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The standard model for the dynamics of a fragmented density-dependent population is built from several
local logistic models coupled by migrations. First introduced in the 1970s and used in innumerable
articles, this standard model applied to a two-patch situation has never been completely analysed. Here,
we complete this analysis and we delineate the conditions under which fragmentation associated to
dispersal is either beneficial or detrimental to total population abundance. Therefore, this is a contribution
to the SLOSS question. Importantly, we also show that, depending on the underlying mechanism, there is
no unique way to generalize the logistic model to a patchy situation. In many cases, the standard model
is not the correct generalization. We analyse several alternative models and compare their predictions.
Finally, we emphasize the shortcomings of the logistic model when written in the r-K parameterization
and we explain why Verhulst’s original polynomial expression is to be preferred.

1. Introduction

The theoretical literature on spatially-distributed population
dynamics is huge and we will make no attempt to review it. In-
stead, we will focus on some problems with the basic models that
are used as the building blocks of this body of theory. Indeed,
we have found that even the simplest and most ancient model
still contained unresolved aspects and that unsupported general-
izations were common. More precisely, we will explore the de-
tails of various ways to generalize the logistic model to a two-
patch situation, i.e., the simplest way to describe the dynamics of a
spatially-distributed, density-dependent population. The standard
model commonly used in this situation has never been completely
analysed. We will complete this analysis and we will delineate the
conditions under which fragmentation can either be beneficial or
detrimental to total population abundance. More importantly, we
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will show that this standard multi-patch logistic model is, in many
cases, an incorrect description of the dynamics of a fragmented
density-dependent population.

Assume that some population N follows the logistic model
when growing in a uniform environment:

dN

dt
= rN

(
1 − N

K

)
. (1)

This model assumes perfect mixing of the population. For mod-
elling the dynamics of the same species in a patchy environment,
it is widely accepted to assume that each subpopulation in each
patch follows a local logistic law and that the various patches are
coupled by migrations. Taking the case of two patches as a sim-
ple example, the following model describes logistic growth in two
patches linked symmetrically by migration:⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= r1N1

(
1 − N1

K1

)
+ β(N2 − N1),

dN2

dt
= r2N2

(
1 − N2

K2

)
+ β(N1 − N2),

(2)

where Ni is the population abundance in patch i and βNi is the
emigration flow from patch i to the other patch (β ≥ 0). The
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parameters ri and Ki are respectively the intrinsic growth rate and
the carrying capacity in patch i. This model was first studied by
Freedman and Waltman (1977), later by DeAngelis et al. (1979)
and Holt (1985), and a graphical presentation was given by Hanski
(1999, pp. 43–46) in his reference book on metapopulations. More
recently, DeAngelis and Zhang (2014) have brought new develop-
ments.

We denote by N∗
1 and N∗

2 the population abundances at equilib-
rium. With no loss of generality, we assume that patch 1 has the
lower carrying capacity (i.e., K1 ≤ K2). In isolation (β = 0), each
population equilibrates at its local carrying capacity: N∗

i = Ki.
A well-known result is that, in the presence of dispersal (β > 0),

the total equilibrium population, N∗
T = N∗

1 + N∗
2 , is generally

different from the sum of the carrying capacities K1+K2. Freedman
and Waltman (1977) have shown that, in the case of perfect mixing
(β → ∞), both patch populations tend to equal values and that the
total equilibrium population tends to:

N∗
T = K1 + K2

+ (K1 − K2)
r1K2 − r2K1

r1K2 + r2K1

, in the limit β → ∞. (3)

(Note that this expression contained typos in Freedman and
Waltman, 1977, their equation 3.3 that were only partially
corrected by Holt, 1985.)

Depending on the sign of the numerator present in Eq. (3),
dispersal can either be beneficial or detrimental with respect to
the total carrying capacity. Thus, if r1K2 < r2K1 (with K1 < K2), we
will have

N∗
T > K1 + K2, if β is sufficiently large. (4)

This spectacular result, somewhat paradoxical, has been widely
discussed and has led to speculations about the general virtues
of patchiness and dispersal, for example in the context of the
conservation ecology question of whether a single large refuge is
better or worse than several small ones (the SLOSS debate; see, e.g.,
Hanski, 1999).

Freedman and Waltman (1977) only contrasted the situations
of perfect isolation and perfect mixing; they did not study the effect
of intermediate values of the dispersal parameter β . This effect was
studied in the recent paper of DeAngelis and Zhang (2014), but only
in the special case r1/K1 = r2/K2.

In the present paper, we will bring two contributions. Firstly, in
Section 2 and Appendix A, we will present the analysis of model
(2) in the full parameter space. We will show how the effects of
dispersal β and of the ri/Ki ratios combine and we will determine
the exact conditions under which N∗

T > K1+K2 (see Proposition 2).
These results have importance in those cases in which model
(2) is a relevant description of logistic growth in a patchy
environment.

Our second contribution will be to question the general validity
of system (2) for modelling a patchy logistic population, using
several simple examples. The logistic model is often justified on
phenomenological grounds. However, it can also be derived from
mechanistic considerations. Depending on the mechanism being
considered, we will show that the correct generalization to a
patchy situation is not necessarily represented by model (2) and
that the equilibrium total population can be different from that
predicted by this model. More precisely, we will show in Section 3
(with Appendix B) and in Section 4 (with Appendix C) that the
patch coupling (2) is incorrect in models in which logistic growth is
due to resource exploitation, while it is correct in a model in which
logistic growth arises from agonistic inter-individual interactions
(see Section 5).

Fig. 1. Qualitative properties of model (2). In J0, patchiness has a beneficial effect
on total carrying capacity. This effect is detrimental in J2. In J1, the effect is
beneficial for lower values of the migration coefficient β and detrimental for the
higher values. Note that, because of the assumption K1 ≤ K2, the two oblique lines
cannot be reversed. See text in Section 2 for additional explanations.

2. Theoretical analysis of the standard two-patch logisticmodel

In this section, we summarize some of the properties of the
standard model (2). Formal proofs are given in the Mathematical
Appendix A.

As already mentioned in the Introduction, with no dispersal
(β = 0), each patch equilibrates at its own carrying capacity and
the total equilibrium number of individuals is just the sum of the
carrying capacities: N∗

T = K1 +K2. This remains true with dispersal
(β > 0) if the two carrying capacities are identical. However, if
the carrying capacities are not identical (K1 < K2), the equilibrium
densities are such that

K1 < N∗
1 < N∗

2 < K2, (5)

meaning that, in general, N∗
T �= K1 + K2 (see Proposition 2 in

Appendix A).
In particular, the total equilibrium population N∗

T can be greater
than the sum of the carrying capacities. In the Introduction, we
mentioned Freedman and Waltman’s result in the case of perfect
mixing (β → ∞) (Eqs. (3)–(4)). This can also occur with imperfect
mixing as, for example, if r1/K1 < r2/K2 (with K1 < K2). In this
case, as shown in Appendix A,

N∗
T > K1 + K2, as soon as β > 0. (6)

Note that, if migration is asymmetric (β1 �= β2), then it is possible
to have N∗

T > K1 + K2 even in the case K1 = K2 (Poggiale et al.,
2005).

Appendix A gives the full mathematical analysis of the equilib-
rium properties of the coupled logistic model (2). The main quali-
tative results are summarized by Fig. 1. Depending on the inequal-
ities between r1 and r2, and between r1/K1 and r2/K2, three differ-
ent domains must be considered in the parameter space r1 × r2.
We define J0 by the condition r2/K2 ≥ r1/K1, J2 by the condition
r2 ≤ r1, and J1 by the condition r2/K2 < r1/K1 and r2 > r1.

The effect of patchiness and migration is different in the three
domains. In J0, this effect is beneficial: N∗

T is always greater than
K1 + K2. In J2, the opposite is true: patchiness is detrimental
since N∗

T is always smaller than K1 + K2. In J1, the effect of
patchiness depends on the migration rate: it is beneficial at lower
values of the migration coefficient β while this effect becomes
detrimental at high values. This is illustrated by Fig. 2, in which
the total equilibrium abundance N∗

T is plotted as a function of the
migration rate β . Depending on the choice of parameter values
(given in Table 1), this figure shows three different example
patterns, belonging respectively to J0, J2, and J1.

Fig. 2(a) is an example response in J0: as soon as there is some
migration (β > 0), the global carrying capacity N∗

T is greater than
K1 +K2. In Fig. 2(b), we show an example response in J2: the total
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Fig. 2. Total equilibrium population of model (2) as a function of migration: N∗
T (β). The horizontal dotted line is K1 + K2. Depending on the parameter values (given in

Table 1), three different patterns can be obtained, corresponding to the three domains of Fig. 1. (a) Example in J0. (b) Example in J2. (c) Example in J1. See text in Section 2
for more comments.

Table 1

Parameter values of the three cases of Fig. 2. The derivative
dN∗

T
dβ

(0) is calculated with

the expression given in item 1 of Proposition 4, and the perfect mixing abundance
N∗

T (+∞) with Eq. (A.13).

r1 K1 r2 K2
dN∗

T
dβ

(0) N∗
T (+∞)

Fig. 2(a) 0.5 0.5 2 1 0.75 > 0 1.67 > K1 + K2

Fig. 2(b) 1 0.5 0.8 2 −0.375 < 0 1.5 < K1 + K2

Fig. 2(c) 1 0.5 2 1.5 0.5 > 0 1.8 < K1 + K2

equilibrium population N∗
T is always lower than K1 + K2. Finally,

Fig. 2(c) shows a response in the intermediate domain J1, in which
the lower values of the migration rate have a beneficial effect while
this effect becomes detrimental at high values.

3. Mechanism 1: Logistic growth induced by resource con-
sumption

Having given in Section 2 the full analysis of the two-patch
logistic model (2), we now turn to the second contribution of this
paper, i.e., the correct way to build patch models derived from
mechanistic considerations. For the first mechanism, we take the
example of a population of bacteria consuming a substrate in a
batch culture. This process occurs on a fast time scale, on which
bacterial mortality can be ignored. Assuming perfect mixing of
both the substrate and the population, this situation is modelled
by:⎧⎪⎨
⎪⎩

dR

dt
= −a R N,

dN

dt
= ε a R N,

(7)

where R is the substrate concentration, N the bacterial density, a
the so-called ‘‘searching efficiency’’ of the mass-action interaction,
and ε the conversion coefficient.

We have:

d(εR + N)

dt
= 0

and thus εR(t)+ N(t) = εR(0)+ N(0) = M . Substituting (M − N)
to εR in the second equation of (7), one gets:

dN

dt
= aN(M − N), (8)

which is equivalent to the logistic equation (1) with K = M and
r = aM . This equation, derived from (7), has long ago been shown
to give an excellent empirical description of the dynamics of a
batch culture of micro-organisms (e.g., Pearl, 1927).

Consider now two coupled batch reactors, with the same
bacteria and substrate, and differing only in the initial conditions.
Denote by R1, N1, R2, and N2 the population sizes of substrate and
bacteria in reactors 1 and 2 respectively. Let M1 = εR1(0) + N1(0)
and M2 = εR2(0) + N2(0). If we assume linear dispersal between
the two patches and if we ignore the consumption mechanism
that led to Eq. (8), it is tempting to model the coupled reactors by
coupling the corresponding reduced Eqs. (8) with the addition of
migrations:⎧⎪⎨
⎪⎩

dN1

dt
= aN1(M1 − N1) + β(N2 − N1),

dN2

dt
= aN2(M2 − N2) + β(N1 − N2).

(9)

We said in the previous section (and proved in the Mathemat-
ical Appendix A) that, if we denote by (N∗

1 , N∗
2 ) the equilibrium of

(9), then

N∗
1 + N∗

2 > M1 + M2 (10)

as soon as β > 0 and M1 �= M2.
Despite its perfect mathematical derivation, this result is false

for the coupling of the two reactors. The correct description in this
case must be done by modelling the consumption mechanism (7)
in the two patches with possibly different dispersal rates for the
substrate (α) and for the bacteria (β):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR1

dt
= −a R1 N1 + α(R2 − R1),

dR2

dt
= −a R2 N2 + α(R1 − R2),

dN1

dt
= ε a R1 N1 + β(N2 − N1),

dN2

dt
= ε a R2 N2 + β(N1 − N2).

(11)

Adding the four equations, one gets:

d(εR1 + εR2 + N1 + N2)

dt
= 0,

which means:

εR1(t) + εR2(t) + N1(t) + N2(t)

= εR1(0) + εR2(0) + N1(0) + N2(0) = M1 + M2.

Therefore, we always have, including at equilibrium:

N1(t) + N2(t) ≤ M1 + M2

because the quantity R1(t) + R2(t) must be positive!
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Since at equilibrium R∗
1 = R∗

2 = 0, we conclude that

N∗
1 + N∗

2 = M1 + M2,

in contradiction with the result (10) obtained when coupling the
reduced logistic models (8). This is completely independent of the
value of α, the substrate dispersal rate.

The flaw in obtaining the wrong inequality (10) was that it was
derived on the basis of the reduced model (9), itself derived from
the first integral εR(t) + N(t) = εR(0) + N(0) of (7), which is no
longer a first integral of the full system (11).

4. Mechanism 2: Logistic growth induced by MacArthur’s
reduction

The second mechanistic derivation of logistic growth that we
consider is that of MacArthur (1969) and MacArthur (1970).1

Consider the following model for resource–consumer dynamics:⎧⎪⎪⎨
⎪⎪⎩

dR

dt
=

[
s

(
1 − R

L

)
− a N

]
R,

dN

dt
= ε(a w R − q)N,

(12)

where R is the population density of the resource (prey), N is the
population density of the consumer (predator), a is the searching
efficiency (as in Section 3), w is the weight (caloric value) of the
resource, q is the metabolic rate for maintenance of the consumer,
and ε is a proportionality constant governing the biochemical con-
version of resource R into consumer N . The resource is assumed to
follow logistic growth with parameters s and L when the consumer
is not present. For the sake of simplicity, we denote b = aw.

The system (12) is a standard model built for a biotic resource
with logistic intrinsic dynamics and a consumer with Lotka–
Volterra functional response. It has been used in a very large
number of articles that generalized it to multi-patch and/or to
multi-species situations. The model is more appropriate than the
mechanism of Section 3 when the resource can reproduce with
its own dynamics and when the consumer has some loss term
(e.g., due to basal metabolism or mortality).

MacArthur’s contribution was to make the crucial assumption
that the conversion coefficient ε was small. Taking advantage of the
separation of time scales, the ‘‘quasi-steady state’’ of the resource
can be calculated from the (fast) first equation in (12) and be used
to replace R in the second equation. The quasi-steady state R, that
is, the solution of the algebraic equation s (1 − R/L) − a N = 0, is
given by

R = L
(

1 − a

s
N

)
and substituting it into the second equation in (12) gives:

dN

dt
= ε

(
bL − q − ab

s
LN

)
N, (13)

which is once more the logistic equation (1) with intrinsic growth
rate and carrying capacity

r = ε(bL − q), K = s

a

bL − q

bL
.

Note that the above reduction method was recently generalized
to other types of resource–consumer systems by Reynolds and
Brassil (2013).

1 Anecdotally, this was the very first article published in Theoretical Population
Biology (vol. 1, issue 1, page 1).

Let us now consider two patches and assume some migration
between the two. If we model this situation directly with
MacArthur’s reduced logistic form (13), we have:⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= ε1

(
b1L1 − q1 − a1b1

s1

L1N1

)
N1 + β(N2 − N1),

dN2

dt
= ε2

(
b2L2 − q2 − a2b2

s2

L2N2

)
N2 + β(N1 − N2).

(14)

The population in each patch follows logistic growth with
intrinsic growth rates

r1 = ε1(b1L1 − q1), r2 = ε2(b2L2 − q2), (15)

and carrying capacities

K1 = s1

a1

b1L1 − q1

b1L1

, K2 = s2

a2

b2L2 − q2

b2L2

. (16)

With no migration (β = 0), each patch equilibrates at its
respective carrying capacity and the total number of individuals
present at equilibrium is just the sum of the carrying capacities, N∗

T= K1 + K2.
Let us denote by (N∗

1 , N∗
2 ) the positive (and globally stable)

equilibrium of (14). We will compare the total population N∗
T =

N∗
1 + N∗

2 with the total population obtained for the complete two-
patch extension of (12), which is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR1

dt
=

[
s1

(
1 − R1

L1

)
− a1 N1

]
R1 + α(R2 − R1),

dR2

dt
=

[
s2

(
1 − R2

L2

)
− a2 N2

]
R2 + α(R1 − R2),

dN1

dt
= ε1(b1R1 − q1)N1 + β(N2 − N1),

dN2

dt
= ε2(b2R2 − q2)N2 + β(N1 − N2).

(17)

The term α(R2 − R1) represents some possible migration of the
resource, which is not present in the reduced system (14) since the
variable R does not appear in the equations.

Computer simulations show that system (17) has an equilib-
rium, which appears to be globally stable, and we denote it by

E∗∗ = (R∗∗
1 , R∗∗

2 , N∗∗
1 , N∗∗

2 ). (18)

We will now compare the effect of migrations expressed in the
complete model (17) and in the reduced model (14). This will be
done by simulation. We integrate the equations for a long time
(namely 100 units of time) until the equilibrium is almost reached
and then compute the total consumer population for both models
(14) and (17):

N∗
T = N∗

1 + N∗
2 , N∗∗

T = N∗∗
1 + N∗∗

2 .

Although the general case of different migration rates α and β
can be studied with no special difficulty, we will consider in this
paper two special cases in order to simplify the presentation:

α = β ≥ 0, in Section 4.1,

and

α = 0 and β ≥ 0, in Section 4.2.

In order to single out the role of migration strength, we will
compare the graphs of N∗

T (β) and N∗∗
T (β) as functions of β , all other

parameters being fixed.
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Table 2
Numerical values of the parameters of model (17) with α = β used in Figs. 3 and 4.

s1 L1 q1 s2 L2 q2 a1 a2 b1 b2 ε1 ε2

Fig. 3(a) 1 1 0.5 3 3 2 1 1 1 1 1 1
Fig. 3(b) 1 2.8 1.5 3 3.2 0.5 1 1 1 1 1 1
Fig. 3(c) 1 2 0.5 3 2 2 1 0.8 1 2 1 0.1
Fig. 3(d) 1 1.5 1 1 3 2 1 0.5 1 1.5 0.5 0.5
Fig. 4 1 1 0.1 1 2.5 1 4 0.1 1 1 0.6 0.4

Table 3
Numerical values of several quantities derived from the parameters of Table 2. r1,

r2, K1, K2 are calculated with Eqs. (15)–(16). The derivatives
dN∗

T
dβ

(0) and
dN∗∗

T
dβ

(0),

and the perfect mixing abundances N∗
T (∞) and N∗∗

T (∞) are calculated with the
expressions given in Eqs. (B.2), (B.5), and (B.6).

r1 r2 K1 K2
dN∗

T
dβ

(0)
dN∗∗

T
dβ

(0) N∗
T (∞) N∗∗

T (∞)

Fig. 3(a) 0.5 1 0.5 1 0.5 2.75 1.5 1.5
Fig. 3(b) 1.3 2.7 0.464 2.531 0.824 2.158 2.069 2.705
Fig. 3(c) 1.5 0.2 0.75 1.875 −4.875 −4.5 1.614 3.148
Fig. 3(d) 0.25 1.25 0.333 1.111 2.489 2.322 1.6 1.067
Fig. 4 0.54 0.6 0.225 6 1.07 −5.68 0.91 0.66

4.1. Migration of both the resource and the consumer

In this section, the migration between the two patches is α = β
with β ≥ 0. The simulations will be done with the values given
in Table 2. The parameters leading to the example behaviours of
Figs. 3 and 4 are chosen in such way that the population derivatives
at β = 0 and the population values at β = ∞ obey a variety
of inequalities. In other words, the parameters shown in Table 2
are chosen in such way that the quantities shown in the last four
columns of Table 3 verify typical inequalities. This was done with
help of Propositions 5 and 6, which are presented in Appendix B.

In Figs. 3 and 4, the value of K1 + K2 is represented by the
horizontal dotted line. As soon as β is strictly positive, there is
a departure from this value and the pictures also show that the
values predicted by the reduced model are quite different from
those predicted by the complete model. This is not surprising
since the reduced model does not take into account the resource
migration modelled by α = β > 0.

We first set the parameter values as in line 1 of Table 2. In this
example (Fig. 3(a)), the total population with migrations for the
complete model is always greater than the total population with
migrations for the reduced model, which is itself always greater
than the total population without migration. This is not true in
general, as shown by Fig. 3(b), obtained with the parameter values
in line 2 of Table 2. In this example, K1 + K2 ≈ 2.995 (see line
2 of Table 3). We see that small migration values improve the
total population but large values deteriorate it. Therefore the total
population is not always greater than the sum of the two carrying
capacities, nor the total population for the complete model is
always greater than the total population for the reduced model.
More precisely, all the possible inequalities between N∗

T , N∗∗
T , and

K1 + K2 can actually be obtained, depending on the value of the
migration intensity β , as shown by Fig. 3(b), in which we have
successively: N∗∗

T > N∗
T > K1 + K2, N∗

T > N∗∗
T > K1 + K2,

N∗∗
T > K1+K2 > N∗

T , K1+K2 > N∗
T > N∗∗

T , and K1+K2 > N∗∗
T > N∗

T .
Fig. 3(c) is obtained with the parameter values in line 3 of

Table 2. We see in Table 3 that, for these parameter values, we
have r2 < r1. Therefore, from the theoretical results of Section 2
(see Fig. 1), we deduce that N∗

T (β) < K1 + K2 for any β > 0 and
N∗

T (β) is decreasing, as illustrated in Fig. 3(c). However, we see on
this figure that N∗∗

T (β) decreases first and then increases, and can
take values larger than K1 + K2.

Fig. 3(d) is obtained with the parameter values in line 4 of
Table 2. We see in Table 3 that, for these parameter values, we have
r2/K2 > r1/K1. Therefore, from Fig. 1, we deduce that N∗

T (β) >

Table 4
Numerical values of the parameters of model (17) with α = 0 used in Figs. 5 and
C.8. The values of the other parameters in (17) are εi = ai = bi = 1.

s1 L1 q1 s2 L2 q2 r1 K1 r2 K2

Fig. 5(a) 3 3 2.5 2.5 2.5 0.2 0.5 0.5 2.3 2.3
Fig. 5(b) 1 1 0.4 3 3 1 0.6 0.6 2 2

K1 + K2 for any β > 0, as illustrated in Fig. 3(d). However, we see
on this figure that N∗∗

T (β) > K1 + K2 for small β and the opposite
holds for large β .

Fig. 4 is obtained with the parameter values in line 5 of Table 2.
We see in Table 3 that, for these parameter values, we have r2 > r1

and r2/K2 < r1/K1. Therefore, from Fig. 1, we have that N∗
T (β) >

K1+K2 for β small enough and N∗
T (β) < K1+K2 for β large enough,

as illustrated in Fig. 4. However, we see on this figure that N∗∗
T (β)

has a completely different behaviour. It should be noticed (see

Table 3) that
dN∗∗

T
dβ

(0) < 0 and
dN∗

T
dβ

(0) > 0, as also shown in the

zoom in Fig. 4(b). Hence, N∗∗
T (β) is first decreasing, then increas-

ing, then decreasing again, while N∗
T (β) is first increasing and then

decreasing.

4.2. Migration of the consumer alone

Since MacArthur’s reduction does not contain the resource as
an explicit variable, it certainly cannot, as shown above, account
for resource migration. However, if we assume that there is no
resource migration, one may wonder whether it does not become
accurate. The complete model is system (17) with α = 0. It can be
analysed mathematically to a large extent (see Appendix C). Here,
we present illustrations obtained by numerical simulation.

We set the parameter values as in line 1 of Table 4. In Fig. 5(a),
the value K1 + K2 is represented by the horizontal dotted line.
As soon as β is strictly positive, there is a departure from this
value. The value predicted by the reduced model is the same as
the one predicted by the complete model. Indeed, for this set
of parameters, the reduced model gives a correct picture of the
complete model. However, this is not the general case, as will be
shown in the following example.

We now set the parameters as in line 2 of Table 4. In Fig. 5(b),
the value K1 + K2 is again represented by the horizontal dotted
line. As soon as β is strictly positive, there is a departure from this
value. The value predicted by the reduced model is the same as
the one predicted by the complete model when β is small enough.
After a certain value (β ≈ 0.5), the predictions of the two models
differ suddenly, with the prediction of the reduced model (solid
curve) being quite smaller than the prediction of the complete
model (curve with circles). The mathematical explanation to this
threshold effect is given in Appendix C.

Regarding the abundances, the stable equilibrium (18) is strictly
positive when β < 0.5, but when β > 0.5, the resource R1

becomes extinct at equilibrium, as shown in Fig. 6. Thus, when
β > 0.5, the system works as a classical source–sink system, with
the resource being constantly supplied by patch 2 to patch 1, where
it is instantly consumed by the population N1.

5. Discussion

When we say that the logistic equation (1) is a model for the
growth of some population N , what do we mean exactly? Usually,
we say nothing about the actual mechanisms that explain this kind
of growth. What we mean is roughly the following argument:

1. Let μ(N) be the density-dependent, specific growth rate of a
population. If we want the population to be bounded, μ(N)
must decrease to 0.
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Fig. 3. Total consumer population as a function of migration when both the resource and the consumer can disperse. N∗
T (solid curve) for the coupled-logistic reduced model,

N∗∗
T (curve with circles) for the complete mechanistic model. See Tables 2 and 3 for the parameter values and text in Section 4.1 for explanations. See also Fig. 4.

Fig. 4. Similar plots to Fig. 3 with different parameter values (see Tables 2 and 3). Panel (b) is a zoom of (a) in a narrow range of very small values of β .
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Fig. 5. Total consumer population as a function of migration when the consumer only can disperse. N∗
T (solid curve) for the coupled-logistic reduced model, N∗∗

T (curve with
circles) for the complete mechanistic model. See Table 4 for the parameter values and text in Section 4.2 for explanations.

Fig. 6. Population abundances of R1(t), R2(t), N1(t), and N2(t) for the parameter values of Fig. 5(b), with initial conditions R1(0) = R2(0) = N1(0) = N2(0) = 1. (a) β = 0.2,
all species are present at equilibrium. (b) β = 0.8, R1 becomes extinct.

2. The simplest function of N that decreases to 0 is μ(N) =
r
(
1 − N

K

)
.

3. Eq. (1) is a good approximation of some more complicated
model.

4. The fit of the logistic model (1) to actual population dynamics
is often fairly good.

From the above considerations, it seems natural to model
migrations between two patches directly as in system (2).
However, the correct generalization depends on the mechanisms
that underly the logistic growth and that are not specified in the
items 1 to 4 above. In the examples we have studied, we have
shown that the patch version (2) could be incorrect.

Nevertheless, it can be correct under specific assumptions. For
instance, the logistic model can be derived from the following
mechanism, different from those of Sections 3 and 4. Assume that
the population basically follows exponential growth:

dN

dt
= r N,

and that some proportion of the encounters between two
individuals lead to mortality. In this case, if we also assume perfect
mixing, the number of individuals dying during a small time
interval dt is simply proportional to the product N2 dt . Subtracting
this mortality, we obtain the equation

dN

dt
= r N − λN2 = rN

(
1 − λ

r
N

)
, (19)

which is a logistic (with carrying capacity K = r/λ). This is a
mechanistic derivation of the logistic equation that assumes direct
intraspecific interference.

Now, if we consider two patches with linear dispersal between
them, we can assume the same mechanism and build the two-
patch model (2) directly as a whole. In this case, we can be con-
fident about the predictions of model (2), which is the traditional
two-patch generalization of the logistic model.

If we accept the two-patch logistic model, our complete math-
ematical analysis summarized by Figs. 1 and 2 has determined the
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exact conditions under which fragmentation (associated to disper-
sal) increases the total equilibrium population size. This occurs in
J0 for all migration rates (Fig. 2(a)) and in J1 for the lower migra-
tion rates (Fig. 2(c)). Thus, a necessary condition is r2 > r1 (which
is not always sufficient). Recalling that K2 > K1, this means that,
when the ‘‘good’’ patch 2 is the better one both in terms of carry-
ing capacity and in terms of intrinsic growth rate, fragmentation
can indeed have a beneficial effect. Fragmentation is always detri-
mental if carrying capacity and growth rate are negatively corre-
lated, i.e., if K2 > K1 and r2 < r1. One may reasonably assume
that this condition occurs in nature much less frequently than pos-
itive correlation (i.e., K2 > K1 and r2 > r1). Therefore, our analysis
confirms the earlier partial results of other authors (e.g., Freedman
and Waltman, 1977; Holt, 1985; DeAngelis and Zhang, 2014) who
suggested that, in general, fragmentation was beneficial.

In particular, this will always be the case with the parameteri-
zation (19) of the logistic equation. In this case, K is proportional to
r because K = r/λ. Therefore, if the fundamental cause of density
dependence is the intrinsic interference λ, assumed to be the same
in both patches, the fragmented logistic model (2) analysed in Sec-
tion 2 is always on the border line between J0 and J1 of Fig. 1.
Fragmentation is always beneficial.

While this first message of our paper generally confirms
previous results, our second message is more critical. We have
shown that, if the logistic model is viewed as a mechanistic
model (e.g., the two different mechanisms presented in Sections 3
and 4), then the correct two-patch generalization is different
from the traditional reduced model (2). Moreover, the effect of
fragmentation can be quite different from that predicted by the
latter model. Figs. 3, 4, and 5 have shown that this effect can be
either detrimental or beneficial, sometimes in a direction opposite
to that predicted by the traditional model (2).

This second message of our paper brings some new light to ear-
lier criticisms of the logistic equation, especially in the parameteri-
zation of Eq. (1) (e.g., Kuno, 1991, Ginzburg, 1992). Particularly, the
expression ‘‘carrying capacity’’ for K is very unfortunate because
it conveys the idea that it is an intrinsic environmental property.
With this view, our results would lead to say that the total carry-
ing capacity of a patchy environment is different from the sum of
the patches’ carrying capacities. Instead, K must be better viewed
as the asymptotic, maximal value of the population abundance.
This question was notably discussed by Gabriel et al. (2005) and by
Mallet (2012), who pointed out that it makes much more sense to
write the logistic equation as in Eq. (19) because it makes clear that
the asymptotic limit of population abundance is due to intraspe-
cific competition. Moreover, historically, this was the original way
in which Pierre-François Verhulst first wrote the logistic equation
(Verhulst, 1838).

A last point to discuss is to ask how our results generalize to
situations with more than two patches. We have found that the
complete analysis of the simplest two-patch case shows that the
outcome is by no way intuitive. The mathematical extension to
n patches (n > 2) is probably very intricate and is a challenge
for further work. Still, we can be pretty much confident that our
two main findings remain qualitatively valid: (1) under some
conditions, but not always, the total equilibrium population can
be higher than the sum of the local carrying capacities; (2) the
coupling of n patches with local logistic dynamics gives different
theoretical results from those of the detailed direct coupling of the
underlying mechanisms.
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Appendix A. Appendix to Section 2

A.1. Some formulas

Let us first prove the following preliminary result.

Proposition 1. Let
(
N∗

1 (β), N∗
2 (β)

)
be an equilibrium of (2).

1. If K1 < K2 and β > 0, then K1 < N∗
1 (β) < N∗

2 (β) < K2 (i.e.,
(5) holds).

2. Let N∗
T (β) = N∗

1 (β) + N∗
2 (β). Then

N∗
T = K1 + K2 + β

N∗
2 − N∗

1
r1
K1

r2
K2

N∗
1 N∗

2

(
r2

K2

N∗
2 − r1

K1

N∗
1

)
(A.1)

and

dN∗
T

dβ
= N∗

2 − N∗
1

B(N∗
1 , N∗

2 )

×
[
β

(
N∗

1

N∗
2

− N∗
2

N∗
1

)
+ r2

K2

N∗
2 − r1

K1

N∗
1

]
(A.2)

where B(N1, N2) = r1
K1

r2
K2

N1N2 + β
[

r1
K1

N2
1

N2
+ r2

K2

N2
2

N1

]
.

Proof. Let us prove item 1, that is to say, that (5) holds. The
equilibria are the solutions of the set of equations⎧⎪⎪⎨
⎪⎪⎩

0 = r1N1

(
1 − N1

K1

)
+ β(N2 − N1),

0 = r2N2

(
1 − N2

K2

)
+ β(N1 − N2).

(A.3)

Solving the first equation for N2 and the second for N1 yields
that the equilibria are the nonnegative intersections of the two
parabolas P1 and P2 of equations N2 = P1(N1) and N1 = P2(N2),
where the functions P1 and P2 are defined by

P1(N1) = N1 − r1

β
N1

(
1 − N1

K1

)
,

P2(N2) = N2 − r2

β
N2

(
1 − N2

K2

)
.

(A.4)

These parabolas are simply the isoclines Ṅ1 = 0 and Ṅ2 = 0. The
isoclines intersect at (0, 0) and at E = (N∗

1 , N∗
2 ). Since P1(K1) = K1,

the point A = (K1, K1) belongs to P1. Since P2(K2) = K2, the point
B = (K2, K2)belongs to P2. Hence, the equilibrium E belongs to the
triangle ABC , where C = (K1, K2) (see Fig. A.7). Thus K1 < N∗

1 <
N∗

2 < K2, which is (5).
Let us now prove item 2. The proof of (A.1) is as follows. At the

equilibrium (N∗
1 , N∗

2 ), one has:⎧⎪⎨
⎪⎩

0 = r1

K1

N∗
1 (K1 − N∗

1 ) + β(N∗
2 − N∗

1 ),

0 = r2

K2

N∗
2 (K2 − N∗

2 ) + β(N∗
1 − N∗

2 ).
(A.5)

Dividing the first equation by r1
K1

N∗
1 , the second by r2

K2
N∗

2 , and

adding the two, one gets:

K1 + K2 − (N∗
1 + N∗

2 ) + β
N∗

2 − N∗
1

r1
K1

N∗
1

+ β
N∗

1 − N∗
2

r2
K2

N∗
2

= 0.
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Fig. A.7. Phase-plane diagram for equation system (2). E = (N∗
1 , N∗

2 ), the positive intersection of the nullclines P1 and P2, is a stable equilibrium and 0 is an unstable one.
Parameter values: K1 = 1, K2 = 2, r2 = 2, β = 0.8. Left: r1 = 0.5, corresponding to the case N∗

T > K1 + K2. Right: r1 = 2.5, corresponding to the case N∗
T < K1 + K2.

Hence

N∗
1 + N∗

2 = K1 + K2 + β
N∗

2 − N∗
1

r1
K1

r2
K2

N∗
1 N∗

2

(
r2

K2

N∗
2 − r1

K1

N∗
1

)
,

which is (A.1).

The proof of (A.2) uses the implicit function theorem. Since
N∗

1 (β) and N∗
2 (β) satisfy (A.3), one has

fi
(
N∗

1 (β), N∗
2 (β), β

) = 0, i = 1, 2, (A.6)

where

fi(N1, N2, β) = riNi

(
1 − Ni

Ki

)
+ β(Nj − Ni), i, j = 1, 2, j �= i.

The total derivatives of (A.6) with respect to β are

dfi
(
N∗

1 (β), N∗
2 (β), β

)
dβ

= ∂ fi

∂N1

(
N∗

1 (β), N∗
2 (β), β

) dN∗
1 (β)

dβ

+ ∂ fi

∂N2

(
N∗

1 (β), N∗
2 (β), β

) dN∗
2 (β)

dβ

+ ∂ fi

∂β

(
N∗

1 (β), N∗
2 (β), β

) = 0.

This is a linear system in
dN∗

1 (β)

dβ
and

dN∗
2 (β)

dβ
that can be solved to

give⎡
⎢⎢⎣

dN∗
1

dβ
(β)

dN∗
2

dβ
(β)

⎤
⎥⎥⎦ = −A−1

[
N∗

2 (β) − N∗
1 (β)

N∗
1 (β) − N∗

2 (β)

]
, (A.7)

where

A =

⎡
⎢⎢⎣

r1

(
1 − N∗

1 (β)

K1

)
− β − r1

K1

N∗
1 (β) β

β r2

(
1 − N∗

2 (β)

K2

)
− β − r2

K2

N∗
2 (β)

⎤
⎥⎥⎦ .

Using (A.5), we have

r1

(
1 − N∗

1

K1

)
− β = −β

N∗
2

N∗
1

, r2

(
1 − N∗

2

K2

)
− β = −β

N∗
1

N∗
2

.

Using these formulas, and after some algebraic manipulation,
Eq. (A.7) reduces to⎡
⎢⎢⎣

dN∗
1

dβ

dN∗
2

dβ

⎤
⎥⎥⎦ = 1

B(N∗
1 , N∗

2 )

⎡
⎢⎢⎣

β
N∗

1

N∗
2

+ r2

K2

N∗
2 β

β β
N∗

2

N∗
1

+ r1

K1

N∗
1

⎤
⎥⎥⎦

×
[

N∗
2 − N∗

1

N∗
1 − N∗

2

]
.

Therefore

dN∗
1

dβ
= 1

B(N∗
1 , N∗

2 )

×
[(

β
N∗

1

N∗
2

+ r2

K2

N∗
2

) (
N∗

2 − N∗
1

) + β
(
N∗

1 − N∗
2

)]
,

dN∗
2

dβ
= 1

B(N∗
1 , N∗

2 )

×
[(

β
N∗

2

N∗
1

+ r1

K1

N∗
1

) (
N∗

1 − N∗
2

) + β
(
N∗

2 − N∗
1

)]
.

Adding the two equations, one obtains (A.2). �

Remark. The stability study of E = (N∗
1 , N∗

2 ) comes from the anal-
ysis of the variational matrix. See Freedman and Waltman (1977)
and DeAngelis et al. (1979), where it is proved that E is stable. Ac-
tually, E is globally asymptotically stable (Holt, 1985). Graphically,
the two parabolic isoclines in Fig. A.7 are attractive (P1 horizon-
tally and P2 vertically). P1 can only be crossed vertically and P2

horizontally. It is therefore easy to follow the general direction of
trajectories in the positive quadrant of this figure and to under-
stand that they all lead to the equilibrium point E.

A.2. Comparison of N∗
T and K1 + K2

In this section, we explain why, in general, the total equilibrium
population in the system of coupled logistic growths (2) is different
from the sum of the carrying capacities. More precisely, we give the
exact conditions under which N∗

T > K1 +K2. Recall that, if K1 = K2,
then N∗

1 = K1 and N∗
2 = K2 for any β ≥ 0. Therefore N∗

T = K1 + K2

for any β ≥ 0. When K1 is not equal to K2, we have the following
result, where N∗

T (β) is studied as a function of the migration rate β .
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Proposition 2. We recall the assumption that K1 < K2.

1. If r2
K2

≥ r1
K1

, then N∗
T (β) > K1 + K2 for any β > 0.

2. If r2
K2

<
r1
K1

and r2 > r1, then N∗
T (β) > K1 + K2 for 0 < β < β0

and

N∗
T (β) < K1 + K2 for β > β0, where β0 > 0 is defined by

β0 = r2 − r1

K2
r2

− K1
r1

1
r2
K2

+ r1
K1

.

3. If r2 ≤ r1, then N∗
T (β) < K1 + K2 for any β > 0.

Proof. From (A.1), we can study the cases 1 and 3 of Proposition 2.

• If r2
K2

≥ r1
K1

, then, using (5), we have

r2

K2

N∗
2 − r1

K1

N∗
1 ≥ r1

K1

N∗
2 − r1

K1

N∗
1 = r1

K1

(
N∗

2 − N∗
1

)
.

Therefore, using N∗
2 > N∗

1 and (A.1), we have N∗
T > K1 + K2.

• If r2 ≤ r1, then, using (5), we have
N∗

2
K2

< 1 and
N∗

1
K1

> 1, so that

r2

K2

N∗
2 − r1

K1

N∗
1 = r2

N∗
2

K2

− r1

N∗
1

K1

< r2 − r1 ≤ 0.

Therefore, using N∗
2 > N∗

1 and (A.1), we have N∗
T < K1 + K2.

The study of the case 2 of Proposition 2 requires both (A.1) and
(A.2). From (A.1) we deduce that N∗

T (β) = K1 +K2 for β > 0, if and
only if

r2

K2

N∗
2 − r1

K1

N∗
1 = 0. (A.8)

Using (A.2), we see that (A.8) necessarily implies that
dN∗

T
dβ

(β) <

0. Hence, we can have N∗
T (β) = K1 + K2 for at most one value of

β > 0. For such value of β , (N∗
1 , N∗

2 ) is a solution of the set of linear
equations formed by (A.8) and the condition

N∗
1 + N∗

2 = K1 + K2. (A.9)

Solving (A.8)–(A.9), we obtain

N∗
1 = K1

r1

K1 + K2

K1
r1

+ K2
r2

, N∗
2 = K2

r2

K1 + K2

K1
r1

+ K2
r2

.

Using (A.5), we obtain that

β = r2 − r1

K2
r2

− K1
r1

1
r2
K2

+ r1
K1

.

We conclude that N∗
T (β) = K1 + K2 if and only if β is equal to

this value, and that N∗
T (β) < K1 +K2 if and only if β is greater than

this value. �

A.3. Perfect mixing

The behaviour of the system for perfect mixing (β → ∞) is
given by the following result.

Proposition 3. Let (N1(t, β), N2(t, β)) be a solution of (2) with ini-
tial condition (N10, N20). When β → ∞, then, with the exception of
a small initial interval, N1(t, β) and N2(t, β) are both approximated
by the solution N(t) of the logistic equation (1), where r = r1+r2

2
and

K = r1+r2
r1/K1+r2/K2

, and with initial condition N0 = N10+N20
2

.

Proof. Let N = N1+N2
2

. We can rewrite (2) using the variables N1

and N (notice that N2 = 2N − N1):⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= r1N1

(
1 − N1

K1

)
+ 2β(N − N1),

dN

dt
= 1

2

[
r1N1

(
1 − N1

K1

)
+ r2(2N − N1)

(
1 − 2N − N1

K2

)]
.

(A.10)

The system (A.10) is a slow and fast system whose slow
variable is N and fast variable is N1. We use the Tikhonov theorem
(Tikhonov, 1952; Wasow, 1976; Lobry et al., 1998) to show that, in
the limit β → ∞, the solutions of (A.10) are approximated by the
solutions of the reduced model. The reduced model is obtained as
follows.

We first consider the dynamics of the fast variable N1 in the time
scale τ = βt , which is

dN1

dτ
= 1

β
r1N1

(
1 − N1

K1

)
+ 2(N − N1).

The fast equation

dN1

dτ
= 2(N − N1) (A.11)

is obtained from the previous one by setting 1/β = 0 in the right
hand side.

Since N1 = N is an asymptotically stable equilibrium of the
fast equation, the Tikhonov theorem applies and tells us that the
reduced model is obtained by replacing, in the second equation of
(A.10), the fast variable N1 by the equilibrium N1 = N of the fast
equation. One obtains

dN

dt
= r1 + r2

2
N

(
1 − N

r1/K1 + r2/K2

r1 + r2

)
(A.12)

which is the logistic equation with parameters r and K as given by
the formulas in the present Proposition.

This reduction method is also known as the quasi-steady state
approximation, since N1 is replaced by the quasi-steady state N1 =
N of the fast equation (A.11). �

Eq. (A.12) is simply a logistic equation whose positive
equilibrium is given by

N∗ = r1 + r2

r1/K1 + r2/K2

.

Hence, in the limit β → ∞, we get N∗
1 (+∞) = N∗

2 (+∞) = N∗,
so that N∗

T (+∞) = N∗
1 (+∞) + N∗

2 (+∞) is given by

N∗
T (+∞) = 2

r1 + r2

r1/K1 + r2/K2

, (A.13)

which is the same result as (3).

Remark. The property N∗
1 (+∞) = N∗

2 (+∞) = r1+r2
r1/K1+r2/K2

had

already been obtained by Freedman and Waltman (1977, their
Theorem 3.1) by a direct computation on the Eqs. (A.3). See also
Holt (1985, his Section 2.3). We have obtained here this formula
from the model (A.12) to which the model (2) reduces in the
limit β → ∞. This approach is more general than the direct
computations used by Freedman and Waltman (1977) and will be
useful for other models considered in this paper.

A more complete understanding of the effect of migration is
provided by the following proposition, which gives additional
information on the derivative of N∗

T (β) with respect to β .
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Proposition 4. 1.
dN∗

T
dβ

(0) = (K1−K2)
(

1
r2

− 1
r1

)
= (K1−K2)

r1−r2
r1r2

.

2. If N∗
T (β) < K1 + K2, then

dN∗
T

dβ
(β) < 0.

Proof. Using N∗
1 (0) = K1, N∗

2 (0) = K2 in (A.2), we get

dN∗
T

dβ
(0) =

(
1

r2

− 1

r1

)
(K1 − K2).

This is item 1 of Proposition 4.
From (A.1) we deduce that N∗

T (β) < K1 + K2 if and only if

r2

K2

N∗
2 − r1

K1

N∗
1 < 0.

Using (A.2), we see that this condition necessarily implies that
dN∗

T
dβ

(β) < 0. This is item 2 of Proposition 4. �

Using (A.13) and Proposition 4, we can notice that

• J0 is characterized by the condition N∗
T (+∞) ≥ K1 + K2,

• J1 is characterized by the conditions N∗
T (+∞) < K1 + K2 and

dN∗
T

dβ
(0) > 0,

• J2 is characterized by the condition
dN∗

T
dβ

(0) ≤ 0.

Appendix B. Appendix to Section 4.1

We assume in this section that the dispersion rates of the
consumer and the resource are equal. The mathematical model is
system (17) with α = β , that is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR1

dt
=

[
s1

(
1 − R1

L1

)
− a1 N1

]
R1 + β(R2 − R1),

dR2

dt
=

[
s2

(
1 − R2

L2

)
− a2 N2

]
R2 + β(R1 − R2),

dN1

dt
= ε1(b1R1 − q1)N1 + β(N2 − N1),

dN2

dt
= ε2(b2R2 − q2)N2 + β(N1 − N2).

(B.1)

This system can have many equilibria, whose analytical study
is difficult (if not impossible) and is beyond the scope of this
paper. As already mentioned in Section 4, computer simulations
show that (B.1) has a globally stable equilibrium. Assuming that
this equilibrium exists for each value of β and is positive, we can
consider, as in the previous section, its dependence with respect to
β . Let

(
R∗∗

1 (β), R∗∗
2 (β), N∗∗

1 (β), N∗∗
2 (β)

)
be the positive and stable

equilibrium of (B.1). Let
(
N∗

1 (β), N∗
2 (β)

)
be the globally stable

equilibrium of the corresponding reduced model (14). We consider
here some properties of N∗

T (β) and N∗∗
T (β) as functions of the

migration rate β .
From Proposition 4 and (A.13), we have

dN∗
T

dβ
(0) = (K1 − K2)

(
1

r2

− 1

r1

)
,

N∗
T (+∞) = 2

r1 + r2

r1/K1 + r2/K2

,

(B.2)

where ri and Ki are given by Eqs. (15)–(16).

B.1. Perfect mixing

The behaviour of (B.1) for perfect mixing (β → ∞) is given by
the following result.

Proposition 5. Let (R1(t, β), R2(t, β), N1(t, β), N2(t, β)) be a so-
lution of (B.1) with initial condition (R10, R20, N10, N20). When β →
∞, then, with the exception of a small initial interval, R1(t, β) and
R2(t, β) are both approximated by R(t), and N1(t, β) and N2(t, β)
are both approximated by N(t), where (R(t), N(t)) is the solution of
the MacArthur single-patch model (12) where

s = s1 + s2

2
, L = s1 + s2

s1/L1 + s2/L2

, a = a1 + a2

2
,

ε = ε1 + ε2

2
, w = 2

a1 + a2

ε1b1 + ε2b2

ε1 + ε2

,

q = ε1q1 + ε2q2

ε1 + ε2

,

and with initial condition R0 = R10+R20
2

and N0 = N10+N20
2

.

Proof. We use here the singular perturbation analysis outlined in
Appendix A.3 to obtain the behaviour of the system as β → ∞. Let

R = R1 + R2

2
, N = N1 + N2

2
.

We can rewrite (17) using the variables R1, N1 and R, N (using
R2 = 2R − R1 and N2 = 2N − N1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR1

dt
=

[
s1

(
1 − R1

L1

)
− a1 N1

]
R1 + 2β(R − R1)

dN1

dt
= ε1(b1R1 − q1)N1 + 2β(N − N1)

dR

dt
= 1

2

[
s1

(
1 − R1

L1

)
− a1 N1

]
R1

+1

2

[
s2

(
1 − 2R − R1

L2

)
− a2(2N − N1)

]
× (2R − R1)

dN

dt
= 1

2
[ε1(b1R1 − q1)N1 + ε2(b2(2R − R2)

−q2)(2N − N2)] .

(B.3)

System (B.3) is a slow and fast system whose slow variables are
R and N and fast variables are R1 and N1. In the limit β → ∞,
we can replace the fast variables R1 and N1 in the third and fourth
equations by their quasi-steady state approximations R1 = R and
N1 = N obtained from the first and second equations. We obtain⎧⎪⎪⎨
⎪⎪⎩

dR

dt
=

[
s1 + s2

2

(
1 − R

s1/L1 + s2/L2

s1 + s2

)
− a1 + a2

2
N

]
R,

dN

dt
= 1

2
[(ε1b1 + ε2b2) R − (ε1q1 + ε2q2)] N.

(B.4)

This is simply the MacArthur resource–consumer model (12)
with parameters as given by the formulas in the present
Proposition. �

The positive equilibrium of (B.4) is given by

R∗ = ε1q1 + ε2q2

ε1b1 + ε2b2

, N∗ = s1 + s2

a1 + a2

(
1 − R∗

s1
L1

+ s2
L2

s1 + s2

)
.

This equilibrium is positive if and only if

ε1q1 + ε2q2

ε1b1 + ε2b2

<
s1 + s2
s1
L1

+ s2
L2

.

Hence, in the limit β → ∞, we get N∗∗
1 (+∞) = N∗∗

2 (+∞) =
N∗, so that N∗∗

T (+∞) = N∗∗
1 (+∞) + N∗∗

2 (+∞) is given by

N∗∗
T (+∞) = 2

s1 + s2

a1 + a2

(
1 − ε1q1 + ε2q2

ε1b1 + ε2b2

s1
L1

+ s2
L2

s1 + s2

)
. (B.5)
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B.2. Comparison of N∗∗
T and N∗

T for small β

A more complete understanding of the effect of migration is

provided by the following proposition, which gives the derivative

of
dN∗∗

T
dβ

(0).

Proposition 6. We have

dN∗∗
T

dβ
(0) =

(
b2

a2q2

− b1

a1q1

) (
q1

b1

− q2

b2

)
+ dN∗

T

dβ
(0). (B.6)

Proof. Let
(
R∗∗

1 (β), R∗∗
2 (β), N∗∗

1 (β), N∗∗
2 (β)

)
be a positive equilib-

rium of (B.1). Thus, it is a solution of the set of equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 =
[

s1

(
1 − R∗∗

1

L1

)
− a1 N∗∗

1

]
R∗∗

1 + β(R∗∗
2 − R∗∗

1 )

0 =
[

s2

(
1 − R∗∗

2

L2

)
− a2 N∗∗

2

]
R∗∗

2 + β(R∗∗
1 − R∗∗

2 )

0 = ε1(b1R∗∗
1 − q1)N

∗∗
1 + β(N∗∗

2 − N∗∗
1 )

0 = ε2(b2R∗∗
2 − q2)N

∗∗
2 + β(N∗∗

1 − N∗∗
2 ).

(B.7)

As in Appendix A.1, we use the implicit function theorem and

calculate the derivatives
dR∗∗

i
dβ

(β) and
dN∗∗

i
dβ

(β). We have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dR∗∗
1

dβ
(β)

dR∗∗
2

dβ
(β)

dN∗∗
1

dβ
(β)

d2N∗∗

dβ
(β)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −A(β)−1

⎡
⎢⎣

R∗∗
2 (β) − R∗∗

1 (β)
R∗∗

1 (β) − R∗∗
2 (β)

N∗∗
2 (β) − N∗∗

1 (β)
N∗∗

1 (β) − N∗∗
2 (β)

⎤
⎥⎦ , (B.8)

where

A(β) =
[

A11(β) A12(β)
A21(β) A22(β)

]
,

and the matrices Aij(β) are given by

A11(β) =
[

B1(β) β
β B2(β)

]
,

A12(β) =
[−a1R∗∗

1 (β) 0
0 −a2R∗∗

2 (β)

]
,

A21(β) =
[
ε1b1N∗∗

1 (β) 0
0 ε2b2N∗∗

2 (β)

]
,

A22(β) =
[
ε1(b1R∗∗

1 (β) − q1) − β β
β ε2(b2R∗∗

2 (β) − q2) − β

]
,

with

Bi(β) = − si

Li

R∗∗
i (β) + si

(
1 − R∗∗

i (β)

Li

)
− ai N∗∗

i (β) − β.

Using R∗∗
i (0) = qi

bi
and N∗∗

i (0) = si
ai

biLi−qi
biLi

= Ki, and after some

algebraic manipulation, for β = 0, Eq. (B.8) reduces to⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dR∗∗
1

dβ
(0)

dR∗∗
2

dβ
(0)

dN∗∗
1

dβ
(0)

dN∗∗
2

dβ
(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 1

ε1b1K1

0

0 0 0 − 1

ε2b2K2

b1

a1q1

0
1

r1

0

0
b2

a2q2

0
1

r2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q2

b2

− q1

b1
q1

b1

− q2

b2

K2 − K1

K1 − K2

⎤
⎥⎥⎥⎥⎥⎦ ,

where ri and Ki are given by (15)–(16). Therefore

dN∗∗
1

dβ
(0) = b1

a1q1

(
q2

b2

− q1

b1

)
+ 1

r1

(K2 − K1) ,

dN∗∗
2

dβ
(0) = b2

a2q2

(
q1

b1

− q2

b2

)
+ 1

r2

(K1 − K2) .

Adding these equations, one obtains

dN∗∗
T

dβ
(0) =

(
b2

a2q2

− b1

a1q1

) (
q1

b1

− q2

b2

)
+ (K1 − K2)

(
1

r2

− 1

r1

)
.

Using (B.2), we obtain (B.6). �

The formulas (B.2), (B.5), and (B.6) give the values of the
derivatives at β = 0 and the values at β = ∞ of the functions
N∗

T (β) and N∗∗
T (β). They show that N∗

T (β) and N∗∗
T (β) are different

from each other. The parameter values can be chosen in such way
to display the typical behaviours of the examples considered in
Section 4.2. See Figs. 3 and 4.

Appendix C. Appendix to Section 4.2

Here, we give the mathematical analysis of the complete
resource–consumer model in the case in which the consumer alone
can disperse. The mathematical model is system (17) with α set to
0, that is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR1

dt
=

[
s1

(
1 − R1

L1

)
− a1 N1

]
R1,

dR2

dt
=

[
s2

(
1 − R2

L2

)
− a2 N2

]
R2,

dN1

dt
= ε1(b1R1 − q1)N1 + β(N2 − N1),

dN2

dt
= ε2(b2R2 − q2)N2 + β(N1 − N2).

(C.1)

C.1. Positive equilibrium

We have the following result.

Proposition 7. Let E∗ = (R∗
1, R∗

2, N∗
1 , N∗

2 ) be a positive equilibrium
of (C.1). Then (N∗

1 , N∗
2 ) is a positive equilibrium of the reduced

model (14). Conversely, let (N∗
1 , N∗

2 ) be a positive equilibrium of the
reduced model (14). Then E∗ = (R∗

1, R∗
2, N∗

1 , N∗
2 ), where R∗

1 , R∗
2 are

defined by

R∗
1 = L1

(
1 − a1

s1

N∗
1

)
, R∗

2 = L2

(
1 − a2

s2

N∗
2

)
,

is a positive equilibrium of (C.1) if and only if N∗
1 <

s1
a1

and N∗
2 <

s2
a2

.
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Proof. An equilibrium point (R∗
1, R∗

2, N∗
1 , N∗

2 ) of (C.1) is a solution
of the set of equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 =
[

s1

(
1 − R∗

1

L1

)
− a1 N∗

1

]
R∗

1,

0 =
[

s2

(
1 − R∗

2

L2

)
− a2 N∗

2

]
R∗

2,

0 = ε1(b1R∗
1 − q1)N

∗
1 + β(N∗

2 − N∗
1 ),

0 = ε2(b2R∗
2 − q2)N

∗
2 + β(N∗

1 − N∗
2 ).

(C.2)

If this equilibrium is positive, then we must have

s1

(
1 − R∗

1

L1

)
− a1 N∗

1 = 0, s2

(
1 − R∗

2

L2

)
− a2 N∗

2 = 0.

Therefore

R∗
1 = L1

(
1 − a1

s1

N∗
1

)
> 0, R∗

2 = L2

(
1 − a2

s2

N∗
2

)
> 0. (C.3)

Replacing these values in the third and fourth equations in (C.2),
we get⎧⎪⎪⎨
⎪⎪⎩

0 = ε1

(
b1L1 − q1 − a1b1

s1

L1N∗
1

)
N∗

1 + β(N∗
2 − N∗

1 ),

0 = ε2

(
b2L2 − q2 − a2b2

s2

L2N∗
2

)
N∗

2 + β(N∗
1 − N∗

2 ).

(C.4)

Hence (N∗
1 , N∗

2 ) is a positive equilibrium of the reduced model
(14). The reverse holds as long as the inequalities (C.3) are
satisfied. �

The model (C.1) was already considered by Holt (1984, his
equations 6–7). In the case of resource exponential growth instead
of logistic growth, he gave the condition on β for resource
persistence in both patches at equilibrium. He did not consider,
however, the links between (C.1) and the reduced two-patch
logistic equation (14), as we did in our study.

We will now consider the question of equilibrium resource
persistence in both patches with logistic growth. More precisely,
we investigate the links between the equilibrium of (C.1) and
the equilibrium of the reduced model (14). Let (N∗

1 (β), N∗
2 (β)) be

a positive equilibrium of the reduced system (14). The resource
abundances are positive if and only if

N∗
1 (β) <

s1

a1

, N∗
2 (β) <

s2

a2

.

Recall that

N∗
1 (0) = K1 <

s1

a1

, N∗
2 (0) = K2 <

s2

a2

,

where K1 and K2 are the carrying capacities defined by (16). Using
(5) we get

K1 < N∗
1 (β) < N∗

2 (β) < K2 <
s2

a2

.

Hence, the condition N∗
2 (β) <

s2
a2

is satisfied for every β > 0

and, since N∗
1 (β) is continuous with respect to β , the condition

N∗
1 (β) <

s1
a1

is also satisfied when β is small enough. This means

that, for β small enough, the positive equilibrium E∗∗ of (C.1)
defined by (18) is the same as the equilibrium E∗ considered
in Proposition 7 and corresponding to the positive equilibrium
(N∗

1 , N∗
2 ) of the reduced model (14). Thus, for β small enough, we

have

N∗∗
T (β) = N∗

T (β),

as illustrated in Fig. 5(a).

Two cases must be distinguished: N∗
1 (β) <

s1
a1

for all β > 0, as

in Fig. C.8(a), or there exists a critical value βc , such that N∗
1 (β) <

s1
a1

for β < βc , and N∗
1 (β) >

s1
a1

for β > βc , as in Fig. C.8(b). In the

first case, we have N∗∗
T (β) = N∗

T (β) for all β ≥ 0, as illustrated in
Fig. 5(a). In the second case, we have N∗∗

T (β) = N∗
T (β) for β < βc ,

as illustrated in Fig. 5(b).
Hence, when β > βc , the equilibrium (N∗

1 (β), N∗
2 (β)) no

longer corresponds to a positive equilibrium of (C.1). Actually, the
corresponding equilibrium E∗ of (C.1) described by Proposition 7,
becomes negative when β > βc , since R∗

1(β) < 0.

C.2. Boundary equilibrium

Besides the equilibrium E∗(β) = (R∗
1(β), R∗

2(β), N∗
1 (β), N∗

2 (β))
described by Proposition 7, (C.1) can have the boundary equilib-
rium, as shown in the following result.

Proposition 8. The system (C.1) can have the boundary equilibrium

EĎ(β) = (0, R
Ď
2(β), N

Ď
1 (β), N

Ď
2 (β))

where R
Ď
1(β) = 0 and R

Ď
2(β) > 0, N

Ď
1 (β) > 0 and N

Ď
2 (β) > 0.

Let (N∗
1 , N∗

2 ) be a positive equilibrium of the reduced model (14). If
N∗

1 (β) >
s1
a1

, then we have

N
Ď
1 (β) + N

Ď
2 (β) > N∗

1 (β) + N∗
2 (β).

Proof. The components R
Ď
2(β), N

Ď
1 (β) and N

Ď
2 (β) of the equilibrium

EĎ(β) are the positive solutions of the set of equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = s2

(
1 − R

Ď
2

L2

)
− a2 N

Ď
2 ,

0 = −ε1q1N
Ď
1 + β(N

Ď
2 − N

Ď
1 ),

0 = ε2(b2R
Ď
2 − q2)N

Ď
2 + β(N

Ď
1 − N

Ď
2 ).

(C.5)

Solving the first equation for R
Ď
2 yields

R
Ď
2 = L2

(
1 − a2

s2

N
Ď
2

)
.

Replacing R
Ď
2 by this expression in the second and third

equations of (C.5) yields⎧⎨
⎩

0 = −ε1q1N
Ď
1 + β(N

Ď
2 − N

Ď
1 ),

0 = ε2

(
b2L2 − q2 − a2b2

s2

L2N
Ď
2

)
N

Ď
2 + β(N

Ď
1 − N

Ď
2 ).

(C.6)

Solving the second equation for N
Ď
2 yields that the equilibria are

the positive intersections of the parabola P2 of equation N1 =
P2(N2), where P2(N2) is defined by (A.4), with r2 and K2 given by
(15)–(16), and the straight line Δ of equation −ε1q1N1 + β(N2 −
N1) = 0 (Fig. C.9).

We want to compare the solution (N
Ď
1 , N

Ď
2 ) of (C.6) with the

solution (N∗
1 , N∗

2 ) of (C.4). Since N∗
1 >

s1
a1

, and from the first

equation of (C.4), we deduce that

−ε1q1N∗
1 + β(N∗

2 − N∗
1 ) = −ε1b1L1

(
1 − a1

s1

N∗
1

)
N∗

1 > 0.

Hence, the point (N∗
1 , N∗

2 ) is on the left of the straight line Δ. We
recall that (N∗

1 , N∗
2 ) is the positive intersection of the two parabolas

P1 and P2 of equations N2 = P1(N1) and N1 = P2(N2), where
P1(N1) and P2(N2) are defined by (A.4), with ri and Ki given by

(15)–(16). Hence we have N∗
1 < N

Ď
1 and N∗

2 < N
Ď
2 , as illustrated in

Fig. C.9. Therefore, we have N
Ď
1 (β)+ N

Ď
2 (β) > N∗

1 (β)+ N∗
2 (β). �
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Fig. C.8. (a) N∗
1 (β) <

s1
a1

for all β ≥ 0. (b) The critical value βc for which N∗
1 (β) = s1

a1
. See Fig. 5 for the plots of the corresponding total consumer population.

At β = βc , there is a bifurcation of EĎ(β) from E∗(β). When
β > βc , we observed numerically that EĎ(β) becomes stable
and attracts all solutions. Therefore, for β > βc , the stable
equilibrium (18) of (C.1) is no longer equal to E∗(β), which has
become negative, but is equal to the boundary equilibrium EĎ(β).
Therefore, using Proposition 8, we have

N∗∗
T (β) =

{
N∗

1 (β) + N∗
2 (β) = N∗

T (β) for 0 ≤ β ≤ βc

N
Ď
1 (β) + N

Ď
2 (β) > N∗

T (β) for β > βc

as illustrated in Fig. 5(b).

C.3. Perfect mixing

The behaviour of (C.1) for perfect mixing (β → ∞) is given by

the following result.

Proposition 9. Let (R1(t, β), R2(t, β), N1(t, β), N2(t, β)) be a so-
lution of (C.1) with initial condition (R10, R20, N10, N20). When β →
∞, then, with the exception of a small initial interval, R1(t, β) and
R2(t, β) are approximated by R1(t) and R2(t), and N1(t, β) and
N2(t, β) are both approximated by N(t), where (R1(t), R2(t), N(t))

is the solution, with initial condition R10, R20, and N0 = N10+N20
2

, of
the MacArthur single-patch model with two resources

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dR1

dt
=

[
s1

(
1 − R1

L1

)
− a1 N

]
R1

dR2

dt
=

[
s2

(
1 − R2

L2

)
− a2 N

]
R2

dN

dt
= ε (c1R1 + c2R2 − q) N,

(C.7)

where ε = ε1+ε2
2

, c1 = ε1b1
ε1+ε2

, c2 = ε2b2
ε1+ε2

, and q = ε1q1+ε2q2
ε1+ε2

.

Proof. We use here the singular perturbation analysis outlined in
Appendix A.3 to obtain the behaviour of the system as β → ∞. Let

N = N1+N2
2

. We can rewrite (C.1) using the variables s1, s2, N and

Fig. C.9. Graphical constructions of the solutions (N
Ď
1 , N

Ď
2 ) of (C.6) and (N∗

1 , N∗
2 ) of

(C.4) showing that N
Ď
1 > N∗

1 and N
Ď
2 > N∗

2 .

N1 (using N2 = 2N − N1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR1

dt
=

[
s1

(
1 − R1

L1

)
− a1 N1

]
R1

dR2

dt
=

[
s2

(
1 − R2

L2

)
− a2 N2

]
R2

dN

dt
= 1

2
[ε1(b1R1 − q1)N1 + ε2(b2R2 − q2)(2N − N2)]

dN1

dt
= ε1(b1R1 − q1)N1 + 2β(N − N1).

(C.8)

System (C.8) is a slow and fast system whose slow variables are
R1, R2 and N , and fast variable is N1. In the limit β → ∞, we can
replace the fast variable N1 in the first three equations of (C.8) by
its quasi-steady state approximation N1 = N obtained from the
fourth equation. We obtain⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dR1

dt
=

[
s1

(
1 − R1

L1

)
− a1 N

]
R1

dR2

dt
=

[
s2

(
1 − R2

L2

)
− a2 N

]
R2

dN

dt
= 1

2
[ε1(b1R1 − q1)N + ε2(b2R2 − q2)N] ,
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which is simply the MacArthur two resource–one consumer model
(C.7). �

In the MacArthur model (C.1), all resources are not necessar-
ily present at equilibrium. For instance, assuming that the re-
sources are labelled such that s1

a1
<

s2
a2

(which holds for Fig. 5(b),

since in this figure one has s1
a1

= 1 < 3 = s2
a2

), we have the

following results, which are special cases of the results in Holt
(1977) obtained for the model of one consumer and n ≥ 2 re-
sources. (It should be noted that Holt, 1977 used the conven-
tion s1

a1
>

s2
a2

, so some changes of indices occur in the following

formulas.)

1. If ε1b1L1 + ε2b2L2 > ε1q1 + ε2q2, then no resource is present at
equilibrium.

2. If ε1b1L1 + ε2b2L2 ≤ ε1q1 + ε2q2, then resource R2 is always
present at equilibrium and resource R1 is present if and only if
the following condition holds:

ε1q1 + ε2q2

ε2b2L2

> 1 − a2

s2

s1

a1

. (C.9)

The condition (C.9) of existence of species R1 at equilibrium
is independent of its own carrying capacity L1, yet may critically
depend on L2. This behaviour of resources sharing a common
consumer is known as apparent competition.

This behaviour of the limiting model (C.7) when β → ∞
explains why there is a critical value βc such that, for β > βc , the
resource R1 is not present at equilibrium (see Fig. 5(b)).

From Proposition 9, we deduce the following result:

Proposition 10. If the inequality (C.9) holds, then we have

N∗∗
T (+∞) = N∗

T (+∞) = 2
r1 + r2

r1/K1 + r2/K2

. (C.10)

If the reverse of inequality (C.9) holds, then we have

N∗∗
T (+∞) = 2

s2

a2

(
1 − ε1q1 + ε2q2

ε2b2L2

)
> N∗

T (+∞). (C.11)

Proof. If (C.9) holds, then the solutions of (C.7) converge towards
the positive equilibrium (R∗

1, R∗
2, N∗) given by

R∗
1 = L1

(
1 − a1

s1

N∗
)

, R∗
2 = L2

(
1 − a2

s2

N∗
)

,

where N∗ is the solution of the equation

ε1b1L1

(
1 − a1

s1

N∗
)

+ ε2b2L2

(
1 − a2

s2

N∗
)

− ε1q1 − ε2q2 = 0.

Hence

N∗ = ε1b1L1 + ε2b2L2 − (ε1q1 + ε2q2)

ε1b1L1
a1
s1

+ ε2b2L2
a2
s2

.

Using Proposition 9, we see that, in the limit β → ∞, we get
N∗∗

1 (+∞) = N∗∗
2 (+∞) = N∗, so that N∗∗

T (+∞) = N∗∗
1 (+∞) +

N∗∗
2 (+∞) = 2N∗. Therefore, using (B.2), we see that N∗∗

T (+∞) =
N∗

T (+∞) and (C.10) holds.
If the reverse of inequality (C.9) holds, then R1 is eliminated by

apparent competition and the solutions of (C.7) converge towards
the boundary equilibrium (0, R∗

2, N∗) given by

R∗
2 = L2

(
1 − a2

s2

N∗
)

, N∗ = s2

a2

(
1 − ε1q1 + ε2q2

ε2b2L2

)
.

Using Proposition 9, we see that, in the limit β → ∞, we get
N∗∗

1 (+∞) = N∗∗
2 (+∞) = N∗, so that N∗∗

T (+∞) = N∗∗
1 (+∞) +

N∗∗
2 (+∞) = 2N∗ is given by (C.11). �
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