fewer cases) on instruments, we subsequently base identification on so-called common trend assumptions, as they are also used for the evaluation of total treatment effects based on difference-in-differences (DiD) across treatment groups, see e.g., Lechner (2011) for a survey. In contrast to the standard framework that aims at resolving treatment endogeneity, we impose common trend assumptions across strata to tackle endogeneity due to conditioning on the potential mediator states (through the definition of the strata), while the treatment is random by Assumption 1. This allows for differences in the effects of unobserved confounders on specific potential outcomes across strata, as long as these differences are time constant.

Assumption 4: Common trends for compliers and never takers under $z = 0$ and $d = 0$

$$
E[Y_{1}(0,0)|n] - E[Y_{0}(0,0)|n] = E[Y_{1}(0,0)|c] - E[Y_{0}(0,0)|c]
$$
Assumption 4 states that the difference in mean potential outcomes under $z = 0$ and $d = 0$ over time is identical for never takers and compliers or equivalently (by rearranging terms), that the difference in mean potential outcomes under $z = 0$ and $d = 0$ across compliers and never taker is constant over time. Under our assumptions, the average direct effect on the never takers is identified based on four conditional means, as outlined in Theorem 1.

Theorem 1: Direct effect on the never takers

Under Assumptions 1 to 4, the average direct effect on the never takers is identified by a DiD approach among those with $D = 0$:

$$\theta_1^n = [E(Y_1|Z = 1, D = 0) - E(Y_1|Z = 0, D = 0)]$$

$$- [E(Y_0|Z = 1, D = 0) - E(Y_0|Z = 0, D = 0)]$$

Proof: See appendix.

The next restriction imposes a common trend restriction w.r.t. potential outcomes of the always takers and compliers under $z = 1$ and $d = 1$.

Assumption 5: Common trends for compliers and always takers under $z = 1$ and $d = 1

$$E[Y_1(1,1)|a] - E[Y_0(1,1)|a] = E[Y_1(1,1)|c] - E[Y_0(1,1)|c].$$

Assumption 5 appears somewhat harder to grasp than the restriction on potential outcomes under $z = 0$ and $d=0$ imposed by Assumption 4. Together with Assumption 3, which implies that $E[Y_0(1,1)|a] = E[Y_0(0,0)|a]$ and $E[Y_0(1,1)|c] = E[Y_0(0,0)|c]$, Assumption 5 either requires (i) that $E[Y_1(0,0)|a] - E[Y_0(0,0)|a] = E[Y_1(0,0)|c] - E[Y_0(0,0)|c]$ (common trend in mean potential outcomes under $z = 0$ and $d = 0$) and that $E[Y_1(1,1)|a] - E[Y_1(0,0)|a] = E[Y_1(1,1)|c] - E[Y_1(0,0)|c]$ such that the mean effects of Z and D that are homogeneous across strata, or (ii) that $E[Y_1(0,0)|a] - E[Y_0(0,0)|a] \neq E[Y_1(0,0)|c] - E[Y_0(0,0)|c]$ and $E[Y_1(1,1)|a] - E[Y_1(0,0)|a] \neq E[Y_1(1,1)|c] - E[Y_1(0,0)|c]$ in a very specific way that
Theorem 2: Direct effect on the always takers

Under Assumptions 1, 2, 3, and 5, the average direct effect on the always takers is identified by a DiD approach among those with $D = 1$:

$$\theta_1^a = \{E[Y_1|Z = 1, D = 1] - E[Y_0|Z = 1, D = 1]\} - \{E[Y_1|Z = 0, D = 1] - E[Y_0|Z = 0, D = 1]\}$$

Proof: See appendix.

Imposing Assumptions 1-5 identifies the average treatment effects on the compliers.

Theorem 3: Average treatment effect on the compliers

Under Assumptions 1 to 5,

$$\Delta_1^c = E[Y_1|Z = 1, D = 1] - E[Y_1|Z = 0, D = 0]$$

$$- \frac{p_{1|0}}{p_{1|1} - p_{1|0}}\{E[Y_0|Z = 0, D = 1] - E[Y_0|Z = 1, D = 1]\}$$

$$+ \frac{p_{0|1}}{p_{0|0} - p_{0|1}}\{E[Y_0|Z = 1, D = 0] - E[Y_0|Z = 0, D = 0]\}$$

Proof: See appendix.

Alternatively to identification based on Assumption 5, one may rule out a direct effect on the always takers per assumption.

Assumption 6: Zero direct effect on always takers

$$\theta_1^a = E[Y_1(1,1)|\alpha] - E[Y_1(0,1)|\alpha] = 0$$
Assumption 6 is an exclusion restriction as standardly used in the instrumental variable literature, however, with the difference that it is only imposed w.r.t. the stratum of always takers. This again allows identifying the total effect on the compliers.

Theorem 4: Average treatment effect on the compliers

Under Assumptions 1, 2, 3, 4, and 6,

\[
\Delta^c_1 = \frac{E[Y_1 D | Z = 1] - E[Y_1 D | Z = 0]}{p_{1|1} - p_{1|0}} - E[Y_1 | Z = 0, D = 0] \\
+ \frac{p_{0|1}}{p_{0|0} - p_{0|1}} \{E[Y_0 | Z = 1, D = 0] - E[Y_0 | Z = 0, D = 0]\}
\]

Proof: See appendix.

Assumptions 7 and 8 represent further common trend assumptions that allow disentangling the total effect on the compliers into direct and indirect effects when being combined with the previous assumptions.

Assumption 7: Common trends for compliers and never takers under \(z = 1 \) and \(d = 0 \)

\[
E[Y_1 (1,0)|n] - E[Y_0 (1,0)|n] = E[Y_1 (1,0)|c] - E[Y_0 (1,0)|c].
\]

Assumption 7 imposes a common trend restriction w.r.t. the potential outcomes of never takers and compliers under \(z = 1 \) and \(d = 0 \). Together with Assumptions 3 and 4, this implies that \(Z \) has the same direct effect among compliers and never takers for \(d = 0 \). To see this, first note that under Assumption 3, the expression in Assumption 7 becomes \(E[Y_1 (1,0)|n] - E[Y_0 (0,0)|n] = E[Y_1 (1,0)|c] - E[Y_0 (0,0)|c] \). Subtracting from the right and left hand side of the latter expression the right and left hand side of Assumption 4, respectively, yields \(E[Y_1 (1,0)|n] - E[Y_1 (0,0)|n] = E[Y_1 (1,0)|c] - E[Y_1 (0,0)|c] \). Assumption 7 is required for the identification of the direct effect under non-treatment and the indirect effect under treatment among compliers. For the latter effect, we derive the results by either imposing Assumption 5.
(common trends for compliers and always takers under $z = 1$ and $d = 1$) or Assumption 6 (no direct effect on always takers).

Theorem 5: Direct effect under $z = 0$ and indirect effect under $z = 1$ on compliers

Under Assumptions 1, 2, 3, 4, and 7,

\[
\theta_1^c(0) = E[Y_1|Z = 1, D = 0] - E[Y_0|Z = 1, D = 0]
+ \frac{E[Y_0(1-D)|Z = 0] - E[Y_0(1-D)|Z = 1]}{p_{0|0} - p_{0|1}} - E[Y_1|Z = 0, D = 0]
+ \frac{p_{0|1}}{p_{0|0} - p_{0|1}}\{E[Y_0|Z = 1, D = 0] - E[Y_0|Z = 0, D = 0]\}.
\]

Proof: See appendix.

Under Assumptions 1, 2, 3, 5, and 7,

\[
\delta_1^c(1) = E[Y_1|Z = 1, D = 1] - \frac{p_{1|0}}{p_{1|1} - p_{1|0}}\{E[Y_0|Z = 0, D = 1] - E[Y_0|Z = 1, D = 1]\}
- E[Y_1|Z = 1, D = 0] + E[Y_0|Z = 1, D = 0]
- \frac{E[Y_0(1-D)|Z = 0] - E[Y_0(1-D)|Z = 1]}{p_{0|0} - p_{0|1}}.
\]

Proof: See appendix.
Under Assumptions 1, 2, 3, 6, and 7,

\[
\delta_1(1) = \frac{E[Y_1D|Z = 1] - E[Y_1D|Z = 0]}{p_{1|1} - p_{1|0}}
\]

\[-E[Y_1|Z = 1, D = 0] + E[Y_0|Z = 1, D = 0]
\]

\[-E[Y_0(1-D)|Z = 0] - E[Y_0(1-D)|Z = 1]
\]

\[
\frac{p_{0|0} - p_{0|1}}
\]

Proof: See appendix.

Assumption 8: Common trends for compliers and always takers under \(z = 0 \) and \(d = 1 \)

\[
E[Y_1(0,1)|a] - E[Y_0(0,1)|a] = E[Y_1(0,1)|c] - E[Y_0(0,1)|c]
\]

Our final assumption imposes a common trend restriction w.r.t. potential outcomes of the always takers and compliers under \(z = 0 \) and \(d = 1 \). Similar to the discussion of Assumption 5, we note that when also invoking Assumption 3, Assumption 8 is satisfied if (i) \(E[Y_1(0,0)|a] - E[Y_0(0,0)|a] = E[Y_1(0,0)|c] - E[Y_0(0,0)|c] \) (common trend in mean potential outcomes under \(z = 0 \) and \(d = 0 \)) and \(E[Y_1(0,1)|a] - E[Y_0(0,0)|a] = E[Y_1(0,1)|c] - E[Y_0(0,0)|c] \) (mean effect of \(D \) is homogeneous across strata), or if (ii) \(E[Y_1(0,0)|a] - E[Y_0(0,0)|a] \neq E[Y_1(0,0)|c] - E[Y_0(0,0)|c] \) and \(E[Y_1(0,1)|a] - E[Y_0(0,0)|a] \neq E[Y_1(0,1)|c] - E[Y_0(0,0)|c] \) in a very specific way that satisfies Assumption 8. Assumption 8 therefore appears somewhat weaker than Assumption 5 when comparing case (i) of either assumption, as effect homogeneity is now only assumed w.r.t. \(D \) (rather than the joint effects of \(D \) and \(Z \)). However, Assumptions 5 and 8 are strictly speaking not nested, which becomes particularly obvious when comparing case (ii) of either assumption. Assumption 8 permits identifying the direct effect under treatment (when either imposing Assumption 5 or 6) and the indirect effect under non-treatment among compliers.
Theorem 6: Direct effect under $z = 1$ and indirect effect under $z = 0$ on compliers

Under Assumptions 1, 2, 3, 5, and 8,

$$
\theta_1^e(1) = E[Y_1|Z = 1, D = 1] - \frac{P_{01}}{P_{11} - P_{10}} \{E[Y_0|Z = 0, D = 1] - E[Y_0|Z = 1, D = 1]\}
$$

$$
- E[Y_1|Z = 0, D = 1] + E[Y_0|Z = 0, D = 1]
$$

$$
\frac{-E[Y_0(1 - D)|Z = 0] - E[Y_0(1 - D)|Z = 1]}{P_{00} - P_{01}}
$$

Proof: See appendix.

Under Assumptions 1, 2, 3, 6, and 8,

$$
\theta_1^e(1) = \frac{E[Y_1|Z = 1] - E[Y_1|Z = 0]}{P_{11} - P_{10}}
$$

$$
- E[Y_1|Z = 0, D = 1] + E[Y_0|Z = 0, D = 1]
$$

$$
\frac{-E[Y_0(1 - D)|Z = 0] - E[Y_0(1 - D)|Z = 1]}{P_{00} - P_{01}}
$$

Proof: See appendix.

Under Assumptions 1, 2, 3, 4, and 8,

$$
\delta_1^c(0) = \frac{P_{01}}{P_{00} - P_{01}} \{E[Y_0|Z = 1, D = 0] - E[Y_0|Z = 0, D = 0]\} - E[Y_1|Z = 0, D = 0]
$$

$$
+ E[Y_1|Z = 0, D = 1] - E[Y_0|Z = 0, D = 1]
$$

$$
\frac{E[Y_0(1 - D)|Z = 0] - E[Y_0(1 - D)|Z = 1]}{P_{00} - P_{01}}
$$

Proof: See appendix.

We have demonstrated that direct and indirect effects can be identified for various subpopulations under random treatment assignment and specific common trend assumptions that differ w.r.t. their strength. In particular, when several common trend assumptions need to be combined as it is the case for the compliers, identification only appears plausible if one can
credibly assume homogeneity in average effects across strata. Whenever the effects for all three strata (compliers, always takers, and never takers) are identified, so are the direct and indirect effects in the total population. This follows from an application of the law of total probability:

$$\theta_1(d) = p_c \theta_1^c(d) + p_a \theta_1^a(d) + p_n \theta_1^n(d) = [p_{1|1} - p_{1|0}] \theta_1^c(d) + p_{1|0} \theta_1^a(d) + p_{0|1} \theta_1^n(d)$$

$$\delta_1(d) = p_c \delta_1^c(d) + p_n^0 + p_n^0 = [p_{1|1} - p_{1|0}] \delta_1^c(d)$$

Note that under Assumption 6, $\theta_1^a(d) = 0$ such that the expression for $\theta_1(d)$ further simplifies.

3 Empirical application

During the Vietnam War, the majority of American troops consisted of volunteers, while the rest were selected through a draft (Gimbel and Booth, 1996). Young men at age 18 had to register at local draft boards for classification. These boards determined medical fitness and initially also decided on the order in which registrants would be called. In an attempt to make the draft fair, a draft lottery was conducted in the years 1969 to 1972 to determine the order of call to military service for men born between 1944 and 1952. The lottery assigned a draft number to each birth date for men in certain age cohorts, where low draft numbers were called first upon a ceiling.

We seek to analyse the impact of having a low random draft lottery number (i.e., being drafted for military service) on political preferences and attitudes, and to understand through which channels this effect materializes. The most obvious channel is military service, as a low draft number increases the likelihood to join the army. The effect of the draft number, which goes through military service, is the indirect effect. The possibility to get a draft exemption and associated behaviour may also impact political preferences and attitudes. College education, for example, may lead to more political participation (Dee, 2004; Milligan, Moretti, and Oreopoulos; Kam and Palmer, 2008; Milstein Sondheimer and Green, 2009), affect political
attitudes by increasing personal income (Morten, Tyran, and Wenström, 2011; Marshall, 2014), and leaving the country may shape preferences or opinions. We do not aim to isolate each of these possible channels separately, but subsume all of them into one effect which we call the direct effect, i.e., the effect which does not go through military service. These effects are interesting from a political economics perspective: If changes to public policy impact on individuals in direct and consequential ways, policy makers might be worried about changes in political preferences and electoral behaviour of such groups. A mechanism of policy interventions based on endogenous preferences would be in contrast to the usual micro-economic assumption of stable preferences such that standard economic models of politics would have to be reconsidered.

In our application we focus on the draft lottery taking place on July 1, 1970, which determined the order in which men born in 1951 were called to report for induction into the military in 1971. From January to April 1971, individuals with random draft numbers between 1 and 100 were called for induction, while for the rest of the year individuals with random draft numbers between 1 and 125 were called. The ceiling of 125 was first announced in October 1971. This late announcement had the consequence that during most of the year the ultimate ceiling below which people were drafted was unclear. This uncertainty may have caused important behavioural responses: On the one hand, education deferments were continued to be issued until 1971, which means that men could avoid being drafted by going to or staying in college (Card and Lemieux, 2001). On the other hand, low draft numbers may have not only increased the risk to be drafted but also the likelihood to voluntarily join the army (Angrist, 1991). The draft avoiding behaviour makes the use of the lottery as an instrumental variable doubtful (Deuchert and Huber, 2014).

1 Another possibility to evade the draft was to leave the country. Overall it seems that this option was not used extensively. For a discussion on the estimated number of evaders leaving the country, see Baskir and Strauss (1978), Hagan (2001), or Jones (2005).
Previous contributions such as Bergan (2009) and Erikson and Stoker (2011) studied the impact of the draft lottery on political preferences and attitudes towards the war. Bergan (2009) shows that a low draft lottery number increases the probability of favouring an immediate withdrawal from Vietnam. Erikson and Stoker (2011) analyse the lottery’s impact on young college bound males, which were especially vulnerable to the new draft policy. The high-school cohort of 1965 was the first one with a strongly increased probability of military induction due to the lottery and the abolishment of previous deferment options. Erikson and Stoker (2011) find that the effect of the lottery number on political preferences and attitudes was large. Young males with low draft numbers more likely voted for the democrats and had anti-war and liberal attitudes. The authors note that only 32% of these males actually served in the military and among them 74% enlisted voluntarily or preemptively. There is a difference in the rate at which young males with lottery numbers below and above the relevant draft cut-off enlisted. While 39% of the cohort with low draft numbers actually served in the military, 24% served in the cohort above the cut-off. Moreover, Erikson and Stoker (2011) do not find any effect of the military service itself on political preferences and attitudes.

These results illustrate important issues when analysing the effect of such a policy change. First, young males reacted in heterogeneous ways to the introduction of the draft. An important proportion of young males in the cohorts above as well as below the cut-off enlisted voluntarily, such that there are individuals that enlist independently of the actual draft risk. Due to heterogeneity in unobserved characteristics, the ATE could be entirely driven by some subpopulation, for example by those who only enlist when chosen by the lottery (compliers), or those who do not enlist whatever the lottery outcome (never takers). It is therefore interesting to distinguish the average effects of the policy intervention across these subgroups or strata. Second, it is important to separate direct effects of a low lottery number from indirect effects that stem from actually serving in the military.
3.1 Data

Our data comes from the “Young Men in High School and Beyond” (YESB) survey (Bachman, 1999), a five-wave longitudinal study among a national sample of male students who were in 10th grade in fall 1966. Information was collected in 1966 (wave 1), spring 1968 (at the end of eleventh grade, wave 2), spring 1969 (wave 3), June-July 1970 (wave 4), and spring 1974 (wave 5). In this paper we use respondents who were born in 1951 as reported in the first wave and who were at the time of the data collection of wave 4 in 1970 not yet in the Army. The dataset is particularly suited for our research question for several reasons: (1) It contains a vast set of variables describing political preferences and attitudes, which are available in the waves before and after the lottery took place. (2) It is one of the very rare publicly available datasets that provides the exact birth date, which is necessary to link draft lottery numbers to individuals.2 (3) Attrition is relatively low compared to many other longitudinal surveys – we observe almost 80% of the initial sample in wave 5. (4) Unlike many other surveys, the data also includes individuals serving in the military (if they can be located).

Descriptive statistics for political preferences and attitudes are presented in Table 1. In order to illustrate our results in a compact form, we present statistics as well as estimation results on indices which aggregate answers on individual questions to related topics. The composite indices contain five questions on attitudes towards the government, six questions on attitudes specifically on the war in Vietnam, and three questions on government interventions for the equal treatment of races.3 The overall picture is not affected by the use of indices rather than the original variables.

3 Index components: Positive attitudes toward the government is the sum of answers to the following questions: “Do you think the government wastes much of the money we pay in taxes?” (little/no), “How much of the time do you think you can trust the government in Washington to do what is right?” (always/often), “Do you feel that the people running the government are smart people who usually know what they are doing?” (always/usually know what doing), “Do you think some of the people running the government are crooked or dishonest?” (hardly any/none), “Would you say the government is pretty much run for a few big interests looking out for themselves, or is it run for the benefit of all the people?” (nearly always/usually run for the benefit of all the people). Positive attitudes toward Vietnam War is the sum of the answers to question on “Fighting the war in Vietnam…”: “was
Table 1: Descriptive statistics

<table>
<thead>
<tr>
<th>Wave</th>
<th>Wave 1</th>
<th>Wave 2</th>
<th>Wave 3</th>
<th>Wave 4</th>
<th>Wave 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly/mildly Republican (0-1)</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.44)</td>
<td>(0.45)</td>
<td>(0.41)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>Strongly/mildly Democrat (0-1)</td>
<td>0.37</td>
<td>0.33</td>
<td>0.38</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.47)</td>
<td>(0.49)</td>
<td>(0.47)</td>
<td>(0.45)</td>
</tr>
<tr>
<td>Positive attitudes toward government (0-5)</td>
<td>2.64</td>
<td>2.38</td>
<td>2.23</td>
<td>1.63</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>(1.44)</td>
<td>(1.46)</td>
<td>(1.34)</td>
<td>(1.30)</td>
<td>(1.05)</td>
</tr>
<tr>
<td>Positive attitudes toward Vietnam War (0-6)</td>
<td>3.32</td>
<td>2.76</td>
<td>2.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.80)</td>
<td>(2.03)</td>
<td>(0.63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government interventions for equal treatment of races (0-3)</td>
<td>2.50</td>
<td>2.60</td>
<td>2.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.76)</td>
<td>(0.69)</td>
<td>(2.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of observations</td>
<td>972</td>
<td>946</td>
<td>970</td>
<td>972</td>
<td>871</td>
</tr>
</tbody>
</table>

Mean; standard deviation in parentheses

The descriptive statistics display some interesting patterns. Particularly in the last wave, the Republicans lost dramatically in electoral support, which most likely reflects the consequence of the Watergate scandal, with the Republican incumbent President, Richard Nixon, at centre stage.4 Interestingly, the Democrats could not benefit from the scandal with higher rates of electoral support. Positive attitudes towards the government also declined substantially. There are also some changes in attitudes towards the Vietnam War, but these are less pronounced.

A potential problem with this data arises from the fact that we do not observe the exact draft number for our full sample. The exact day of birth is only provided for respondents who participated in the fourth wave and did not serve in the military at the time of the interview,

4 The Watergate Scandal refers to the political turmoil initiated by the break-in at the Democratic Parties headquarters, in which the incumbent Republican administration under President Richard Nixon was involved. The scandal ultimately led to the resignation of Richard Nixon in 1974.
which restricts our estimation sample to 972 individuals (about 70% of our original sample). This selection, however, is unlikely to be associated with the random draft number (RDN): Young men born in 1951 were called to report for induction into the military in year 1971. Consequently, no individual of the initial sample was drafted when the interviews for the fourth wave took place. Moreover, most individuals were interviewed even before the lottery so that they were not aware of their draft number and could not have taken any steps to reduce the risk imposed by a small draft number (such as leaving the country). Therefore, the lottery should be internally valid (exogenous) for the individuals observed in 1970.

One may worry, however, that attrition from wave 4 to 5 is associated with the draft number, since we lose a further 10% of our subsample (N = 871). Even though individuals who still served in the military are included, one would expect that dropout rates are highest among those with a high draft risk due to death on active duty, the inability to locate individuals who are still on active duty or draft avoidance by leaving the country. Surprisingly, this is not the case. Dropout rates from wave 4 to 5 are 2 percentage points lower for individuals with lottery numbers below the ceiling (9% vs. 11%). Nevertheless, attrition from wave 4 to 5 may cause a selection bias. In Table A1 of the appendix, we provide a balancing test for pre-lottery outcomes for respondents with RDN below or above the ceiling and who are still observed in wave 5. For all outcomes considered, there are no striking differences in pre-lottery outcomes between individuals with high and low RDN, indicating that selection bias is unlikely an issue in this application.

3.2 Average treatment effect

In the following we estimate the effect of a low draft lottery number on political preferences and Vietnam War attitudes. In the first step we use the experimental estimator to evaluate the ATE. Table 2 presents the results, where the treatment is a binary indicator that is equal to one if the random draft number was below the ceiling. Individuals with low draft numbers are about 5%
more likely to report to vote Republican. All other results do not show significant differences between individuals above and below the cut-off and the estimated coefficients are always very small.

These results are in stark contrast to those of Bergan (2009) and Erikson and Stoker (2011). Bergan (2009) reports a significantly positive effect of the lottery on the probability of favouring an immediate withdrawal from Vietnam. Even though our data set contains similar, albeit not exactly the same measures, we find no significant effect of low lottery numbers on Vietnam War attitudes. Erikson and Stoker (2011) use a sample of college-bound young males who graduated from high school in 1965 and were therefore at risk to being drafted in the 1969 lottery since their college deferment exhausted with graduation. Those males are found to be more likely to report to favour Democrats over Republicans. Specifically, Erikson and Stoker (2011) show that individuals with low lottery numbers voted more often for McGovern (Democrat) relative to Nixon (Republican) or favoured Democratic over Republican attitudes in a rating of attitudes towards McGovern vs. Nixon, party political activities, a composite issue attitude index, and political ideology showing preferences for liberal relative to conservative positions. Moreover, individuals with low lottery numbers expressed more anti-war opinions.

In contrast, we find insignificant differences between individuals with low and high numbers w.r.t. to composite indices on attitudes towards the war and the government, and the same applies to the specific questions of these indices (not reported).

<table>
<thead>
<tr>
<th>Table 2: Average treatment effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly/mildly Republican (0-1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Strongly/mildly Democrat (0-1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Positive attitudes toward government (0-5)</td>
</tr>
</tbody>
</table>
The differences of our results with respect to the study by Bergan (2009) and Erikson and Stoker (2011) may be explained by the sample selection process: Bergan (2009) focuses on a small sample of University students in 1972 and tests the impact of having a low lottery number while they are still in college. Once these students graduate they have no further possibility to receive a deferment. The measured effect is thus most likely the effect of the draft risk. Erikson and Stoker (2011) focus on individuals whose high school curriculum was college preparatory. It is thus very likely that many individuals in their dataset have entered college shortly after completing high school in 1965 and graduated in 1969 at the time of the first draft. They were thus at risk to be drafted for military without the possibility to receive a further deferment, as deferments for graduate studies were eliminated already in 1967. In our sample, in contrast, individuals could still receive a deferment (which continued to be issued until 1971). Therefore, in the sample of Erikson and Stoker individuals were forced to be compliers, while in our sample, individuals could choose to be a complier – at least to some extent. For this reason, effect heterogeneities across strata may be important. In the following we distinguish between different strata and estimate direct and indirect effects of the draft lottery.

3.3 Strata proportions and description

In the first stage, we estimate the impact of a RDN below the ceiling on veteran status (as reported in 1971) and describe the different strata w.r.t. their political preferences and attitudes – measured before the lottery took place. As is shown in Table 3, the lottery shifted the
likelihood of military service by more than 20 percentage points, which corresponds to the share of compliers. This seems relatively small at first glance but can be explained by the fact that a high share of our sample held a college deferment even before the lottery took place. About 4% of the population voluntarily joined the army even though they were not obliged to (always takers). Note that this does not correspond to the share of individuals who voluntarily joined the army for two reasons: First, people who voluntarily enlisted before the lottery took place are not included in our sample since we cannot match the random draft number with the birth date. Second, a bad lottery outcome may have induced some men to enlist “voluntarily” (Angrist, 1991). Since our mediator of interest is military service – no matter if individuals joined voluntarily or were drafted – these induced “voluntary” enlistments are considered as compliers. The vast majority of the population are never takers (73%) who avoided the draft even with a RDN below the ceiling of 126 – either because they were ineligible or because they already had or applied for a deferment.

Table 3: First stage results

<table>
<thead>
<tr>
<th></th>
<th>b/se</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDN < 126</td>
<td>0.224***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.044***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
</tr>
<tr>
<td>R2</td>
<td>0.107</td>
</tr>
<tr>
<td>N</td>
<td>848</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, *p < 0.05, **p < 0.01, ***p < 0.001

Table 4: Mean differences across strata (pre-treatment characteristics)

<table>
<thead>
<tr>
<th></th>
<th>C vs. AT (T=0)</th>
<th>C vs. NT (T=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave 3: Military knowledge test (0-40)</td>
<td>0.862 (1.31)</td>
<td>1.143 (1.519)</td>
</tr>
<tr>
<td>Wave 1: IQ Test</td>
<td>-6.254*** (3.548)</td>
<td>-8.794*** (3.761)</td>
</tr>
<tr>
<td>Wave 1: Self perceived intelligence (1: top 10% to 6: bottom 10%)</td>
<td>0.223*** (0.207)</td>
<td>0.497 (0.305)</td>
</tr>
</tbody>
</table>
Wave 1: Has college plans
-0.064 -0.345**
(0.139) (0.157)

Military classification (Wave 4)

Student deferment
-0.072 -0.386**
(0.14) (0.171)

Available for military
0.140** 0.461***
(0.137) (0.142)

Not classified
-0.004 0.019
(0.057) (0.066)

Other
-0.064 -0.094
(0.105) (0.122)

Table 4 displays strata differences in pre-treatment characteristics that are estimated based on equations (A5) and (A16) in the appendix. While the different groups do not seem to differ in their knowledge about military life, compliers (C) had significantly lower academic skills measured in terms of an IQ-test or self-perceived intelligence than always and never takers (AT, NT). Compliers were also significantly less likely than never takers to have college plans or to hold a student deferment shortly before or at the draft lottery, and more likely available for the military.

Even though the groups differ with respect to academic skills and college aspiration, Table 5 shows that the strata (C: compliers; AT: always takers; NT: never takers) are relatively similar in terms of pre-treatment political preferences prior to the lottery.

Table 5: Mean differences across strata (pre-treatment outcomes, wave 4)

<table>
<thead>
<tr>
<th></th>
<th>C vs. AT (T=0)</th>
<th>C vs. NT (T=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave 1: Has college plans</td>
<td>-0.064</td>
<td>-0.345**</td>
</tr>
<tr>
<td>(0.139)</td>
<td>(0.157)</td>
<td></td>
</tr>
<tr>
<td>Military classification (Wave 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student deferment</td>
<td>-0.072</td>
<td>-0.386**</td>
</tr>
<tr>
<td>(0.14)</td>
<td>(0.171)</td>
<td></td>
</tr>
<tr>
<td>Available for military</td>
<td>0.140**</td>
<td>0.461***</td>
</tr>
<tr>
<td>(0.137)</td>
<td>(0.142)</td>
<td></td>
</tr>
<tr>
<td>Not classified</td>
<td>-0.004</td>
<td>0.019</td>
</tr>
<tr>
<td>(0.057)</td>
<td>(0.066)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>-0.064</td>
<td>-0.094</td>
</tr>
<tr>
<td>(0.105)</td>
<td>(0.122)</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses, *p < 0.05, **p < 0.01, ***p < 0.001
Strongly/mildly Republican (0-1) 0.080 -0.004
(0.115) (0.147)
Strongly/mildly Democrat (0-1) 0.096 -0.004
(0.116) (0.164)
Positive attitudes toward government (0-5) 0.000 0.259
(0.355) (0.461)
Positive attitudes toward Vietnam War (0-6) -0.319 0.060
(0.586) (0.708)
Government interventions for equal treatment of races (0-3) -0.176 0.130
(0.158) (0.254)

Standard errors in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001

3.4 Decomposition of the average treatment effect

In the following we decompose the ATEs displayed in Table 2 into strata-specific direct and indirect effects to understand which channels drive the overall findings. As the credibility of the results of the decomposition hinges on the plausibility of Assumptions (1 to 8), we discuss the latter in the light of our application in the next section.

3.4.1 Plausibility of the identifying assumptions

Assumption 1 implies that there are no confounders jointly affecting the lottery outcome on the one hand and military service and/or the outcome variables on the other hand. This assumption seems uncontroversial since the draft number was randomized and unlike the first lottery that had taken place in 1969, the randomization was well executed (Fienberg, 1971). Also balancing tests with respect to pre-treatment outcomes measured in wave 4 (Table A1) support this assumption. Assumption 2 rules out the existence of defiers, which seems plausible in the context of the draft lottery. It appears hard to argue why an individual should avoid the draft when being chosen by the lottery, but voluntarily join the army when not being chosen. Assumption 3 rules out anticipation effects of the treatment or the mediator w.r.t. to the outcome in the baseline period. Given the fact that the results of the lottery could not have been
foreseen and that the large majority of interviews took place before the lottery, this assumption is also likely satisfied and supported by the results of the balancing test with respect to outcomes measured in wave 4.

Assumption 4 imposes common trends for compliers and never takers when receiving a high lottery number and not joining the army. This is a fairly standard restriction in the DiD literature, arguing that the mean outcomes of various groups develop in a comparable way if no one receives any treatment. The fact that compliers and never taker had fairly similar outcomes prior the lottery (see Table 5) somewhat supports this assumption, albeit similarity in levels is strictly speaking neither necessary nor sufficient for common trends. Assumption 1 to 4 are sufficient to estimate the direct effect on the never takers. We perform placebo estimations by using wave 4 as the placebo follow up period and wave 3 as baseline period (Table A2). The placebo effects for the direct effect on the never takers are small and insignificant for all outcomes and therefore support our strategy.

Assumption 5 would be satisfied if the joint average effect of the lottery and military service was comparable across individuals voluntarily joining the army (always takers) or being induced to join (compliers), which seems to be a very strong assumption. Alternatively, one may assume a zero direct effect on always takers (Assumption 6). This seems more credible in our current setting: Always takers are not forced to change their behavior because they would join the army anyway such that a low lottery number per se should have no direct effect on political preferences. Under Assumptions 1, 2, 3, 4, and 6, we can consistently estimate the total treatment effect on the compliers. We also perform placebo estimations of the total treatment effect on compliers (Table A2). Results are small and insignificant.

Assumption 7 imposes common trends for compliers and never takers when both groups receive low lottery numbers but neither group actually joins the army. This means that outcomes of compliers and never takers would develop in a similar way if one could induce
compliers to react to the lottery in a similar way as never takers. Combined with previous assumptions this implies that the direct effects of the lottery when neither group joins the army are homogeneous. Assumption 8, in contrast, assumes common trends for compliers and always takers when both groups receive high lottery numbers but join the army anyway. Note that Assumptions 7 and 8 (in combination with other assumptions) identify different indirect effects: Assumption 7 gives the effect of joining the army among compliers when having a low random number \((z = 1)\). Assumption 8, in contrast, identifies the effect of joining the army when compliers receive a high random number \((z = 0)\). This seems to be a hypothetical effect since compliers do not join the army if they are not induced to by the lottery. We therefore impose Assumption 7 in our analysis and also consider placebo estimations (Table A2) that yield small and insignificant results. Note that in the absence of any direct effect of the lottery, the indirect effects under Assumptions 7 and 8 are identical and correspond to the LATE.

3.4.2 Direct effects on never takers

We use the results of Theorem 1 (Assumptions 1 to 4) to estimate the direct effects of the lottery on the never takers, who may have taken active steps to avoid the draft as using college deferments (Card and Lemieux 2001). College education might in turn have affected political preferences and attitudes. As a consequence, there may be important direct effects (i.e., all effects that do not go through military service). The reported standard errors are (in contrast to the previous tables) not obtained based on asymptotic approximations, but by 1999 bootstrap replications and take account of clustering on the individual level across time periods. The direct effects on preferences for the Republican and Democratic Parties are both positive and with 3.8 and 3.5 percentage points, respectively, similar in size, but statistically not significant. All other estimates are small and insignificant.

Table 6: Direct effect on never takers (NT)
Table 7: Total, direct and indirect effect on compliers (C)

<table>
<thead>
<tr>
<th></th>
<th>Total effect on C</th>
<th>Direct effect on C</th>
<th>Indirect effect on C</th>
<th>Indirect effect using LATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly/mildly Republican (0-1)</td>
<td>0.113</td>
<td>0.038</td>
<td>0.075</td>
<td>0.239**</td>
</tr>
<tr>
<td></td>
<td>(0.133)</td>
<td>(0.030)</td>
<td>(0.150)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>Strongly/mildly Democrat (0-1)</td>
<td>-0.041</td>
<td>0.035</td>
<td>-0.076</td>
<td>0.074</td>
</tr>
</tbody>
</table>

3.4.3 **Total treatment effect, direct and indirect effect on complier**

Table 7 reports the estimated total treatment effects on the compliers based on Theorem 4 (Assumptions 1 to 4, and 6), as well as the direct and indirect effects based on Theorem 5 (Assumptions 1 to 4, 6, and 7) along with clustered bootstrap standard errors. Note that as a result of our identifying assumptions, the direct effect on the compliers is equivalent to the direct effect on the never takers. In the last column we also present the two stage least squares estimate for the LATE (using analytical standard errors). In contrast to our framework, the LATE framework assumes that the draft lottery is a valid instrument, which implies that all direct effects are zero.
<table>
<thead>
<tr>
<th>Positive attitudes toward government (0-5)</th>
<th>0.050</th>
<th>0.004</th>
<th>0.045</th>
<th>0.063</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive attitudes toward Vietnam War (0-6)</td>
<td>0.392</td>
<td>-0.190</td>
<td>0.582</td>
<td>-0.228</td>
</tr>
<tr>
<td>Government interventions for equal treatment of races (0-3)</td>
<td>-0.221</td>
<td>0.067</td>
<td>-0.288</td>
<td>-0.003</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, *p < 0.05, **p < 0.01, ***p < 0.001

Neither the total effects nor the decomposed direct and indirect effects reach conventional levels of statistical significance. Nevertheless, a few interesting patterns emerge if we take the estimates at face value. The total effects on compliers’ party preferences, characterized by an increase in the support for the Republican Party and a decrease in the support for the Democrats, appears to be mainly driven by the indirect effect of the draft lottery which goes through military service. However, both the total and the indirect effects on compliers are far smaller than the LATE estimate, which suggests that military service increases support for the Republican Party by 24 percentage points and is significant at the 5% level. This points to the non-robustness of the results across various econometric approaches, as the true LATE equals the true indirect effect among compliers in the absence of direct effects. We therefore argue that previous studies that use the lottery as instrument for military service should be interpreted with caution.

4 Conclusion

We propose a difference-in-differences approach to disentangle the total causal effect of a policy intervention into a direct effect and an indirect effect operating through a binary intermediate variable (or mediator) within subpopulations (or strata). The strata are defined upon how the mediator reacts to the treatment. We show under which assumptions the direct
effects on the always and never takers (whose mediator is not affected by the treatment) as well as the direct and indirect effects on the compliers (whose mediator reacts to the treatment) are identified.

We apply our method to investigate the effect of the Vietnam draft lottery between 1969 and 1972 in the US on political preferences as well as personal views on the government and war policies. Our mediator of interest is military service during the Vietnam War. A subgroup of individuals (compliers) was induced by the lottery to serve in the army, while others avoided the draft (never takers) or would have served in any case (always takers). In a first step, we estimate the average treatment effect in the total population and find a roughly 5 percentage points higher probability of voting for the Republican Party (and insignificant effects on other outcomes). In a second step, we estimate the direct and indirect effects of the draft lottery within subgroups. In general, we do not find statistically significant effects, even though several of the total and indirect effects on the compliers are sizeable in magnitude, which suggests that the compliers drive the overall results. It therefore seems that if anything, compliers serving in Vietnam are less affected by the overall decline in Republican support supposedly due to the unravelling of the Watergate Scandal. At the same time, both the total and indirect estimates of voting for the Republican Party among compliers are considerably smaller than the two stage least squares estimate, which uses the lottery as an instrument for military service. This non-robustness of results across methods casts doubts on the instrument validity of the draft lottery and in particular the satisfaction of the exclusion restriction that has been frequently imposed in the literature.
Appendix

Proof of Theorem 1:

We denote by $p_{\tau} = \Pr(\tau)$ the share of a particular type in the population and by $p_{d,z} = \Pr(D = d \mid Z = z)$ the conditional probability of a particular treatment state given the instrument, with d, z in $\{1, 0\}$. By Assumption 1, the share of a type conditional on Z corresponds to p_{τ} (in the population), as Z is randomly assigned. Likewise, $E[Y_{\tau}(z,d) \mid \tau, Z = 1] = E[Y_{\tau}(z,d) \mid \tau, Z = 0] = E[Y_{\tau}(z,d) \mid \tau]$ due to the independence of Z and the potential outcomes as well as the types (which are a deterministic function of $D(z)$). It follows that conditioning on Z is not required on the right hand side of the following equation, which expresses the mean outcome given $Z=0$ and $D=0$ as weighted average of the mean potential outcomes of compliers and never takers, the two types satisfying $D(0)=0$ and thus making up the group with $Z=0$ and $D=0$:

$$E(Y_{\tau} \mid Z = 0, D = 0) = \frac{p_n}{p_n + p_c} E[Y_{\tau}(0,0) \mid n] + \frac{p_c}{p_n + p_c} E[Y_{\tau}(0,0) \mid c]. \quad (A1)$$

After some rearrangements we obtain

$$E[Y_{\tau}(0,0) \mid n] - E[Y_{\tau}(0,0) \mid c] = \frac{p_n + p_c}{p_c} \left(E[Y_{\tau}(0,0) \mid n] - E(Y_{\tau} \mid Z = 0, D = 0) \right). \quad (A2)$$

Next, consider observations with $Z=1$ and $D=0$ who might consist of both never takers and defiers, as $D(1)=0$ for both types. However, by Assumption 2, defiers are ruled out, such that the mean outcome given $Z=1$ and $D=0$ is determined by never takers only:

$$E(Y_{\tau} \mid Z = 1, D = 0) = E[Y_{\tau}(1,0) \mid n]. \quad (A3)$$

Furthermore, by Assumption 3,
\[E[Y_0(0,0) | n] = E[Y_0(1,0) | n] = E(Y_0 | Z = 1, D = 0). \]

(A4)

It follows that when considering (A2) in period \(T=0 \), \(E[Y_0(0,0) | n] \) on the right hand side of the equation may be replaced by \(E(Y_0 | Z = 1, D = 0) \):

\[E[Y_0(0,0) | n] - E(Y_0 | Z = 1, D = 0) = \frac{p_n + p_c}{p_c} \{ E(Y_0 | Z = 1, D = 0) - E(Y_0 | Z = 0, D = 0) \}. \]

(A5)

Let us now consider (A1) in period \(T=1 \):

\[
\begin{align*}
E(Y_1 | Z = 0, D = 0) &= \frac{p_n}{p_n + p_c} E(Y_1(0,0) | n) + \frac{p_c}{p_n + p_c} E(Y_1(0,0) | c) \\
\iff E(Y_1 | Z = 0, D = 0) &= E(Y_1(0,0) | n) - \frac{p_c}{p_n + p_c} \{ E(Y_1(0,0) | n) - E(Y_1(0,0) | c) \} \\
\iff E[Y_1(0,0) | n] &= E(Y_1 | Z = 0, D = 0) + \frac{p_c}{p_n + p_c} \{ E(Y_1(0,0) | n) - E(Y_1(0,0) | c) \}.
\end{align*}
\]

(A6)

By Assumption 4, we may replace \(E[Y_1(0,0) | n] - E(Y_1(0,0) | c) \) in (A6) by the right hand side of (A5), which gives

\[E[Y_1(0,0) | n] = E(Y_1 | Z = 0, D = 0) + E(Y_o | Z = 1, D = 0) - E(Y_o | Z = 0, D = 0). \]

(A7)

Finally, using (A3) in period \(T=1 \) and subtracting (A7) yields the identification result based on differences in differences:

\[
\begin{align*}
\theta^*_n &= E[Y_1(1,0) | n] - E[Y_1(0,0) | n] \\
&= E(Y_1 | Z = 1, D = 0) - [E(Y_1 | Z = 0, D = 0) + E(Y_o | Z = 1, D = 0) - E(Y_o | Z = 0, D = 0)] \\
&= [E(Y_1 | Z = 1, D = 0) - E(Y_o | Z = 1, D = 0)] - [E(Y_1 | Z = 0, D = 0) - E(Y_o | Z = 0, D = 0)].
\end{align*}
\]

(A8)

Testable implication of Assumptions 1 to 3:
We consider (A1) for period $T=0$ and replace $E[Y_0(0,0) \mid n]$ by $E(Y_0 \mid Z = 1, D = 0)$ as suggested in (A4):

$$E(Y_0 \mid Z = 0, D = 0) = \frac{p_a}{p_a + p_c} E(Y_0 \mid Z = 1, D = 0) + \frac{p_c}{p_a + p_c} E[Y_0(0,0) \mid c].$$

(A9)

Under Assumptions 1 and 2, $p_a + p_c = p_{00}$, $p_a = p_{03}$ and $p_c = p_{00} - p_{03}$, which corresponds to the (first stage) effect of Z on D. Therefore, $E[Y_0(0,0) \mid c]$ is identified when plugging the latter probabilities into (A9):

$$E(Y_0 \mid Z = 0, D = 0) = \frac{p_{00}}{p_{00} - p_{01}} E(Y_0 \mid Z = 1, D = 0) + \frac{p_{00} - p_{01}}{p_{00} - p_{01}} E[Y_0(0,0) \mid c]$$

$\Leftrightarrow E[Y_0(0,0) \mid c] = \frac{p_{00}}{p_{00} - p_{01}} E(Y_0 \mid Z = 0, D = 0) - \frac{p_{00} - p_{01}}{p_{00} - p_{01}} E(Y_0 \mid Z = 1, D = 0)$

$$E(Y_0(1-D) \mid Z = 0) - E(Y_0(1-D) \mid Z = 1)$$

(A10)

Similarly to (A1) for the never takers and compliers, consider the mean outcome given $Z=1$ and $D=1$, which is made up by always takers and compliers (the types with $D(1)=1$)

$$E(Y_i \mid Z = 1, D = 1) = \frac{p_a}{p_a + p_c} E[Y_i(1,1) \mid a] + \frac{p_c}{p_a + p_c} E[Y_i(1,1) \mid c].$$

(A11)

In analogy to (A10), one can show that under Assumptions 1 to 3,

$$E[Y_0(1,1) \mid c] = \frac{E(Y_0D \mid Z = 1) - E(Y_0D \mid Z = 0)}{p_{11} - p_{01}}.$$

(A12)

Under the validity of Assumptions 1 to 3, (A10) and (A12) must be identical. It is easy to show (based on counter-probabilities) that the denominator on the right hand side of (A12), $p_{11} - p_{01}$
is equal to that in the last line in (A10), \(p_{00} - p_{01} \). It therefore also follows that the respective denominators must be equal under Assumptions 1 to 3, which implies:

\[
E(Y_o D | Z = 1) - E(Y_o D | Z = 0) = E(Y_o (1 - D) | Z = 0) - E(Y_o (1 - D) | Z = 1)
\]
\[
\Leftrightarrow E(Y_o D | Z = 1) + E(Y_o (1 - D) | Z = 1) - E(Y_o D | Z = 0) - E(Y_o (1 - D) | Z = 0) = 0
\]
\[
\Leftrightarrow E(Y_o | Z = 1) - E(Y_o | Z = 0) = 0
\]
\[(A13)\]

Identification of direct effect on always takers

From rearranging (A11) follows that

\[
E[Y_t(1,1)|a] - E[Y_t(1,1)|c] = \frac{p_a + p_c}{p_c} \{ E[Y_t(1,1)|a] - E(Y_t | Z = 1, D = 1) \}.
\]
\[(A14)\]

By Assumptions 1 and 2,

\[
E[Y_o(0,1)|a] = E(Y_o | Z = 0, D = 1).
\]
\[(A15)\]

Now consider (A14) for period \(T=0 \), and note that by Assumption 3,

\[
E[Y_o(1,1)|a] = E[Y_o(0,0)|a] = E[Y_o(0,1)|a] \quad \text{(and} \quad E[Y_o(1,1)|c] = E[Y_o(0,0)|c] \text{), such that}
\]

we may plug the right hand side of (A15) into (A14) to obtain

\[
E[Y_o(0,0)|a] - E[Y_o(0,0)|c] = E[Y_o(0,1)|a] - E[Y_o(1,1)|c]
\]
\[
= \frac{p_a + p_c}{p_c} \{ E(Y_o | Z = 0, D = 1) - E(Y_o | Z = 1, D = 1) \}.
\]
\[(A16)\]

Considering (A11) for period \(T=1 \) and performing some rearrangements yields

\[
E[Y_t(1,1)|a] = E(Y_t | Z = 1, D = 1) + \frac{p_c}{p_a + p_c} \{ E[Y_t(1,1)|a] - E[Y_t(1,1)|c] \}.
\]
\[(A17)\]
By Assumption 5, \(E[Y(1,1) \mid a] - E[Y(1,1) \mid c] \) in (A17) may be replaced by the right hand side of (A16) which gives

\[
E[Y(1,1) \mid a] = E(Y_i \mid Z = 1, D = 1) + E(Y_0 \mid Z = 0, D = 1) - E(Y_0 \mid Z = 1, D = 1)
\]

(A18)

Finally, acknowledging that \(E[Y(0,1) \mid a] = E(Y_i \mid Z = 0, D = 1) \) by Assumptions 1 and 2 and subtracting (A18) yields the identification result based on differences in differences:

\[
\theta^* = E[Y(1,1) \mid a] - E[Y(0,1) \mid a] = E(Y_i \mid Z = 1, D = 1) + E(Y_0 \mid Z = 0, D = 1) - E(Y_0 \mid Z = 1, D = 1) - E(Y_i \mid Z = 0, D = 1) - E(Y_0 \mid Z = 0, D = 1)
\]

(A19)

Identification of ATE on compliers under Assumptions 1 to 5:

Using Assumptions 1 to 4, we plug in the expression on the right hand side of (A7), which identifies \(E[Y(0,0) \mid n] \), into (A1) for period \(T = 1 \), which allows identifying \(E[Y(0,0) \mid c] \) (when also using \(p_a + p_c = \Pr(D = 0 \mid Z = 0) \) and \(p_a = \Pr(D = 0 \mid Z = 1) \)):

\[
E(Y_i \mid Z = 0, D = 0) = \frac{p_{00}}{p_{00}} [E(Y_i \mid Z = 0, D = 0) + E(Y_0 \mid Z = 1, D = 0) - E(Y_0 \mid Z = 0, D = 0)] + \frac{P_{00} - P_{01}}{P_{00}} E[Y(0,0) \mid c]
\]

\[
\Leftrightarrow E[Y(0,0) \mid c] = E(Y_i \mid Z = 0, D = 0) - \frac{P_{00}}{P_{00} - P_{01}} [E(Y_0 \mid Z = 1, D = 0) - E(Y_0 \mid Z = 0, D = 0)].
\]

(A19)

Using Assumptions 1, 2, 3, and 5, we plug in the expression on the right hand side of (A18), which identifies \(E[Y(1,1) \mid a] \), into (A11) for period \(T = 1 \), which allows identifying

\(E[Y(1,1) \mid c] \) (when also using \(p_a + p_c = \Pr(D = 1 \mid Z = 1) \) and \(p_a = \Pr(D = 1 \mid Z = 0) \)):

36
\[E(Y_i \mid Z = 1, D = 1) = \frac{p_{10}}{p_{1i}} E(Y_i \mid Z = 1, D = 1) + E(Y_o \mid Z = 0, D = 1) - E(Y_o \mid Z = 1, D = 1) \]
\[+ \frac{p_{1i} - p_{0i}}{p_{ii}} E[Y_i(1,1) \mid c] \]
\[\Leftrightarrow E(Y_i(1,1) \mid c) = E(Y_i \mid Z = 1, D = 1) - \frac{p_{0i}}{p_{1i} - p_{0i}} [E(Y_o \mid Z = 0, D = 1) - E(Y_o \mid Z = 1, D = 1)]. \]

(A20)

Subtracting (A19) from (A20) yields \(\Delta^c_i \).

Identification of ATE on compliers under Assumptions 1, 2, 3, 4, and 6:

Note that the identification result for \(E[Y_i(0,0) \mid c] \) given in (A19) based on Assumptions 1 to 4 remains unchanged. Concerning \(E[Y_i(1,1) \mid c] \), reconsider (A11) for period \(T=1 \) and note that under Assumptions 1, 2, and 6, \(E(Y_i(1,1) \mid a] = E[Y_i(0,1) \mid a] = E(Y \mid Z = 0, D = 1) \), which suffices for identification:

\[E(Y_i \mid Z = 1, D = 1) = \frac{p_{10}}{p_{1i}} E(Y \mid Z = 0, D = 1) + \frac{p_{1i} - p_{0i}}{p_{ii}} E[Y_i(1,1) \mid c] \]
\[\Leftrightarrow E[Y_i(1,1) \mid c] = \frac{E(Y_iD \mid Z = 1) - E(Y_iD \mid Z = 0)}{p_{1i} - p_{0i}}. \]

(A21)

Subtracting (A19) from (A21) yields \(\Delta^c_i \).

Identification of \(\theta^c_i(0) \) and \(\delta^c_i(1) \) under Assumptions 1, 2, 3, 4, and 7 and under Assumptions 1, 2, 3, 5, and 7 or Assumptions 1, 2, 3, 6, and 7, respectively:

Note that similarly as in (A4) for the never takes, under Assumptions 1 to 3 it holds for the compliers that
\[E[Y_o(1,0) | c] = E[Y_o(0,0) | c] = \frac{E(Y_o(1-D) | Z = 0) - E(Y_o(1-D) | Z = 1)}{p_{00} - p_{01}}, \]

where the second equality follows from (A10). Considering Assumption 7, it therefore follows that

\[E[Y_i(1,0) | n] - E[Y_o(1,0) | n] = E[Y_i(1,0) | c] - E[Y_o(1,0) | c] = \frac{E(Y_o(1-D) | Z = 0) - E(Y_o(1-D) | Z = 1)}{p_{00} - p_{01}} \]

\[\Leftrightarrow E[Y_i(1,0) | c] = E(Y_i | Z = 1, D = 0) - E(Y_o | Z = 1, D = 0) + \frac{E(Y_o(1-D) | Z = 0) - E(Y_o(1-D) | Z = 1)}{p_{00} - p_{01}}, \]

(A22)

where we also made use of \[E[Y_i(1,0) | n] = E(Y_i | Z = 1, D = 0). \] It follows that \[\theta^c_r(0) \] is identified as the difference of (A22) and (A19) under Assumptions 1, 2, 3, 4 and 7. Furthermore, \[\delta^c_r(1) \] is identified as the difference of (A20) and (A22) under Assumptions 1, 2, 3, 5, and 7. Finally, \[\theta^c_r(1) \] is identified as the difference of (A21) and (A22) under Assumptions 1, 2, 3, 6, and 7.

Identification of \[\delta^c_r(0) = E[Y_i(0,1) | c] - E[Y_i(0,0) | c] \] under Assumptions 1, 2, 3, 4, and 8 and \[\theta^c_r(1) = E[Y_i(1,1) | c] - E[Y_i(0,1) | c] \] under Assumptions 1, 2, 3, 5, and 8 or Assumptions 1, 2, 3, 6, and 8, respectively:

Under Assumptions 1 to 3 it holds for the compliers that

\[E[Y_o(0,1) | c] = E[Y_o(0,0) | c] = \frac{E(Y_o(1-D) | Z = 0) - E(Y_o(1-D) | Z = 1)}{p_{00} - p_{01}}, \]

where the second equality follows from (A10). Considering Assumption 8, it therefore follows that
\[
E[Y_i(0,1) | a] - E[Y_o(0,1) | a] = E[Y_i(0,1) | c] - E[Y_o(0,1) | c] = \frac{E(Y_i Z = 0, D = 1) - E(Y_o Z = 0, D = 1) = E[Y_i(0,1) | c] - \frac{E(Y_o(1-D) Z = 0) - E(Y_o(1-D) Z = 1)}{p_00 - p_01}}{p_00 - p_01} \]
\]

(A23)

where we also made use of \(E[Y_i(0,1) | a] = E(Y_i Z = 0, D = 1) \). It follows that \(\delta_i(0) \) is identified as the difference of (A23) and (A19) under Assumptions 1, 2, 3, 4, and 8. Furthermore, \(\theta_i(1) \) is identified as the difference of (A20) and (A23) under Assumptions 1, 2, 3, 5, and 8. Finally, \(\theta_i(1) \) is identified as the difference of (A21) and (A23) under Assumptions 1, 2, 3, 6, and 8.

Table A1: Balancing test (testing assumption 1 and 3)

<table>
<thead>
<tr>
<th></th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly/mildly Republican (0-1)</td>
<td>0.016 (0.031)</td>
</tr>
<tr>
<td>Strongly/mildly Democrat (0-1)</td>
<td>-0.006 (0.033)</td>
</tr>
<tr>
<td>Positive attitudes toward government (0-5)</td>
<td>-0.028 (0.096)</td>
</tr>
<tr>
<td>Positive attitudes toward Vietnam War (0-6)</td>
<td>0.080 (0.149)</td>
</tr>
<tr>
<td>Government interventions for equal treatment of races (0-3)</td>
<td>-0.034 (0.051)</td>
</tr>
</tbody>
</table>
Table A2: Placebo results (wave 4= placebo treatment period, wave 3= pre-treatment period)

<table>
<thead>
<tr>
<th></th>
<th>Never taker</th>
<th>Always taker</th>
<th>Complier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATE</td>
<td>Direct Effect</td>
<td>Total effect</td>
</tr>
<tr>
<td>Strongly/mildly Republican (0-1)</td>
<td>0.016</td>
<td>0.003</td>
<td>0.173</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.033)</td>
<td>(0.117)</td>
</tr>
<tr>
<td>Strongly/mildly Democrat (0-1)</td>
<td>-0.006</td>
<td>0.019</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.04)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>Positive attitudes toward government (0-5)</td>
<td>-0.028</td>
<td>-0.105</td>
<td>-0.093</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.108)</td>
<td>(0.278)</td>
</tr>
<tr>
<td>Positive attitudes toward Vietnam War (0-6)</td>
<td>0.08</td>
<td>-0.045</td>
<td>-0.107</td>
</tr>
<tr>
<td></td>
<td>(0.152)</td>
<td>(0.146)</td>
<td>(0.422)</td>
</tr>
<tr>
<td>Government interventions for equal treatment of races (0-3)</td>
<td>-0.034</td>
<td>-0.09</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.066)</td>
<td>(0.133)</td>
</tr>
</tbody>
</table>
Simulation study

To illustrate our identification results and provide some intuition for scenarios in which the various assumptions are satisfied or violated, this section presents a brief simulation study based on the following data generating process (DPG):

\[
U \sim N(-0.5, 1),
\]

\[
V, \epsilon_0, \epsilon_1 \sim N(0, 1), \text{ independent of each other and } U,
\]

\[
Z \sim \text{binomial}(0.5), \text{ independent of } U, V, \epsilon_0, \epsilon_1,
\]

\[
D = I\{Z + U + V > 0\},
\]

\[
c = I\{U + V \leq 0 < 1 + U + V\},
\]

\[
a = I\{U + V > 0\},
\]

\[
n = I\{1 + U + V \leq 0\},
\]

\[
Y_0 = \alpha I\{T = n\} - U + \epsilon_0,
\]

\[
Y_1 = \beta Z I\{T = c\} + \gamma Z I\{T = a\} + D - U + \epsilon_1.
\]

Note that \(I\{b\} \) denotes the indicator function which is equal to one if argument \(b \) is satisfied and zero otherwise. \(U \) is a fixed effect that jointly influences the mediator status \(D \) and the outcomes \(Y_0 \) and \(Y_1 \) in periods 0 and 1, respectively, and is therefore a confounder. \(Z \) is the treatment, which is randomly assigned and satisfies Assumption 1. \(Z \) affects \(D \) monotonically as required in Assumption 2 and may, depending \(\beta \) and \(\gamma \), also affect \(Y_1 \). \(V \) is a randomly distributed unobservable affecting the mediator. Note that the stratum definitions in terms of compliance behaviour follow deterministically from the mediator model and are given by the mutually exclusive conditions in the indicator functions for \(c, a \), and \(n \). \(\epsilon_0, \epsilon_1 \) are random unobservables affecting \(Y_0 \) and \(Y_1 \), respectively. The coefficients \(\alpha, \beta \) and \(\gamma \) determine the
outcomes and/or effects for specific strata as well as which of our identifying assumptions are (not) satisfied.

We investigate the finite sample performance of estimation based on the sample analogues of our Theorems 1 to 6 as well as naïve OLS regression of Y_1 on a constant, Z, and D. We run 1000 simulations with different values for α, β and γ and report the bias, standard deviation (SD) and root mean squared error (RMSE) of each method for two sample sizes, namely 500 and 2000 observations. Concerning the naïve OLS estimator, which, in contrast to estimation based on Theorems 1 to 6, does not target a specific stratum, the bias of the direct effect is computed based on the difference of the coefficient on Z and the true direct effect on the compliers. The bias of the indirect effect comes from the difference of the coefficient on Z and the true indirect effect on the compliers. Note that the latter equals the true effect of Z among compliers because Z deterministically follows D.

Table A3 provides the results for $\alpha = \beta = \gamma = 0$ such that Z does not have any direct effect on Y_1, i.e., other than through D. It is easy to see that in this case, Assumptions 1 to 8 are satisfied under our DGP. In particular, the homogeneous effects of (i) Z given D and (ii) D imply the satisfaction of Assumption 5, while $\gamma = 0$ satisfies Assumption 6. Furthermore, $\alpha = \beta = 0$ fulfills Assumption 7, while Assumption 8 is satisfied by the homogeneous effect of D across all strata and the fact that there are no stratum-specific constant terms for compliers or always takers in our model. The estimators based on Theorems 1 to 6 are therefore all (close to being) unbiased. In contrast, the OLS estimators of the direct and indirect effects are inconsistent due to the omission of the confounder U.
Table A3: Simulations with $\alpha = \beta = \gamma = 0$

<table>
<thead>
<tr>
<th></th>
<th>500 observations</th>
<th>2000 observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bias</td>
<td>SD</td>
</tr>
<tr>
<td>Direct effect never takers (Ass. 1-4)</td>
<td>-0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>Direct effect always takers (Ass. 1-3, 5)</td>
<td>-0.00</td>
<td>0.18</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-5)</td>
<td>0.02</td>
<td>0.47</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-4, 6)</td>
<td>0.01</td>
<td>0.46</td>
</tr>
<tr>
<td>Direct effect compliers under D=1 (Ass. 1-3,5,8)</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>Direct effect compliers under D=1 (Ass. 1-3,6,8)</td>
<td>0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>Direct effect compliers under D=0 (Ass. 1-4,7)</td>
<td>-0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>Indirect effect compliers under D=1 (Ass. 1-3,5,7)</td>
<td>0.02</td>
<td>0.18</td>
</tr>
<tr>
<td>Indirect effect compliers under D=1 (Ass. 1-3,6,7)</td>
<td>0.02</td>
<td>0.47</td>
</tr>
<tr>
<td>Indirect effect compliers under D=0 (Ass. 1-4,8)</td>
<td>-0.01</td>
<td>0.46</td>
</tr>
<tr>
<td>OLS direct effect</td>
<td>0.31</td>
<td>0.12</td>
</tr>
<tr>
<td>OLS indirect effect</td>
<td>-1.15</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Note: SD denotes the standard deviation, RMSE the root mean squared error of the respective estimator.

Table A4 gives the results for $\alpha = 0$, $\beta = \gamma = 1$ such that the effects of Z and D are again homogeneous across strata. Assumptions 1 to 5 are satisfied in this case and accordingly, the estimators based on Theorems 1 to 3 are (close to being) unbiased. In contrast, Assumption 6 does not hold because the direct effect of Z on the always takers is one. Therefore, the estimator based on Theorem 4 and those estimators based on Theorems 6 that require Assumption 6 are inconsistent. Assumption 7 is violated because $\alpha = 0, \beta = 1$ implies that $E[Y_1(1,0) | n] - E[Y_0(1,0) | n] = 0$, which is not equal to $E[Y_1(1,0) | c] - E[Y_0(1,0) | c] = 1$, so all estimators based
on Theorem 5 are not consistent either. Assumption 8 is satisfied such that estimation based on
Assumptions 1-4 and 8 (see Theorem 6) is unbiased. Naïve OLS estimation is again inconsistent.

Table A4: Simulations with $\alpha = 0, \beta = \gamma = 1$

<table>
<thead>
<tr>
<th></th>
<th>500 observations</th>
<th>2000 observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bias</td>
<td>SD</td>
</tr>
<tr>
<td>Direct effect never takers (Ass. 1-4)</td>
<td>0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>Direct effect always takers (Ass. 1-3, 5)</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-5)</td>
<td>0.02</td>
<td>0.43</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-4, 6)</td>
<td>1.36</td>
<td>0.64</td>
</tr>
<tr>
<td>Direct effect compliers under D=1 (Ass. 1-3,5,8)</td>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>Direct effect compliers under D=1 (Ass. 1-3,6,8)</td>
<td>1.36</td>
<td>0.12</td>
</tr>
<tr>
<td>Direct effect compliers under D=0 (Ass. 1-4,7)</td>
<td>-0.99</td>
<td>0.19</td>
</tr>
<tr>
<td>Indirect effect compliers under D=1 (Ass. 1-3,5,7)</td>
<td>1.01</td>
<td>0.19</td>
</tr>
<tr>
<td>Indirect effect compliers under D=1 (Ass. 1-3,6,7)</td>
<td>2.36</td>
<td>0.43</td>
</tr>
<tr>
<td>Indirect effect compliers under D=0 (Ass. 1-4,8)</td>
<td>0.01</td>
<td>0.64</td>
</tr>
<tr>
<td>OLS direct effect</td>
<td>-0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>OLS indirect effect</td>
<td>-0.64</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Note: SD denotes the standard deviation, RMSE the root mean squared error of the respective estimator.

In Table A5, we consider $\alpha = 0, \beta = 1, \gamma = 0$. Assumptions 1 to 4 hold such that the estimator based on Theorem 1 is consistent. Assumption 5 is violated because there exists a direct effect of Z for the compliers, but not for the always takers, while the effect of D is one for both groups. It follows that $E[Y_1(1,1)|a] - E[Y_0(1,1)|a] = 1$, which is different to $E[Y_1(1,1)|c] - E[Y_0(1,1)|c] = 2$. Accordingly, the estimators based on Theorems 2 and 3 are biased. In contrast, Assumption 6 is satisfied because $\gamma = 0$ such that the estimator based on Theorem 4 is consistent. Assumption 7 is violated because $\beta = 1$, therefore the estimators based on Theorem 5
are asymptotically biased. In contrast, Assumption 8 is satisfied, such that those estimators based on Theorem 6 which do not rely on Assumption 5 are consistent. Naive OLS does not yield any consistent effects.

Table A5: Simulations with $\alpha = 0, \beta = 1, \gamma = 0$

<table>
<thead>
<tr>
<th></th>
<th>N=500</th>
<th></th>
<th>N=2000</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bias</td>
<td>SD</td>
<td>RMSE</td>
<td>bias</td>
</tr>
<tr>
<td>Direct effect never takers (Ass. 1-4)</td>
<td>-0.01</td>
<td>0.19</td>
<td>0.19</td>
<td>0.00</td>
</tr>
<tr>
<td>Direct effect always takers (Ass. 1-3, 5)</td>
<td>0.43</td>
<td>0.19</td>
<td>0.47</td>
<td>0.43</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-5)</td>
<td>-0.53</td>
<td>0.43</td>
<td>0.68</td>
<td>-0.56</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-4, 6)</td>
<td>0.05</td>
<td>0.53</td>
<td>0.53</td>
<td>0.01</td>
</tr>
<tr>
<td>Direct effect compliers under D=1 (Ass. 1-3,5,8)</td>
<td>-0.53</td>
<td>0.12</td>
<td>0.54</td>
<td>-0.56</td>
</tr>
<tr>
<td>Direct effect compliers under D=1 (Ass. 1-3,6,8)</td>
<td>0.04</td>
<td>0.12</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>Direct effect compliers under D=0 (Ass. 1-4,7)</td>
<td>-1.01</td>
<td>0.19</td>
<td>1.02</td>
<td>-1.00</td>
</tr>
<tr>
<td>Indirect effect compliers under D=1 (Ass. 1-3,5,7)</td>
<td>0.48</td>
<td>0.19</td>
<td>0.51</td>
<td>0.44</td>
</tr>
<tr>
<td>Indirect effect compliers under D=1 (Ass. 1-3,6,7)</td>
<td>1.05</td>
<td>0.43</td>
<td>1.14</td>
<td>1.01</td>
</tr>
<tr>
<td>Indirect effect compliers under D=0 (Ass. 1-4,8)</td>
<td>0.00</td>
<td>0.53</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>OLS direct effect</td>
<td>-0.47</td>
<td>0.12</td>
<td>0.48</td>
<td>-0.46</td>
</tr>
<tr>
<td>OLS indirect effect</td>
<td>-0.93</td>
<td>0.12</td>
<td>0.94</td>
<td>-0.93</td>
</tr>
</tbody>
</table>

Note: SD denotes the standard deviation, RMSE the root mean squared error of the respective estimator.

Table A6 provides the results for $\alpha = 1, \beta = \gamma = 0$. This implies that Assumption 4 is violated, because $E[Y_1(0,0)|n] - E[Y_0(0,0)|n] = -\alpha = -1$, which different to $E[Y_1(0,0)|c] - E[Y_0(0,0)|c] = 0$. The estimators based on Theorems 1, 3, and 4 are therefore biased, as well as that estimator based on Theorem 6 that requires Assumption 4. Note that $\alpha = 1, \beta = 0$ also implies that $E[Y_1(1,0)|n] - E[Y_0(1,0)|n] = -\alpha = -1$, which is different to $E[Y_1(1,0)|c] - E[Y_0(1,0)|c] = 0$. Therefore, Assumption 7 is not satisfied and estimation based on Theorem 5 is inconsistent. In contrast, $\beta = \gamma = 0$ satisfies Assumptions 5 and 6 such that estimation based on
Theorem 2 is consistent. So are the estimators based on Theorem 6 that do not invoke Assumption 4, because Assumption 8 holds. Naïve OLS estimation is again biased.

Table A6: Simulations with $\alpha = 1, \beta = \gamma = 0$

<table>
<thead>
<tr>
<th>N=500</th>
<th>N=2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bias</td>
</tr>
<tr>
<td>Direct effect never takers (Ass. 1-4)</td>
<td>-0.43</td>
</tr>
<tr>
<td>Direct effect always takers (Ass. 1-3, 5)</td>
<td>0.00</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-5)</td>
<td>0.60</td>
</tr>
<tr>
<td>Total effect compliers (Ass. 1-4, 6)</td>
<td>0.61</td>
</tr>
<tr>
<td>Direct effect compliers under $D=1$ (Ass. 1-3,5,8)</td>
<td>0.03</td>
</tr>
<tr>
<td>Direct effect compliers under $D=1$ (Ass. 1-3,6,8)</td>
<td>0.03</td>
</tr>
<tr>
<td>Direct effect compliers under $D=0$ (Ass. 1-4,7)</td>
<td>-0.43</td>
</tr>
<tr>
<td>Indirect effect compliers under $D=1$ (Ass. 1-3,5,7)</td>
<td>1.03</td>
</tr>
<tr>
<td>Indirect effect compliers under $D=1$ (Ass. 1-3,6,7)</td>
<td>1.03</td>
</tr>
<tr>
<td>Indirect effect compliers under $D=0$ (Ass. 1-4,8)</td>
<td>0.57</td>
</tr>
<tr>
<td>OLS direct effect</td>
<td>0.32</td>
</tr>
<tr>
<td>OLS indirect effect</td>
<td>-1.15</td>
</tr>
</tbody>
</table>

Note: SD denotes the standard deviation, RMSE the root mean squared error of the respective estimator.
Literature

47

Abstract
This study empirically evaluates the impact of the war in eastern Ukraine on the political attitudes...