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Excitonic Josephson effect in double-layer graphene junctions
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We show that double-layer graphene (DLG), where an external potential induces a charge imbalance between
n- and p-type layers, is a promising candidate to realize an exciton condensate in equilibrium. To prove this
phenomenon experimentally, we suggest coupling two DLG systems, separated by a thin insulating barrier, and
measuring the excitonic Josephson effect. For this purpose we calculate the ac and dc Josephson currents induced
by tunneling excitons and show that the former only occurs when the gate potentials of the DLG systems differ,
irrespective of the phase relationship of their excitonic order parameters. A dc Josephson current develops if a
finite order-parameter phase difference exists between two coupled DLG systems with identical gate potentials.
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The search for the long ago predicted excitonic insulator
(EI) state has recently stimulated a lot of experimental work,
e.g., on pressure sensitive rare-earth chalgogenides, transition-
metal dichalcogenides, or tantalum chalcogenides [1–5].
Theoretically the excitonic instability is expected to happen,
when semimetals with very small band overlap or semicon-
ductors with very small band gap are cooled to very low
temperatures [6,7]. To date there exists no free of doubt
realization of the EI, however, and even the applicability
of the original EI scenario to the above material classes is
a controversial issue [5,8–10]. There are serious arguments
why the EI in these bulk materials, if present at all, resem-
bles rather a charge-density-wave state than a “true” super-
fluid exciton condensate exhibiting off-diagonal long-range
order [11,12].

On these grounds a nonambiguous experimental proof of
a macroscopic phase coherent exciton condensate would be
highly desirable. Spectroscopic analyses have not established
an exciton condensate so far. The characteristics of junction
devices, where at least in one component an EI is realized,
may lead to valuable insights in this respect [13]. Due to
the proximity effect a high resistance should appear across
a semimetal-EI junction that distinctly differs from that of
a semimetal-semiconductor device [14]. In coupled quantum
wells, Josephson oscillations should accompany exciton con-
densation [15,16]. Here we will pursue a similar idea, namely,
that a Josephson-type tunnel current might appear when two EI
systems are coupled to each other by a thin insulating barrier
such that coherence is established between the condensates.

Two-layer systems of spatially separated electrons and
holes that feature an attractive interlayer electron-hole cou-
pling are particularly suitable for a Josephson-type tunnel
experiment. In this case a condensate of excitons might occur
when the tunneling between the layers is negligible, but the
corresponding Coulomb interaction is not [17]. Double-layer
systems thereby inhibit the obstacles coming from interband
transitions or the coupling to phonons, which inevitably occur
in bulk materials and prevent a possible exciton condensation
by destroying the U (1) symmetry [12,18,19]. It is also ad-
vantageous that (exciton) tunneling effects are experimentally
well accessible in double-layer systems.

Graphene-based double layers (separated by an adequate
dielectric, e.g., hexagonal boron nitride or SiO2) show great

promise for realizing a corresponding setup (see Fig. 1). For
double-layer graphene (DLG), a gate bias across the layers
creates a charge imbalance, whereupon the attractive Coulomb
interaction between the excess electrons and holes on opposite
layers raises the possibility of exciton formation. While a
fine tuning of the band gap can be achieved by the external
potential, the recombination of electrons and holes can be fully
suppressed by the dielectric [20]. Then, in the weak coupling
regime, exciton condensation is triggered by a Cooper-type
instability, where the particle-hole symmetry of the system
ensures a perfect nesting between the electron Fermi surface
and its hole counterpart in the n- and p-type layers of a biased
DLG system [21–23]. Placing an (insulating) tunnel barrier
between two such DLG systems, the Josephson current can
be used to analyze whether or not an exciton condensate has
been formed in each of the subsystems. We note that a similar
setup was recently proposed to study thermal transport in a
temperature-biased exciton-condensate junction [24].

The tight-binding Hamiltonian we assume for a DLG
subsystem i (i = l,r , left or right) has the form

Hi =
∑

k

ε+
kia

†
kiaki +

∑
k

ε−
kib

†
kibki

+ 1

N

∑
k,k′,q

Uk,k′,q a
†
k+qiakib

†
k′−qibk′i , (1)

where a
(†)
ki and b

(†)
ki annihilate (create) electron quasiparticles

in the n layer and p layer, respectively, with in-plane momenta
k and band dispersions

ε±
ki = ±γ0[3 + 2 cos(

√
3ky)

+ 4 cos(
√

3ky/2) cos(3kx/2)]1/2 ∓ μi. (2)

In the low carrier density regime, the effective band struc-
ture (2) should account for the effects of the intralayer
Coulomb interaction. The corresponding particle transfer
amplitude is parametrized by γ0 � 2.8 eV (which defines
the unit of energy in what follows) and the momenta kx,y by
a−1, where a � 0.142 nm is the carbon-carbon distance within
graphene’s honeycomb structure (see Ref. [25]). The external
potential Vi determines the chemical potential: μi = Vi/2. The
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FIG. 1. (Color online) Upper panel: Schematic setup to verify an
excitonic Josephson effect. Two DLG systems are separated by a thin
tunnel barrier (TB). By external potentials Vl and Vr the chemical
potential (particle numbers) can be tuned in each layer of the left
and right DLG, respectively. Here the charge carriers are electrons
(e) and holes (h) in the upper (lower) n-type (p-type) layer. The
layers are separated by a dielectric of thickness d . Tunneling of
coherent electron-hole pairs (excitons) will induce an electron current
IX through the barrier. Obviously, the current in the lower layer equals
the current in the upper layers in modulus but flows in the opposite
direction. Lower panel: Band structure near the K point and chemical
potential μi of neutral DLG with Vi = 0 (left) and gated DLG where
Vi > 0 (middle). First Brillouin zone of DLG (red hexagon) with
high-symmetry points (right). Backfolding parts I and II, the gray
rectangle shows the representation of the Brillouin zone we use in
Fig. 2.

interlayer Coulomb interaction leading to exciton formation is

Uk,k′,q = κ
e−d|q|

|q| cos

(
�

2

)
cos

(
�′

2

)
, (3)

where κ = gs2π/ε, gs = 2, ε denotes the dielectric constant
of the dielectric, and N gives the total number of parti-
cles [26,27]. Since electron-hole recombination is prevented
by the dielectric, we neglected in Eq. (1) all interlayer Coulomb
interaction terms that do not preserve the number of electrons
(or holes) in a single layer, e.g., HU ∝ a

†
k+qiakia

†
k′−qibk′i or

HU ∝ a
†
k+qibkia

†
k′−qibk′i . Note that the model (1) exhibits

a U (1) symmetry, which causes the phase of the EI order
parameter to be undetermined.

A mean-field decoupling of the Coulomb interaction yields

H̄i =
∑

k

ε+
kia

†
kiaki +

∑
k

ε−
kib

†
kibki

+
∑

k

�∗
kib

†
kiaki +

∑
k

�kia
†
kibki , (4)

where we have introduced the EI order-parameter function

�∗
ki = − κ

N

∑
q

e−d|q|

|q|
1 + cos(�)

2
〈a†

k+qibk+qi〉, (5)
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FIG. 2. (Color online) Modulus of the EI order parameter func-
tion for DLG in reciprocal space, |�ki |, at different gate voltages Vi .
The upper line plots give |�ki | along the high-symmetry directions
of the Brillouin zone (cf. Fig. 1), for (a) Vi = 0.0 (black dotted line),
Vi = 0.5 (blue dashed line) and (b) Vi = 1.0 (green dot-dashed line),
Vi = 2.0 (red solid line). Corresponding intensity plots in the first
Brillouin zone (using a 20 × 20 grid in k space), for (c) Vi = 0.0 and
(d) Vi = 2.0.

where � = 	k+q − 	k (�′ = 	k′+q − 	k′) with 	k =
arctan(ky/kx). The phase of �∗

ki determines the phase of the
ground-state wave function.

In view of the specifics of the graphene spectrum, which are
suggestive of large screening effects, the correct approximation
for the screening of the interlayer Coulomb interaction has
been a controversial issue [28–30]. A mean-field inclusion
in the normal phase certainly overestimates screening and
reduces |�k| in an unrealistic way [30]. In addition, corre-
lations between electrons and holes may substantially weaken
the screening [31]. As a result double-layer graphene-based
systems are not that disadvantageous for the realization of an
excitonic condensate as naively might be expected. Determin-
ing the transition temperature of the EI phase necessitates, of
course, an appropriate treatment of (dynamical) screening in
the condensed phase [21,30,31]. This is beyond the scope of
this work. In order to discuss the excitonic Josephson effect
in the case of a realized EI ground state at zero temperature,
Eqs. (1)–(5) are adequate to leading order.

We first solve the self-consistency equations for the EI order
parameter at zero temperature, assuming κ = 7.0 and d = 2.5.
Figure 2 shows its modulus |�ki | within the first Brillouin
zone. Apparently only electrons and holes near the Brillouin
zone’s K or K ′ points are bound into excitons. These particles
occupy the states closest to the Fermi energy and therefore
will be most susceptible for electron-hole pairing. Since the
external potential fixes the position of the Fermi energy, it
determines the behavior of �ki as well. When Vi is raised from
zero, more and more states become available for an electron-
hole pairing. As a result the EI order parameter function is
finite in a larger region of the Brillouin zone and the total
(momentum accumulated) order parameter increases. At Vi ≈
2 the EI order parameter attains its maximal value and starts to
decrease if the gate voltage gets larger until the EI phase breaks
down at about Vi ≈ 6, where the Fermi energy coincides with
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the upper (lower) edge of the conduction (valence) band. The
relatively sharp boundary confining the area of bound electron-
hole pairs indicates a BCS-like pairing [32].

A Josephson effect occurs when two DLG systems,
where quantum coherence is realized, will be coupled to
each other [33]. Assuming that the ground states in both
subsystems are described by macroscopic wave functions,

i = |
i |eiφi (i = l,r index the left, respectively, right,
subsystem), which—for simplicity reasons—are assumed to
be equal in modulus but may have different phases. The current
density that flows between the left and right subsystem is
j = ie

2 (
l∇
∗
r − 
r∇
∗

l ) (we set both � = 1 and the electron
mass me = 1; e denotes the electron charge). Obviously any
finite phase difference �φ = φr − φl prevents the current
density from vanishing, i.e., a persistent tunnel current flows
through the barrier.

The Hamiltonian of the coupled system is H = H̄l + H̄r +
HT , with

HT =
∑
k,p

Tk,p(a†
klapr + b

†
klbpr )

+
∑
k,p

T ∗
k,p(a†

prakl + b†prbkl), (6)

describing the tunnel process.
Tunneling excitons cause an electron current in the n layer.

This current equals the one in the p layer—which flows in the
opposite direction, however—in modulus. Below we adapt the
approach outlined in Ref. [34] to the (coherent) exciton tunnel
processes in DLG. For this we define the tunnel current as the
time derivative of the number of electrons in the upper layer
and use an S-matrix expansion approach [34],

I (t) = e〈Ṅal(t)〉 = −ie

∫ t

−∞
dt ′〈[Ṅal(t),HT (t ′)]〉, (7)

where Nal = ∑
k a

†
klakl , Ṅal = −i

∑
k,p Tk,pa

†
klapr + i

∑
k,p

T ∗
k,pa

†
prakl , Ṅal(t) = eiH ′t Ṅale

−iH ′t , and HT (t ′) = eiH ′t ′HT

e−iH ′t ′ , with H ′ = H̄l + H̄r . Note that the chemical potential
in the left and right DLG systems may differ. We introduce the
applied junction voltage

W = μr − μl, (8)

and the operators A(t) = ∑
k,p T ∗

k,pa
†
pr (t)akl(t) and B(t) =∑

k,p T ∗
k,pb

†
pr (t)bkl(t). Although the specific choice of the

tunnel matrix element will affect the Josephson current, we
leave the investigation of this quantitative facet for future
work. Instead we focus on the influence of different chemical
potentials and phases of the EI order parameters in the DLG
systems, which will dominate the physics. Analyzing Joseph-
son tunneling for normal superconductors the combination
Tk,pT

∗
k,p is usually approximated by |T |2 times a phase factor,

where both quantities are assumed to be independent of k and
p [34]. In our case, the order parameter function has a rather
complex momentum dependence, however (see Fig. 2). To
avoid a fourfold numerical integration over the Brillouin zone,
we employ Tk,p = δk,p, which—in the sense of a “principle
of proof” calculation—will underestimate the effect we are
looking for. Any more sophisticated treatment of the tunnel
barrier will increase both the tunnel and normal currents.

With that, the tunnel current takes the form

I (t) =−(i)2e

∫ t

−∞
dt ′(〈[A(t),A†(t ′)]〉eiW (t−t ′)

+ 〈[A(t),B†(t ′)]〉eiW (t+t ′) + 〈A(t),A(t ′)]〉eiW (t+t ′)

+ 〈[A(t),B(t ′)]〉eiW (t−t ′) − 〈[A†(t),A†(t ′)]〉e−iW (t+t ′)

− 〈[A†(t),B†(t ′)]〉e−iW (t−t ′) − 〈[A†(t),A(t ′)]〉e−iW (t−t ′)

− 〈[A†(t),B(t ′)]〉e−iW (t+t ′)). (9)

Let us first focus on the current due to tunneling excitons
exclusively. This current is governed by the second term and
eighth term of Eq. (9):

IX(t) = 2e Im[e2iWtXret(−W )], (10)

containing the retarded Green’s function Xret(W ) = ∫ ∞
−∞ dt

eiW (t−t ′)Xret(t − t ′), Xret(t − t ′) = −i	(t − t ′)〈[A(t),B†(t ′)]〉.
Normal tunneling electrons are described by the first and

the seventh term of Eq. (9):

In(t) = −2e ImYret(W ), (11)

where Yret(W ) = ∫ ∞
−∞ dt eiW (t−t ′)Yret(t − t ′), Yret(t − t ′) =

−i	(t − t ′)〈[A(t),A†(t ′)]〉. It is worth noting that splitting
up the current into a quasiparticle (normal) and interference
(oscillating Josephson) current was also carried out analyzing
the thermal transport through Josephson junctions based on
DLG [24].

We now factorize Xret(W ) and Yret(W ) into contributions
stemming from the left and right subsystems. For these
we use the mean-field Green’s functions calculated with
the Hamiltonian (4), which are expressed in terms of the
quasiparticle states.

Figure 3 gives the time dependence of the tunnel current
for four characteristic situations. We first consider the case
that two identical DLG systems are coupled by a thin barrier,
i.e., Vl = Vr , W = 0. Clearly, if both EI order parameters have
the same phase, no current flows through the junction. A dc
current arises when the left and the right systems differ in
terms of the phase of the EI order parameter: �φ = φr − φl =
−π/2 in Fig. 3. An ac current appears, on the other hand, if
a finite (constant) voltage is applied across the junction. Its
frequency is 2W , which coincides with the frequency of the
Josephson current for coupled superconductors. An additional
phase difference amplifies the tunnel-current amplitude and
leads to a phase shift in the current.

We finally analyze the voltage-current characteristics as to
its phase dependence. For this purpose, we switch off the gate
voltage in the left DLG system (Vl = 0) and fix its EI phase
to π . Now the gate voltage in the right DLG subsystem is
tuned from Vr = 0 to Vr = 8 for two choices of the right EI’s
phase: φr = π and φr = π/2. The corresponding results are
displayed in Fig. 4.

Most notably, at W = 0, a finite dc Josephson current only
appears if �φ 
= 0. Otherwise �φ = 0 and �φ 
= 0 basically
cause the same qualitative behavior. The amplitude increases
with increasing voltage until it reaches its maximum at a
junction voltage |W | = 1.0. This coincides with the point,
Vr = 2.0, at which the EI order parameter in the right DLG
system attains its largest value. If the voltage grows further
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FIG. 3. (Color online) Excitonic Josephson current in case of
(i) two identical DLG subsystems (green triangles, Vl = 1.0 and
Vr = 1.0), (ii) equal left and right external potentials but different
phases of the EI order parameters (magenta squares, Vl = 1.0 and
Vr = 1.0), (iii) different external potentials with EI order parameters
having the same phase in the left and right DLG systems (blue dashed
line, Vl = 0.0 and Vr = 1.0), and (iv) different phases and different
external potentials in both DLG subsystems (red continuous line,
Vl = 0.0 and Vr = 1.0).

the amplitude of the exciting Josephson current vanishes
rapidly. Unfortunately the current becomes extremely small
just before the EI phase completely breaks down. Therefore,
the Josephson tunnel current is not very suitable for the precise
determination of the EI phase boundary. Figure 4 corrob-
orates that a finite phase difference yields a larger current
amplitude.

Note that only for small gate voltages (W � 0.4) the
amplitude of the excitonic Josephson tunnel current will be of
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FIG. 4. (Color online) Amplitude of the excitonic Josephson
current in dependence on the applied junction voltage in the case that
the phases of the order parameters are equal (�φ = 0, blue circles)
or differ (�φ = −π/2, red triangles). The dashed and solid lines are
interpolations to guide the eye. The inset shows the normal tunneling
of electrons. The solid line considers �kr and, for comparison, the
dashed line shows the current, when �kr is set to zero.

the same order of magnitude as the amplitude of a current due
to tunneling excitons. For higher voltages the normal tunnel
current is up to two orders of magnitude larger (see the inset
in Fig. 4). That is why we propose an experimental setup,
where the chemical potentials of the two DLG systems differ
only slightly. Nevertheless, we believe that the effect can be
observed in a wide range of W , simply because the Josephson
current shows a qualitatively different behavior than the normal
current. For W = 0, the only current that may appear is the dc
Josephson current in the case that the phases differ. Any finite
gate voltage, on the other hand, introduces an ac Josephson
current, while the current of unbound electrons is a dc current.

To conclude, the setup proposed might be used to identify
a condensed exciton phase in DLG, which is subjected to
an external electric potential, by analyzing a Josephson-type
effect in a DLG junction device. Provided the gate potentials
of the DLG systems differ, an ac Josephson tunnel is observed
irrespective of the phase relationship of the excitonic order
parameters in both subsystems. If both DLG subsystems are
exposed to the same gate voltages but there is a finite phase
difference between their exciton order parameters, a dc current
appears. Such a finite phase difference suggests a degeneracy
of the ground state, i.e., a U (1) symmetry. This symmetry is
closely related to off-diagonal long-range order and only in
this situation does the exciting insulator represent a genuine
exciton condensate [12].

We like to emphasize that small leakage currents, which
may arise in an actual experiment, are linked to interlayer
hopping of electrons and holes or interlayer exchange terms
due to the Coulomb interaction. These terms pin the phase
φi to a specific value and therefore destroy the U (1) symme-
try [18,19]. Hence exciton condensation—in a strict sense—
cannot occur and the excitonic insulator, if present, features
a charge-density-wave state. Interlayer hopping and exchange
terms such as HU ∝ a

†
k+qiakia

†
k′−qibk′i , moreover, enforce a

finite �ki at all temperatures and therefore prevent a true phase
transition [19].

The present study should be considered as a first step
towards a theoretical modeling of the excitonic Josephson
effect. The mean-field approach used is certainly a crude
approximation and any future (more detailed) analysis should
rely on more elaborated methods that take into account
fluctuation and correlation effects. Also the treatment of
the tunnel junction could be improved, e.g., by using a
more realistic (material specific) tunnel matrix element and
including pair-breaking effects within the barrier. In double
bilayer graphene, respectively, double few-layer graphene
systems the mobility of the electrons and holes is significantly
reduced compared with double-layer graphene. This reduction
strengthens electron-hole correlations and corroborates an
EI formation at relatively high temperatures [35,36]. For
these systems the theory presented above has to be adapted,
but the basic idea and the scenario worked out should
remain valid. Work along these lines will definitely improve
our understanding of the fascinating exciton condensation
phenomenon.

This work was supported by the DFG through the special
research program SFB 652, project B5.
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