Development and applications of the LF-DFT: the non-empirical calculation of ligand field and the simulation of the f - d transitions by Density Functional Theory

Harry Ramanantoaninaa, Mohammed Sahnounb, Andrea Barbieroc, Marilena Ferbinteanuc and Fanica Cimpoesud

a Department of Chemistry of the University of Fribourg (Switzerland), Chemin du Musée 9, 1700 Fribourg, Switzerland, Fax: +41 26 300 9738; Tel: +41 26 300 8700; E-mail: harry.ra@hotmail.com

b Laboratoire de physique de la matière et modélisation mathématique, LPQ3M, Université de Mascara, Algeria

c Faculty of Chemistry, Inorganic Chemistry Department, University of Bucharest, Dumbrava Rosie 23, Bucharest 0206462, Romania

d Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest 060021, Romania; E-mail: cfanica@yahoo.com

Electronic Supplementary Information (ESI): 3 pages.
Fig. S1 Calculated multiplet energy levels of the $4f^7$ (in red) and the $4f^65d^1$ (in blue) electron configurations of Eu$^{2+}$ doped into CaF$_2$, together with the calculated oscillator strength obtained for the transitions the $4f^7 (^8S_7/2) - 4f^65d^1$ (in black). Inset: comparison between the theoretical results (i.e. zero phonon lines (in black) and the superposition of a Gaussian with a width of 500 cm$^{-1}$ on the zero phonon lines (in green)) and the excitation spectrum (in magenta) reproduced from ref. [G. W. Burdick, A. Burdick, V. Deev, C.-K. Duan and M. F. Reid, J. Lumin., 2005, 118, 205.]
Fig. S2 Calculated multiplet energy levels of the $4f^7$ (in red) and the $4f^65d^1$ (in blue) electron configurations of Eu$^{2+}$ doped into SrCl$_2$, together with the calculated oscillator strength obtained for the transitions the $4f^7(^8S_{7/2})$ - $4f^65d^1$ (in black). Inset: comparison between the theoretical results (i.e. zero phonon lines (in black) and the superposition of a Gaussian with a width of 500 cm$^{-1}$ on the zero phonon lines (in green)) and the excitation spectrum (in magenta) reproduced from ref. [Z. Pan, L. Ning, B.-M. Cheng and P. A. Tanner, Chem. Phys. Lett., 2006, 428, 78.]