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We report a very detailed test of the ab initio discrete momentum representation (DMR) method

of calculating vibrational excitation of polyatomic molecules by electron impact, by comparison

of its results with an extensive set of experimental data, covering the entire range of scattering

angles from 10◦ to 180◦ and electron energies from 0.4 to 20 eV. The DMR calculations were

carried out by solving the two-channel Lippmann-Schwinger equation in the momentum space,

and the interaction between the scattered electron and the target molecule was described by exact

static-exchange potential corrected by a density functional theory (DFT) correlation-polarization

interaction that models target’s response to the field of incoming electron. The theory is found to

quantitatively reproduce the measured spectra for all normal modes, even at the difficult conditions of

extreme angles and at low energies, and thus provides full understanding of the excitation mechanism.

It is shown that the overlap of individual vibrational bands caused by limited experimental resolution

and rotational excitation must be properly taken into account for correct comparison of experiment

and theory. By doing so, an apparent discrepancy between published experimental data could be

reconciled. A substantial cross section is found for excitation of the non-symmetric HCH twisting

mode ν4 of A′′
1

symmetry by the 5.5 eV A′
2

resonance, surprisingly because the currently accepted

selection rules predict this process to be forbidden. The DMR theory shows that the excitation

is caused by an incoming electron in an f -wave of A′
2

symmetry which causes excitation of the

non-symmetric HCH twisting mode ν4 of the A′′
1

symmetry and departs in p- and f -waves of A′′
2

symmetry.

I. INTRODUCTION

This paper deals with the coupling of electronic and

nuclear motions in temporary negative ions of polyatomic

molecules, as revealed by the cross sections for vibrational

excitation by electron impact. In a more general context, this

subject is important for electron-driven chemistry with its

many applications. Computational modeling of these inelastic

processes for polyatomic molecules is not a resolved problem.

There have been many rigorous and successful attempts for

diatomic1–4 and triatomic5–7 molecules but very few results are

available for polyatomic systems. Our preliminary report on

cyclopropane8 indicated that the recently developed discrete

momentum representation (DMR) theory with improved

treatment of polarization represents a substantial progress in

this direction and in this paper we present a comprehensive

test of this theory and the insight which it provides.

We believe that at the present state a treatment of electron-

impact vibrational excitation of polyatomic molecules requires

numerically controlled approximations and the DMR theory

applied here is of this type. It shows that it is possible to retain

both the rigor of the theory and computational feasibility while

applying such approximations.9–11

In contrast to modeling of vibrational excitation, the

modeling of elastic collisions of electrons with polyatomic

a)Electronic mail: roman.curik@jh-inst.cas.cz

molecules became a well-established task during the last two

decades. Many authors report fixed-nuclear elastic data for

the polyatomic molecules obtained by use of the R-matrix

method,12,13 the complex Kohn variational method,14,15 the

Schwinger multichannel method (SMC),16–18 or the optical

potential method with single-center expansion of electron

wave function.19,20 This paper, therefore, does not emphasize

on elastic scattering, but some of it is also included since the

capacity of the DMR method to describe vibrational excitation

relies on its capacity to correctly reproduce the elastic cross

sections.

The cyclopropane molecule was chosen as the test case

because it represents a useful compromise between being

sufficiently large and at the same time having a manageable

number of vibrational modes. It also has a number of

resonances which are narrow for a saturated hydrocarbon

and thus permit convenient evaluation of the capacity of the

theory to describe correctly the energies and widths of the

resonances. A marked feature observed by experiments21 is

a quite narrow shape resonance at 5.5 eV of A′
2

symmetry,

causing primarily excitation of the ν3 vibration, the C—C ring

stretching. These findings were confirmed computationally.22

In that study, the authors obtained a qualitative agreement

of the resonance position (calculated too high by 1 eV)

but the energy dependence of the cross section differed

significantly from experiment above the resonant energy. An

unresolved problem concerns a shape resonance reported
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experimentally at 2.6 eV,21,23 which has so far not been

reproduced by theory.24 The cyclopropane molecule is also

of practical interest; it was detected in cooler edges of the

fusion plasmas.25

The aim of the present study is twofold. It reports a

comprehensive test of the DMR theory against experiment.

Our earlier work8 successfully tested selected aspects of

the DMR theory — an energy-loss spectrum at an incident

energy of 5.5 eV, one case of an angular distribution and

two cases of cross section recorded as a function of electron

energy. To ascertain that the good agreement found in that

study was not fortuitous, we present here a comprehensive

comparison, at electron energies in the range 1.0–20 eV

and a wide range of scattering angles. Particular attention

is paid to problems arising from the overlap of vibrational

bands due to their proximity and the limited instrumental

resolution.

The second aim is to apply the theory, once validated

by the detailed comparison with experiment, to illuminate the

detailed properties of the resonances. It will be shown that the

present theory provides a detailed insight into the mechanism

of excitation, particularly of the non-totally symmetrical

vibrations. Our results are more general and go beyond those of

the symmetry selection rules, originally formulated by Wong

and Schulz26 and later elaborated by Gallup27 who based his

finding on theoretical grounds by using the Feshbach-Fano

partitioning technique.

II. EXPERIMENT

The experimental conditions of the present work were

the same as in our earlier study8 but a much larger body of

data is reported. Altogether, 24 energy-loss spectra normalized

to absolute values were measured at the scattering angles of

45◦, 90◦, 135◦, 180◦ and incident electron energies of 1.0,

2.6, 5.5, 10, 15, and 20 eV. Selected cross sections were

further measured as a function of electron energy at 45◦, 90◦,
135◦, and 180◦. The elastic cross section was measured as a

function of electron energy at 45◦, 90◦, 135◦, and 180◦ and

as a function of scattering angle at 1.0, 2.6, 5.5, 10, 15, and

20 eV. As in the previous study,8 the technical quality of the

data is substantially improved in comparison with the older

measurements21,23 in terms of resolution, extended angular

range made possible by the magnetic angle changer (MAC),

and accuracy of the absolute values.

Briefly, the measurements were performed with a spec-

trometer using hemispherical analyzers.28,29 Absolute values

of the cross sections were determined by the relative flow

technique and normalized to a theoretical helium elastic cross

section. The two-standard-deviation confidence limit for the

magnitudes of the inelastic cross sections is about ±25%.

The angular distributions were measured using combined

mechanical setting of the analyzer and magnetic deflection

using a magnetic angle changer. The resolution was about

15 meV in the energy-loss mode.

Integral elastic cross sections were derived by integrating

under the angular distributions. A narrow range around 0◦,
where elastic cross section cannot be measured, was obtained

by visual extrapolation.

III. DISCRETE MOMENTUM REPRESENTATION

The DMR method is a rigorous ab initio method30,31 based

on the two-channel Lippmann-Schwinger equation. For actual

calculations, we used the following numerically controllable

approximations:

– We introduce one-electron optical potential V for the

interaction between the scattered electron and the charge

density of the molecule. Moreover, we retain only the

first term of the optical potential expansion,32 ending up

with the static-exchange (SE) approximation.

– The SE approximation is corrected by a model density

functional theory (DFT) polarization potential Vcp that

accounts for orbital relaxation of the bound electrons and

for the correlation between the scattered electron and

the bound electrons. We used the interpolation formula

suggested by Perdew and Zunger.33

– Nuclear dynamics is described by the rotationally frozen

and vibrationally harmonic approximations. Moreover,

for the vibrational space of each normal mode, we use

only a two-state approximation.

As a result of this approximation, the two-channel

Lippmann-Schwinger equation for a transition operator T may

be written as

〈χ1k1|T |χ0k0〉 = 〈χ1k1|U |χ0k0〉
+

1∑

i=0

∫
dk

〈χ1k1|U |χik〉〈χik|T |χ0k0〉
k2

0
− 2Ei − k2 + iε

,

(1)

where U stands for a double of the interaction potential

V , E0 = 0 (for the elastic channel) is the energy of the

vibrational ground state, and E1 is the energy of the first

excited vibrational state. These two states are described by

the harmonic vibrational functions χ0 and χ1, respectively.

The vectors k0 and k1 represent the plane-wave functions for

the incoming and outgoing electrons, respectively.

A numerical discretization of the integral on rhs of the

above equation leads to a set of two coupled matrix equations,

⎡⎢⎢⎢⎢⎣
T00 T01

T10 T11

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
U00 U01

U10 U11

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
U00 U01

U10 U11

⎤⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎣
G0

G1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
T00 T01

T10 T11

⎤⎥⎥⎥⎥⎦
(2)

with the following interaction matrix elements:

[U00]i j = 〈χ0ki |U |χ0k j〉 = [U11]i j,
[U01]i j = 〈χ0ki |U |χ1k j〉 = [U10]i j .

(3)

The above identities are based on a first order expansion

of the interaction along the dimensionless normal mode

coordinate Q as

U(Q) = U(0) +Q
∂

∂Q
U(0) +O(Q2), (4)

where U(0) stands for the double of interaction potential

at equilibrium geometry. Neglecting the higher order terms
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O(Q2) results in a simple integration over the coordinate Q,

〈χ0(Q)ki |U(Q)|χ0(Q)k j〉 = 〈ki |U(0)|k j〉, (5)

〈χ0(Q)ki |U(Q)|χ1(Q)k j〉 = 1√
2

∂

∂Q
〈ki |U(0)|k j〉. (6)

The interaction potential V (Q) = U(Q)/2 is generated

from target state electron density

ρ(Q) =
∑

μν

Dμν(Q)gμ(Q)gν(Q), (7)

where Dμν(Q) is a Hartree-Fock density matrix and gμ(Q)
represents Gaussian type basis set. As already mentioned, the

interaction potential V (Q) consists of static, exchange and

correlation-polarization contributions

V (Q) = Vs(Q) + Vex(Q) + Vcp(Q). (8)

For simplicity in the following formulas, we suppress explicit

dependence on vibrational coordinate Q. Momentum-space

matrix elements (5) of Vs and Vex are then evaluated through

hybrid plane-wave and Gaussian repulsion integrals

〈k|Vs|q〉 =
∑

μν

Dμν

�
gμgν |kq

	

− 1

2π2|q − k|2
M∑

A=1

ZAei(q−k).RA, (9)

〈k|Vex|q〉 = −
∑

μν

Dμν

�
kgμ |gνq

	
, (10)

with the second term of Eq. (9) representing a nuclear

attraction to M nuclei positioned at vectors RA. The static

and exchange repulsion integrals are defined as follows:

�
gμgν |k q

	
=

1

(2π)3
∫∫

dxdy
gμ(x)gν(x)ei(q−k).y

|x − y| , (11)

�
kgμ |gνq

	
=

1

(2π)3
∫∫

dxdy
gμ(x)e−ik.xgν(y)eiq.y

|x − y| . (12)

In most of the present implementations of a correlation

potential in quantum chemistry, the Vcp is calculated as a

function of the electron density ρ and its spatial gradient ∇ρ.

Similarly, we evaluate Vcp on a rectangular spatial grid with

the molecule sitting in its center. The incorrect long-range

behavior of Vcp, so common in DFT modeling, is then cor-

rected by a polarization asymptotic potential.34 The required

polarizabilities are obtained by ab initio quantum chemistry

software as described below in this section. The momentum

space matrix elements are computed by use of fast Fourier

transform (FFT) technique applied on the following integral:

〈k|Vcp|q〉 = 1

(2π)3
∫

dr Vcp(r)ei(q−k).r. (13)

Convergence of the above integral with respect to FFT box size

is quite slow owing to the long-range nature of Vcp. However,

the asymptotic tail of Vcp may be removed and evaluated

analytically34 leaving a short-range part of Vcp that is amenable

to the numerical evaluation based on FFT. Vibrational coupling

elements (6) require differentiation of Eqs. (9)–(13) with

respect to coordinates of the nuclei. The nuclear gradients

are implemented in the DMR method in analytical form.7

Electronic state of the target molecule is described at

the Hartree-Fock level. We used Gaussian type orbital basis

set of the DZP quality.35 Polarizability tensor components

used in the present calculations were obtained as linear

response functions in Kohn-Sham DFT calculations36 with

B3LYP hybrid functional and Sadlej’s polarized VTZ basis

sets37 as implemented in program Dalton Release 2.0 (2005).

The axes are defined to diagonalize the polarizability tensor,

with diagonal polarizabilities 38.8, 38.8, and 33.8 a.u.; the

average of these values, 37.1 a.u., compares favorably with

the experimentally measured value of spherical polarizability

α0 = 38.2 a.u.38 Evaluation of vibrational coupling elements

(6) also requires gradients of the above tensor with respect

to nuclear positions. These were obtained by numerical

differentiation with shifting nuclei out of the equilibrium by

h = 0.001 bohr.

IV. COMPARISON OF MEASURED AND CALCULATED
CROSS SECTIONS

A. Elastic cross sections

Although elastic scattering is not of our primary interest in

this paper, it is prudent to check whether our elastic data agree

well with available calculations and experiments because the

accuracy of our vibrationally inelastic cross sections depends

on the accuracy of the elastic results—the two channels are

coupled via Eq. (2). We find satisfactory agreement both

for the integral elastic cross section plotted as a function

of electron energy shown in Fig. 1 (for collision energies

below 10 eV) and for the differential elastic cross section at

5.5 eV, displayed in Fig. 2. The differential cross sections

were also measured at 0.4, 1.0, 2.6, 10, 15, and 20 eV and

compare favorably to the present and earlier calculations as

shown in supplementary44 figures S1 and S2. Disagreement

between theory and experiment for energies above 10 eV

FIG. 1. Comparison of the elastic integral cross sections. Previous elastic

measurements are shown with crosses 39 and squares,40 while circles repre-

sent the previously reported total cross section.41 Present experimental data

are denoted by diamonds. Present calculations are shown as red line, while

the orange line represents previous SMC,40 and blue line represents results of

single-center expansion method.42 The oldest SMC results43 are omitted here

for clarity reasons.
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FIG. 2. Comparison of the elastic differential cross sections at 5.5 eV. The

present experimental data are shown with the black line, while the previous

measurements are denoted by squares.40 The red line shows present calcula-

tions, blue line displays results of previous Schwinger multi-channel calcula-

tions,40 and the green line represents single-center expansion calculations.42

may be assigned to the use of a single (electronic) channel

model. Since the ionization potential of cyclopropane is at

about 10 eV45 and the lowest excited electronic states start at

about 6.3 eV,46 multiple electronic channels, not accounted for

by single channel approach, become open. On the other hand,

this limitation may increase confidence in the theory that its

excellent performance at lower energy is not fortuitous.

The elastic cross section may also provide hints about

the presence and positions of shape resonances, although for

polyatomic molecules, the effect is often visible only weakly

on the background of direct scattering. Humps indicative of

resonances are visible around 6–7 eV in the earlier theoretical

integral cross sections displayed in Fig. 1 (orange and blue

lines) but are not convincingly reproduced by the present

theory and the experiments. More evidence for a resonance

is provided by the strong f -wave character of the differential

cross section at 5.5 eV, displayed in Figure 2.

B. Cross sections for vibrational excitation

1. Electron energy-loss (EEL) spectra normalized
to absolute values

For polyatomic molecules, a detailed comparison between

theory and experiment is hindered by the fact that the

experiment suffers from overlap of close-lying vibrational

peaks, caused mainly by the limited instrumental resolution,

but also by the finite rotational temperature that broadens

the vibrational peaks. This means that it is not possible to

obtain an experimental cross section, plotted as a function of

scattering angle or as a function of electron energy, for a single

vibrational mode, without contributions of nearby partially

overlapping bands. We by-pass this problem primarily by

comparing EEL spectra instead of the more conventional

comparison of the differential cross section for a given

vibrational mode plotted as a function of scattering angle or

electron energy. We compare the experimental spectra with

profiles obtained by convoluting the calculated bar spectrum

by a simulated experimental profile, a Gaussian of 15 meV

FIG. 3. Computed and measured absolute electron energy-loss spectra for

the scattering angle ϑ = 90◦. Red line shows the present calculations while

the black line denotes the experimental spectrum. Collision energy is 5.5 eV.

The scale factor ×4 applies only to inelastic bands.

width. An additional advantage of comparing EEL spectra is

that it verifies all vibrational modes, because when the cross

section is not calculated properly, the profiles will not fit even

though the vibrational modes are not fully resolved.

A comprehensive test of the DMR theory against exper-

iment requires a comparison for wide ranges of scattering

angles and electron energies, as well as for all vibrational

modes. We, therefore, measured the electron energy-loss

spectra, normalized to absolute values, at the scattering angles

of 45◦ to 90◦, 135◦ and 180◦ and incident electron energies of

1.0, 2.6, 5.5, 10, 15, and 20 eV. Two representative spectra are

shown in Figures 3 and 4, the remaining spectra (24 spectra

altogether) are shown in supplementary44 figures S3, S4, and

S5.

It can be seen that agreement between theory and the

experiment is very good for all the scattering angles and the

collision energies up to 10 eV. However, above 10 eV, we

observe that the theory predicts higher intensities over all

the vibrational bands. We believe that the reason behind this

FIG. 4. Computed and measured absolute electron energy-loss spectra for the

scattering angle ϑ = 135◦ and collision energy of 10 eV. Red line shows the

present calculations while the black line denotes the experimental spectrum.

The scale factor ×10 applies only to inelastic bands.
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overestimate is the higher elastic cross section predicted by

theory for collision energies above 10 eV (see Fig. 1). Since

the elastic and inelastic channels are coupled in the present

theory, the higher elastic flux often causes also an artificial

increase in the inelastic channel.

We would like to emphasize that no scaling of data

was made in any of the EELS graphs. Both sets of data,

the experiment and the theory, are compared in absolute

values. Vertical lines, placed at the respective vibrational

frequencies, denote magnitudes of the calculated differential

cross sections. We also note that the bands observed experi-

mentally at 220–320 meV correspond to overtone excitations

and are therefore not amenable to treatment by harmonic

approximation inherent in the DMR model.

2. Dependence of cross sections on electron energy

Resonances appear as enhancements of vibrational cross

sections over narrow ranges of energies. Plots of cross sections,

as a function of electron energy, thus represent a sensitive test

of the capacity of the DMR theory to describe the energies

and widths of resonances.

The calculated vibrational excitation cross sections for

all 14 vibrational modes are displayed in Figure 5, ordered

by the increasing energy loss. The results are compared with

previous calculations22 for the three fully symmetric modes

ν1, ν2, and ν3. We note that in the case of the ν1 mode the two

computations agree well, present calculations being slightly

higher in the resonant region. The difference is larger for ν3.

For ν2, the agreement is good above about 5 eV, but the present

calculation yields a distinct resonant peak at 2.6 eV which is

missing in the previous calculation.

The resonance at 2.6 eV deserves a special mention.

Originally, it was assigned to the A′′
2

pseudo-π resonance, on

the grounds of experimental finding,23 based on the selective

excitation of the CH2 scissoring normal mode. It has the

particularity of being much lower in energy than what is

generally reported as the lowest shape resonance in saturated

hydrocarbons where the vibrational excitation cross sections

peak around 8 eV.21,23 (Saturated hydrocarbons do not have

low-lying π∗ orbitals which give rise to low-lying shape

resonances in compounds as ethene or benzene.) Finding

this resonance at such a low energy helps to understand

electron transfer through saturated alkyl bridges47,48 because

it is related to the “empty state” giving rise to the conduction

band. Early R-matrix calculations24 failed to reproduce this

resonance. The more recent calculation22 yields a weak hump

at 3.7 eV, which was, however, seen in the A′
1

symmetry,

in contrast to the assignment derived experimentally. A

direct comparison between the present theory and experiment,

confirming the presence of the A′′
2

resonance, was already

published8 and we avoid further analysis of the A′′
2

resonance

here.

In case of the ν3 mode, our calculated data place the

5.5 eV shape resonance at 6.0 eV while previous calculations22

placed it at 6.4 eV. Note that many scattering theories predict

shape resonances too high because of lack of, or insufficient,

polarization of the target. Compared to previous calculations,22

we predict a somewhat lower energy and the cross section

about twice as high. This indicates that the present version of

the DMR theory accounts for polarization somewhat better.

This point will be elaborated later.

The dominant feature of the excitation cross sections

summarized in Figure 5 is the 5.5 eV shape resonance that

FIG. 5. Calculated rotationally summed 0→ 1 vibrationally inelastic integral cross sections (full lines). The modes are ordered by increasing vibrational

frequency. Our results are compared to previous calculations22 shown with dashed lines. Each of the last two graphs contains two modes for space saving

purposes.
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FIG. 6. Zoom of the line spectrum from Fig. 3 with two experimental

resolution functions. The full line describes the present experiment, measured

at an energy loss of 147 meV and FWHM of 15 meV. The broken line denotes

the experiment of Refs. 50 and 51 measured at an energy loss of 130 meV

with FWHM of 35 meV. The vertical bars indicate the calculated differential

cross sections.

strongly influences the excitation of the ν3 and ν4 modes and

also causes a weak maximum for the ν5 mode. The fact that we

are speaking about one resonance influencing several modes

will be proven in Sec. V. This resonance was first observed

experimentally49 at 5.5 eV and it was attributed to the A′
2

symmetry with arguments based on the mode selectivity of

the vibrational excitation together with symmetry and nodal

properties of virtual orbitals.21 This assignment was later

confirmed by scattering calculations.22,43

As already pointed out, the cross sections of Figure 5

cannot be directly compared to the experiment, which neces-

sarily samples several vibrations due to limited instrumental

resolution and rotational broadening. In fact, there are two

experiments for the nominally ν3 cross section,8,50 which

seemingly contradict each other. We elaborate this point in

detail on the supposed excitation of the ν3 vibration as shown

in Fig. 6. (Note that ν3 generally dominates over ν4 for VE at

5.5 eV. It is only at scattering angles around 90◦ as in Figure 6,

where the excitation of ν3 has a minimum and that of ν4 has a

maximum, that ν4 appears stronger than ν3.)

We take into account that the measured cross section

is due to excitation of several near-lying normal modes as

shown in Figure 6, a zoomed part of Figure 4, where we

added two resolution functions describing the two available

experiments.8,50 In the present experiment (and Ref. 8), the

electrons were gathered at the nominal energy loss of the

ν3 vibration, 147 meV, with a resolution [full width at half

maximum (FWHM)] of 15 meV (full line). In the second

independent experiment, the energy loss was set to 130 meV

and the authors reported a resolution of 35 meV (displayed by

a dashed line in Fig. 6). In the following, we shall assume that

the resolution functions do not depend on the collision energy

in the range of 1–20 eV. In Figure 7, we show differential

cross section for 0→ 1 vibrational excitation of all the 8

modes contributing to the signal of the second experiment,

while only 4 of them (ν3, ν4, ν5, ν13) are needed to reconstruct

the first measurement. Figure 8 shows the weighted sums of

cross sections for different modes with weights derived from

positions and widths of the resolution functions displayed in

FIG. 7. Inelastic differential cross section as a function of collision energy for

all 8 vibrational modes that contribute in reconstruction of experiments.8,50,51

Scattering angle is fixed at ϑ = 90◦.

Fig. 6. The weighted sums of the calculated data lead to a very

good agreement with both experimental results and explain

the seeming discrepancy between them: A wider resolution

function gives electron current that contains probability from

excitation of more vibrational modes, resulting in a higher

value of the cross section.

Finally, it is worth noting that the broad shoulder in the

experimental results visible in Fig. 8 around 10 eV can be

explained by the excitation of the ν13 mode that contributes to

the measured signal in both experiments (see Figs. 6 and 7).

V. SYMMETRY ANALYSIS OF VIBRATIONAL
EXCITATION VIA THE 5.5 EV SHAPE RESONANCE

The aim of this section is to determine computationally the

dominant electronic symmetry components that drive resonant

vibrational excitation at collision energy of 5.5 eV. Figure 5

FIG. 8. Inelastic differential cross section as a function of collision energy.

The two experiments are denoted by red crosses8 and blue triangles.50,51

The full line represents a weighted sum of calculated inelastic cross sections

for modes ν3,ν4,ν5,ν13; the broken line contains weighted contributions of

all the 8 modes displayed in Fig. 7, with the weights reflecting the two

instrumental profiles shown in Fig. 6.
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shows that there are two vibrational modes exhibiting strong

resonant behavior at 5.5 eV, namely, the ring stretch mode ν3

and HCH twist mode ν4. One may argue that there is also a

resonant enhancement of HCH wagging mode ν5; however,

we find it very weak and hence it will not be in our focus.

At present, the DMR method does not attempt to

reduce computational effort by making use of the symmetry

components corresponding to the point group of the molecule.

We have two reasons for this. First, the method is aimed at

larger molecular systems that generally have low symmetry,

and the computational gain would be small. Second, and more

importantly, even symmetric molecules (as cyclopropane)

reduce their symmetry if vibrational motion is included. We

may work within two possible schemes: We may reduce the

applied point group so that it is conserved for the particular

vibrational mode or we may use the equilibrium point group

(D3h in this case) and accept that irreducible representations

may become coupled by the vibrational motion. In the present

analysis, we have chosen the latter.

We start with the T10 matrix elements obtained by solving

the set of equations (2),

[T10]i j = 〈χ1ki |T |χ0k j〉, (14)

where vectors k j span the incoming momentum sphere with

radius determined by collision energy E, and the vectors ki

span the outgoing momentum sphere with radius determined

by energy of the outgoing electron. Since the angular grid

on the sphere is described by Lebedev angular quadrature

designed to integrate exactly spherical harmonics up to a

particular order,52 the partial-wave components of the T10

matrix are obtained by the straightforward technique

T l′m′
lm =

∑

i j

wiw jSlm(k̂i)[T10]i jSl′m′(k̂ j), (15)

where wi are the weights of the Lebedev quadrature,52 the

vectors k̂i are unit vectors with directions of ki, and the

angular functions Slm are chosen as real spherical harmonics.

For a given orientation of the cyclopropane molecule in the

x y-plane, the real spherical harmonics may be transformed

by a real unitary transformation into angular functions that

belong to an irreducible representation of the D3h point group.

If we place one of the carbon atoms on the y-axis, this unitary

transformation is very simple as the real spherical harmonics

already form irreducible subspaces.53

Before we proceed to the analysis of the calculated

symmetry components, we summarize the resonant symmetry

selection rules first published by Wong and Schulz26 and

later confirmed by Gallup.27 The rules were inspired by a

very high resolution energy-loss spectrum of benzene which

showed that only relatively few vibrations are excited by the π∗
shape resonance, despite the large number of normal modes,

indicating a high selectivity of the excitation process. An

attempt was made to rationalize the high selectivity by defining

selection rules, the initial formulation of which stated that for

a shape resonance with a spatial symmetry Γr , the vibrational

modes that give non-zero element,

〈Γ(χ1)|[Γ2
r]|Γ(χ0)〉, (16)

can be excited. The [Γ2
r] is used as a symmetric part of

the square of the representation Γr , and Γ(χ0) and Γ(χ1) are

symmetries of initial and final vibrational functions. Here, we

consider Γ(χ0) equal A′
1

(symmetric ground vibrational state),

and Γ(χ1) corresponds to the first excited state which inherits

the symmetry of the vibrational mode under examination. The

procedure to find the symmetric and anti-symmetric parts

of the squared irreducible representations can be found in

the literature.27,54 Wong and Schulz noted, however, that this

initial formulation of the rules is too restrictive because the

experimental spectrum showed excitation of several nodes,

namely, out-of-plane bending vibrations, which would be

forbidden by the simple rule. They then noted that all these

extra modes could be explained with the additional assumption

that the outgoing electron may also leave in an s-wave in which

case selection rule (16) was extended26,27 by an exception that

resonant vibrational excitation may also be expected for modes

with the symmetry Γr .

A. Excitation of the A′1 totally symmetrical vibrational
mode ν3

The present DMR model enables the explicit calculation

of values of the transition elements for all incoming and

outgoing partial waves and thus allows insight into the

applicability of the symmetry selection rules. The squared

elements |T l′m′
lm

|2 for the symmetric stretch mode ν3 are shown

as vertical columns for all combinations of the incoming and

outgoing partial waves up to lmax = 3 in the left panel of

Figure 9. The fact that a single column dominates the figure

demonstrates clearly that the resonant vibrational excitation

of the ν3 mode is driven by a single partial wave, which is

the lowest partial wave of A′
2

symmetry. With the carbon ring

of the molecule placed in the x y plane and one carbon atom

on the y-axis, we may identify this partial wave as l = 3,
m = 3. This single contribution to the inelastic cross section

is diagonal and as such it describes a collision in which an

incoming A′
2

wave excites the fully symmetric ring stretch

mode ν3 and leaves the system in the same partial wave, A′
2
. In

the right panel of Fig. 9, we display the calculated differential

cross section and the spatial shape of the corresponding virtual

orbital of A′
2

symmetry. It is clear that the angular shape of

the differential cross section describes an almost pure f -wave

scattering event in agreement with what our analysis shows in

the left panel of Fig. 9.

Application of the selection rules to this event leads to the

symmetry element

〈A′1|[A′22 ]|A′1〉 = 〈A′1|[A′1]|A′1〉 = 〈A′1|A′1|A′1〉 � 0 (17)

and the excitation of the ν3 vibration via the 5.5 eV A′
2

resonance is thus in accord with the selection rules.26,27

B. Excitation of the A′′1 vibrational mode ν4

The excitation of the HCH twist mode ν4 is forbidden

by the symmetry selection rules of Wong and Schulz26 and

Gallup27 since both the element for the primary selection rule

〈A′′1 |[A′ 22 ]|A′1〉 = 〈A′′1 |[A′1]|A′1〉 = 〈A′′1 |A′1|A′1〉 = 0 (18)

and for the s-wave exception
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FIG. 9. Symmetric C—C stretch ν3. The left panel displays the squared elements |T l′m′
lm

|2 for vibrational excitation of the ring stretch mode ν3 calculated via

Eq. (15). Partial waves up to lmax= 3 are separated into irreducible representations of the D3h point group. The integer numbers closest to the graph represent

the angular quantum number l of each angular function belonging to the symmetry component. The right panel displays shape of computed differential cross

section (upper picture) and shape of a virtual orbital corresponding to outgoing wave of A′
2

symmetry (lower picture).

〈A′′1 |[A′2]|A′1〉 = 〈A′′1 |A′2|A′1〉 = 0 (19)

are zero. In contrast to this, the excitation of the HCH twist

mode ν4 is strong, in particular in the 90◦ spectrum. This is seen

in the calculated spectrum in Fig. 6 and is confirmed by the

experiment, despite the fact that the two vibrations ν3 and ν4

are not fully resolved. The first experimental indication is that

the 90◦ dip in the angular distribution measured at the energy

loss of 147 meV (Fig. 2 of Ref. 8) is less deep than a pure

f -wave, which would be expected for the excitation of ν3

alone. A second indication is a small (∼−4 meV) downward

shift of the energy-loss peak observed at ∼147 meV when

recorded at 90◦ (when ν4 dominates) as opposed to when

recorded at 135◦ or 180◦ (when ν3 dominates) (see Fig. 3 for

the 90◦ spectrum and Fig. 1 of Ref. 8 for the 135◦ spectrum).

The shift is observable despite the fact that the difference of

the ν3 (146.7 meV) and ν4 (139.6 meV) frequencies is only

7 meV, less than the experimental resolution of 15 meV.

A comparison of the squared elements |T l′m′
lm

|2 for the ν4

mode (Fig. 10) with those for the totally symmetrical mode

ν3 in Fig. 9 reveals that the resonant excitation mechanism is

quite different. The coupling between incoming and outgoing

partial waves is off-diagonal. Figure 10 shows that the resonant

vibrational excitation of the ν4 mode is caused by the incoming

partial wave (l = 3,m = 3) of the A′
2

symmetry as in the

previous case of the ν3 mode. However, now the electron

causes excitation of the non-symmetric HCH twisting mode ν4

of the A′′
1

symmetry and leaves the molecule dominantly in two

FIG. 10. HCH twist mode ν4. The left panel displays the squared elements |T l′m′
lm

|2 for vibrational excitation of the HCH twist mode ν4 calculated via Eq. (15).

The right panel displays the shape of the computed differential cross section (upper picture) and the shape of a virtual orbital corresponding to the outgoing wave

of the A′′
2

symmetry (lower picture).
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different partial waves, l = 1, m = 0 and l = 3, m = 0, shown

as a pair of adjacent columns in the left panel of Fig. 10.

Note that in the angular momentum space limited to l ≤ 3

used here, and for a given orientation of the molecule, these

two partial waves form exactly the irreducible representation

A′′
2
. The fact that there are two pairs of columns, arranged

symmetrically across the diagonal, is due to the principle of

microscopic reversibility, i.e., the symmetries of the incoming

and outgoing waves can be switched.

What we observe here is an f -wave resonance of A′
2

sym-

metry that leaks partially to a p-wave in A′′
2

symmetry while

causing resonant vibrational excitation of non-symmetric

ν4 mode of A′′
1

symmetry. The dominant contribution of

the corresponding partial waves and the angular shape of

differential cross section (both displayed in Fig. 10) together

with strength of the resonance (shown in Fig. 5) confirm that it

is not a weak effect. The possibility of an outgoing p-wave has

not been foreseen in the formulation of the resonant selection

rules,26,27 which thus cease to be valid. Note that extending the

selection rules for an outgoing p or even higher l waves is not

very meaningful because too many excitations would become

allowed and the predictive power would suffer. The present

method is superior in that it allows a quantitative prediction of

the strength of each individual excitation mechanism.

VI. SUMMARY

We present a very comprehensive quantitative comparison

of the experimental cross section with the results of the

recent DMR theory, comprising the energy range from 0.4

to 20 eV, the scattering angle range from 10◦ to 180◦, and

all normal modes. An excellent agreement is observed for

collision energies under 10 eV and proves the capacity of

the DMR theory to quantitatively describe the vibrational

excitation process and thus, in a broader sense, the coupling

of electronic and nuclear motions in temporary negative ions,

with the great advantage of being applicable even to large

polyatomic molecules. For the collision energies above 10 eV,

the DMR method tends to overestimate absolute cross sections

in both elastic and inelastic channels.

We believe that the present form of the DMR theory

describes quantitatively three important aspects of the process,

the mode selectivity for all the vibrational modes, as revealed

by the good agreement with the electron-energy loss spectra,

the energies and widths of the resonances, as revealed by

the good agreement of the cross sections measured at a given

energy loss as a function of the electron energy, and the angular

distributions, informative of the symmetry aspects.

The importance of taking into account the overlap of

close-lying vibrations, not fully resolved experimentally, is

emphasized. Treating this aspect properly permitted us to

reconcile two absolute measurements8,50 which were seem-

ingly in contradiction. The difference of the two experimental

results is shown to be entirely explained by the different reso-

lutions and nominal energy-loss values of the two experiments

and thus different degrees of vibrational band overlap.

The 5.5 eV A′
2

resonance was used to study the role

of symmetry in the mode selectivity with reference to the

symmetry selection rules derived by Wong and Schulz26

and Gallup.27 Detailed insight into this question is gained

by calculating the squared transition elements |T l′m′
lm

|2 for a

given vibration and all combinations of the incoming and

outgoing partial waves, and plotting them in a 3D diagram.

This procedure was applied to excitation of the ν3 totally

symmetrical C—C stretch mode where a single dominant

partial wave l = 3 of A′
2

symmetry was found. This result

is in agreement with the conclusions previously published in

the literature21,22 and it conforms to the symmetry selection

rules.26,27 The calculations, confirmed by experiment, have

further revealed the excitation of the non-totally symmetrical

HCH twist mode ν4 that also exhibits a strong resonant

behavior at 5.5 eV and that is unexpected because it is

forbidden by the symmetry selection rules. In this case, we

identified the mechanism by which an f -wave resonance of

A′
2

symmetry (the same as in the above case of ν3) leaks

partially to a p-wave in the A′′
2

symmetry. This change of

electronic symmetry during the collision is mediated by the

resonant excitation of the non-symmetric HCH twisting mode

ν4. This inelastic scattering event shows that the symmetry

selection rules as generally formulated, i.e., which assume that

the partial wave of the electron either does not change in the

process of the inelastic scattering or that it changes such that

the electron departs in an s-wave, are not sufficiently general

and do not explain the observations for cyclopropane. The

present theory allows to calculate quantitatively the transition

matrix elements for all incoming and departing electron partial

waves and is thus more powerful than the selection rules. Note

that excitation of non-totally symmetrical modes often plays a

crucial role in electron-driven chemistry (dissociative electron

attachment) because the ensuing symmetry lowering offers a

pathway to by-pass an energy barrier. However, it has not been

conclusively proven that the symmetry lowering is required

to by-pass an energy barrier—but the experimental evidence

certainly indicates a propensity to lower the symmetry. The

dissociative electron attachment of CF4 is a good example.55
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47C. Benesch, M. Čížek, M. Thoss, and W. Domcke, Chem. Phys. Lett. 430,

355 (2006).
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