
R. Carminati, G. Cwilich, L. S. Froufe-Pérez, and J. J. Sáenz

(Received 29 May 2015; published 15 June 2015)

DOI: 10.1103/PhysRevA.91.069903 PACS number(s): 42.25.Dd, 42.30.Ms, 05.40.—a, 99.10.Cd

In our recent paper there was a missing term in Eq. (A17) in the Appendix and, as a consequence, missing terms in Eqs. (19) and (20) in the main text. After fixing these two equations, the speckle contrast given in Eq. (21) is also redefined for consistency. The discussions and the conclusions in the paper are not affected by these changes.

I. CORRECTIONS IN EQS. (A17), (19), AND (20)

The correct expression (A17) should read as

\[
\langle I_{\alpha}(u) I_{\alpha}(u') \rangle = \frac{N^2}{4N^2 - 1} \left\{ 1 - \frac{\delta_{uu'} \delta_{\alpha\alpha'}}{2N} \right\} + \frac{N^2}{4N^2 - 1} \left\{ \langle P^2 \rangle - 1 \right\}
\]

where \(P_1 = \left[\mu_0 \omega^3/(16\pi) \right] |p_1|^2 \rho_{11} \) and similarly for \(P_2 \). The last term with

\[
\langle P^2 \rangle - \langle P_1^2 \rangle - \langle P_2^2 \rangle = \frac{\pi^2 \omega^4}{8\epsilon_0} |p_1|^4 |p_2|^2 \langle \rho_{11}\rho_{22} \rangle
\]

was missing in Eq. (A17) in the initial paper. In the large \(N \) limit (and assuming \(|p_1| = |p_2| = |p|\)), it leads to

\[
\langle I_{\alpha}(u) I_{\alpha}(u') \rangle = \frac{\langle P^2 \rangle}{(8\pi)^2} + \frac{\langle P_1^2 \rangle}{(8\pi)^2} \delta_{uu'} \delta_{\alpha\alpha'} - \left(\frac{\omega^4}{8^3 \epsilon_0} \right) |p|^4 \langle \rho_{11}\rho_{22} \rangle \delta_{uu'} \delta_{\alpha\alpha'}.
\]

where the last term was missing in the original Eq. (19). Analogously, Eq. (20) should read as

\[
\langle I_{\alpha}(u) I_{\alpha}(u') \rangle - \langle I_{\alpha}(u) I_{\alpha}(u') \rangle = \left(\frac{\omega^4}{8^3 \epsilon_0} \right) |p|^4 \left\{ \langle \rho_{11}^2 \rangle + \langle \rho_{11}\rho_{22} \rangle \delta_{uu'} \delta_{\alpha\alpha'} \right\}.
\]

Note that the comments and conclusions following Eq. (20) in the published paper are not affected by these corrections.

II. REDEFINITION OF THE SPECKLE CONTRAST

The definition of the speckle contrast in Eq. (21) must also be corrected to be consistent with the new Eqs. (19) and (20). Actually, the speckle contrast \(\sigma_S(u) \) measured in a single speckle spot involves the measurement of the two orthogonal polarization channels \(\alpha = \pm \) such that

\[
\sigma_S = \frac{\langle I_{\alpha}(u) I_{\alpha}(u') \rangle - \langle I_{\alpha}(u) I_{\alpha}(u') \rangle}{\langle I_{\alpha}(u) I_{\alpha}(u') \rangle}.
\]

With this correction in Eq. (21), all discussions and conclusions in the published paper remain unchanged.