Morphological and Molecular Diversification of Asian Endemic *Difflugia tuberspinifera* (Amoebozoa, Arcellinida): A Case of Fast Morphological Evolution in Protists?

Fatma Gomaaa,b,1, Jun Yangc,1,2, Edward A.D. Mitchella,d, Wen-Jing Zhange, Zheng Yuf, Milcho Todorovg, and Enrique Laraa

aLaboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
bZoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
cAquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
dJardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, CH-2000 Neuchâtel, Switzerland
eMarine Biodiversity and Global Change Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
fGraduate University of Chinese Academy of Sciences, Beijing 100049, China
gInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria

Planktonic arcellinid testate amoebae exhibit a broad-range of morphological variability but it is currently unclear to what extent this variability represents phenotypic plasticity or if it is genetically determined. We investigated the morphology and phylogenetic relationships of three endemic east-asian *Difflugia* taxa 1) the vase-shaped *D. mulanensis*, 2) and a spinose and a spineless morphotypes of *D. tuberspinifera* using scanning electron microscopy and two ribosomal genetic markers (SSU rDNA and ITS sequences). Our phylogenetic analyses shows that all three taxa are genetically distinct and closely related to *D. achlora* and *Netzelia oviformis*. The genetic variations between the spineless and spinose morphotypes of *D. tuberspinifera* were low at the SSU rRNA level (0.4%), but ten times higher

1Both authors contributed equally to this work. 2Corresponding authors; e-mail fatma.gomaa@gmail.com (F. Gomaa), jyang@iue.ac.cn (J. Yang).
at the ITS level (4.5-6%). Our data suggest that the two forms of *D. tuberspinifera* are sufficiently differentiated in terms of morphology and genetic characteristics to constitute two separate entities and that the presence of spines does not result from phenotypic plasticity due to environmental selective pressure. However further observational and experimental data are needed to determine if these two forms constitute different biological species.

Key words: Molecular phylogeny; SSU rRNA gene; ITS; *Diffugia tuberspinifera*; morphological variation; fast evolution; China.

Introduction

Recent molecular phylogenetic studies have considerably expanded our knowledge of the phylogenetic relationships and diversity of microbial eukaryotes (Cuvelier et al. 2008; Lara et al. 2011; López-García et al. 2001; Nikolaev et al. 2004). However, diversification and speciation processes in free-living protists remain major questions in evolutionary biology (Coyne and Orr 2004; Lahr et al. 2011b; Logares et al. 2007, 2008). In particular, the pace at which new morphologies appear has remained largely understudied, which may, for example, be a serious problem when interpreting fossil records.

Protist phenotypes are believed to be extremely old, because of a supposed stabilizing selection that acts on large asexual populations (Civetta and Singh 1999; Fenchel and Finlay 2006). In line with this, Arcellinid morphotypes are thought to remain very stable in time, as illustrated by the resemblance observed between extant forms and 742 Mya old vase-shaped microfossils. For example, the fossil *Palaeoarcella athanata* shares a striking resemblance with the extant genus *Arcella* (Porter et al. 2003). This conservatism contrasts with the derived position of this genus in molecular phylogenies of genus *Arcella* with respect to other Arcellinida (Gomaa et al. 2012; Lahr et al. 2013) and would thus suggest that Arcellinida as a whole are much older than 742 Mya (Fiz-Palacios et al. 2013).

However, such morphological conservatism is not the rule in all protist groups. Recent speciation events have been demonstrated in coccolithophorids, where the morphs *Calcidiscus leptoporus* ssp. *leptoporus* and *quadriperforatus* diverged only 0.3 Mya ago as demonstrated both by the fossil record and molecular clock approaches (Saez et al. 2003). Instances of rapid evolutionary radiations can also be expected in ciliates inhabiting tank bromeliads in the neotropics, where large predatory forms and closely related diminutive bacterivores share the same habitat and harbour almost identical SSU rRNA gene sequences despite their extremely different sizes, morphologies and lifestyles (Foissner et al. 2003). Similarly the dinoflagellates *Scripsiella hangoei* and *Peridinium aciculatum* were described as separate genera based on their morphology, but their ribosomal DNA sequences were shown to be identical (Logares et al. 2008). Likewise, the ITS sequence of the tank bromeliad-inhabiting aplanosporic oomycete *Geolegnia helicoides* appeared to be nested within the flagellate genus *Leptolegania*, showing an incipient loss of the whole flagellar apparatus (Steciw et al. 2013).

However, understanding trait evolution can be impaired by phenotypic plasticity, which has been demonstrated or suggested in Arcellinida, especially among members of genus *Diffugia*, leading to much confusion in species identification and differentiation (Chardez 1974; Lahr and Lopes 2006; Medioli et al. 1987; Meisterfeld 2002; Ogden 1983; Ogden and Meisterfeld 1989; Todorov and Goleamksy 2007). The current systematic scheme of genus *Diffugia* is inconsistent and unsatisfactory due to the lack of good diagnos-tic characters, often inadequate descriptions and a general lack of molecular data (Gomaa et al. 2012). It is thus difficult to determine which traits are genetically fixed and which represent variable characters, and this makes the evaluation of their stability throughout evolutionary times even more challenging. Given the palaeontological significance of Arcellinida it is crucial to better understand the relationships between morphological and molecular diversity within this group, both overall and within groups of closely-related taxa.

To address these questions, we studied the spinose and spineless morphotypes of *Diffugia tuberspinifera*, a freshwater planktonic raptorial species described from China (Han et al. 2008; Yang et al. 2004). *D. tuberspinifera* was described as a spherical agglutinated shell, ornamented by two to eight conical hollow spines at the upper
equatorial region with a short collar and an aperture ornamented with 6-11 tooth-like structures. Spineless individuals that were otherwise highly similar in shape and structure to *D. tuberspinifera* were also often observed in the same bodies of water (Yu et al. 2014). It remained unclear if the absence of spines was genetically determined, and, more generally, if the presence or absence of spines is a valid taxonomical criterion for Arcellinid testate amoebae in general (e.g. including also other genera such as *Centropyxis* or *Argyinnia*), or if it is just an expression of phenotypic plasticity as was suggested in the case of the *Centropyxis aculeata* (but with no molecular data existing for that group of taxa) (Lahr et al. 2008). If this difference was genetically determined, its high variability would suggest that this is a fast-evolving character. If no genetic difference was found this would rather suggest the existence of different life-styles, such as the benthic-planktonic cycle reported for *Diffugia limnetica* (Schönborn 1962), or an enviromental control on morphology (Wanner 1999). We amplified and sequenced the SSU rRNA gene of both spine and spineless morphotypes of *D. tuberspinifera* and placed these sequences on a large Arcellinid tree together with another Eastern Asian species, *D. mulanensis*. In addition, we also sequenced the internal transcribed spacer region (ITS1/5.8S/ITS2) of the two *D. tuberspinifera* forms and of *D. labiosa*.

Results

SSU rRNA Gene Analysis and Phylogenetic Relationships within Arcellinida

We obtained nine partial SSU rRNA gene sequences from three independent extractions of each *Diffugia tuberspinifera* morphotype, and three isolates of *D. mulanensis* (Fig. 1). The amplified SSU rRNA fragment length was 2192 bp in *D. tuberspinifera* spineose morphotype, 1697 bp in *D. tuberspinifera* spineless morphotype, and 1134 bp in *D. mulanensis*. An identical intron of 433 bp between positions 434 and 867, and identical insertions of 95 bp between positions 1241 and 1336 were found in both morphotypes of *D. tuber-spinifera*. An additional intron of 432 bp was found between positions 1698 and 2130 in the SSU rRNA gene of *D. tuberspinifera* spineose morpho-type, but not in the spineless morphotype. No intron was found in *D. mulanensis*, but an insertion of 196 bp was found starting at the same position as the *D. tuberspinifera* insertion, but differing in both sequence and length.

We observed no intra-morphotype sequence polymorphism in the sequenced portion of the SSU rRNA gene among the *D. tuberspinifera* sequences. The sequences of the SSU rRNA exon regions in spineose and spineless morphotypes of *D. tuberspinifera* were highly similar to each other (99.6% identity). The general topologies of the SSU rRNA gene phylogenetic trees inferred from maximum likelihood and Bayesian inference were similar (Fig. 2) and correspond to previously published data by Gomaa et al. (2012). Most members of Arcellinida branch together in a single well supported clade that receives 93% bootstrap support (BS), 94% expected-likelihood weights of local rearrangements edge support (LR-ELW; equivalent to approximate bootstraps) (Strimmer and Rambaut 2002) and 1.00 Bayesian inference posterior prob-ability (PP). This main clade divides into two major groups: the first group comprises Hyalospheniidae, *Bullinularia* spp., *Centropyxis laevigata* and the cylindrical/elongated *Diffugia* spp. (*D. acuminata*, *D. lanceolata*, *D. bacilliarum*, *D. hiraethogil*) and receives moderate support (BS=60%, ELW=85%, PP=0.80). The second group comprises genus *Arcella*, the globular/ spherical species *Diffugia achlora*, *Netzella oviformis*, and the newly obtained sequences of *D. mulanensis* and *D. tuberspinifera* (both morphotypes). *Physocilia griseola*, *Argynnia dentistoma* and *Heleopera rosea* branch in distant positions at the base of this clade. This clade receives high support (BS=82%, ELW=87%, PP=0.98). *Pyxidicula operculata* branches distantly from the rest of Arcellinida with moderate sup-port (BS=53%, ELW=87%, PP=0.98), while both *Cryptodiffugia operculata* (Lahr et al. 2011a) and *Cryptodiffugia oviformis* (Gomaa et al. 2012; Lahr et al. 2011a) have an uncertain position with respect to other Arcellinida. *Heleopera sphagni* (AF 848965) (Nikolaev et al. 2005) branches outside the main Arcellinida clade with an uncertain phylogene-tic position within tubulinida as shown in previous phylogenies (Gomaa et al. 2012; Lahr et al. 2011a).

ITS Sequence Analysis of the Two Morphotypes of Diffugia tuberspinifera

We successfully obtained twelve ITS sequences from twelve independent extractions: eight from the spineose morphotype of *D. tuberspinifera*, three from the spineless morphotype and one from *D. labiosa*. The sequenced fragments of ITS1 + 5.8S + ITS2 were 716 bp long in *D. tuberspinifera* spineless...
morphotype, 300 bp in *D. tuberspinifera* spinose morphotype, and 463 bp in *D. labiosa*. At the ITS level, both spinose and spineless morphotypes of *D. tuberspinifera* were clearly discriminated, the levels of inter-morphotype sequence divergence ranged from 4.5 to 6%, while the intra-morphotype divergence within the spinose morphotype of *D. tuberspinifera* ranged from 0.4% to 1.4%. The ITS trees showed two clades of *D. tuberspinifera* morphotypes where spinose form a single clade excluding all spineless sequences, which form an unresolved cluster. This suggests the possibility

Figure 2. Molecular phylogenetic tree based on SSU rRNA gene sequences illustrating the phylogenetic position of Asian *Diffugia* spp. (*Diffugia tuberspinifera* the spined and the spineless morphospecies and *D. mulanensis*). The tree is rooted with Echinamoebidae. The tree was derived by Bayesian inference using MrBayes, and an identical topology was obtained by maximum likelihood analysis. Numbers at the nodes represent Bootstrap values, Expected-Likelihood Weights edge support (approximate bootstrap) and Bayesian inference posterior probabilities respectively. The scale bar indicates 0.04 substitutions/site.
that the spinose clade was derived from spineless morphs (Fig. 3).

Discussion

Phylogenetic Position of *Diffugia tuberspinifera* and *D. mulanensis*

Both spinose and spineless morphotypes of *D. tuberspinifera* are included within a clade (called clade B in Gomaa et al. 2012) that also contains *Netzelia oviformis* and other globose taxa such as *Diffugia achlora* and the newly barcoded species *D. mulanensis*. This clade also includes *Lesquereusia modesta* as determined with other genes (Gomaa et al. 2012; Lahr et al. 2013). There is also evidence that species with a more elongated shell may belong in this group, such as *Diffugia bryophila* (Lahr et al. 2013). More data are required to determine if a globose shape can be used as a deep phylogenetic criterion. If this is the case, then the elongated species *D. bryophila* would be an exception. The alternative explanation would be that general shape can change rapidly within this major group of Amoebozoa.

Further, our results suggest that the presence or absence of an apertural collar or necklace (a small raised rim of organic layer surrounding the shell aperture) might constitute a reliable criterion for phylogenetic relationships for some arcellinid genera (*Arcella, Diffugia* and *Netzelia*). One possibility is that this character may relate to a key function such as cell division and the ontogeny of a daughter cell (Ogden and Meisterfeld 1989). So far, five morpho-taxa with a collar or necklace (*Netzelia oviformis, D. achlora, D. mulanensis* and both morphotypes of *D. tuberspinifera*) branch together robustly in the Arcellinida tree (Fig. 2). *Diffugia tuberspinifera* has a circular aperture with a distinct collar, *D. mulanensis* has a widely projecting apertural collar, and *Netzelia oviformis* and *D. achlora* both have a thick organic rim or necklace around the aperture (Ogden and Hedley 1980; Ogden and Meisterfeld 1989; Yang et al. 2004, 2005; Yu et al. 2014). Furthermore, both *Arcella vulgaris* and *A. hemisphaerica*, which lie within the same clade, are also characterized by a “necklace” because their aperture is circular and bordered by a small lip (Meisterfeld 2002; Ogden and Hedley 1980). In contrast, none of the four pyriform-shaped *Diffugia* species have any distinct collar or necklace.

Recently, the new genus *Mediolus* has been established by Patterson (2014) in order to accommodate members of genus *Diffugia* that branched in clade B, thus solving the problem of paraphyly (Gomaa et al. 2012). *D. corona* has been given as the type species for the new genus. This genus is defined by its distinctive tooth-like inward apertural crenulations and tests generally characterized by a variable number of hollow oriented apertural spines (Patterson 2014), which are characters that are
shared with *D. tuberspinifera*. However, until a SSU rRNA gene sequence from *Mediolus (Diffugia) corona* is made available, we keep the two morphotypes of *D. tuberspinifera* provisionally within *Diffugia*.

Genetic Variation Between the Two Morphotypes of *Diffugia tuberspinifera*

Our data show that the two *D. tuberspinifera* morphotypes are genetically distinct, but very closely related. The insertion of a class I intron, as seen in the ribosomal operon of *D. tuberspinifera*, is common among Arcellinida. The appearance and disappearance of these elements has been documented within a single species complex in Arcellinida (Lara et al. 2008). Our phylogenetic data analyses based on the ITS sequences clearly showed that all inter-specific variations were greater than intra-specific variations, and a clear gap existed between both *D. tuberspinifera* morphotypes. The fact that the ITS sequences of the spineless morphs form a clade, whereas the spineless morphs do not, suggests that the spine morphotypes might have evolved from spineless ancestors.

Our results demonstrate that the ITS region provides much better resolution than the SSU rRNA gene for discriminating closely related species within genus *Diffugia* (Fig. 3) and potentially can be used as a genetic barcoding marker for assessing the diversity and inferring the phylogenetic relationships within Arcellinida.

Previous work has shown that spines can appear quickly in evolution, for instance as a result of predation pressure. For example, in planktonic organisms such as *Daphnia*, and monogonont rotifers (e.g. genus *Keratella*), spines have been shown to have a protective function (Marinone and Zagarese 1998; Riessen 2012). Interestingly, the development of spines in cladocerans originally arose as a prod-uct of phenotypic plasticity in the presence of predators (Lüning 1992). A similar mechanism has been documented in protists, specifically in a variety of ciliates (Wicklow 1997). It was shown that the spine morphotype of *D. tuberspinifera* has a wider distribution than the spineless morphotype in China (Yu et al. 2014), a remarkable fact if the spine morphotype was derived from a spineless ancestor as we suggest here. Indeed, high population densities of spineless *D. tuberspinifera* were observed in many artificial reservoirs that were con-structed during the Second World War (Liu et al. 2010). This may indicate that the spine morph-otype of *D. tuberspinifera* has a competitive advantage in these reservoirs and is more adapted to local ecosystem conditions. Future studies are needed to investigate the possible role of environmental selective pressure (i.e. predation, food sources) on the differentiation of both forms of *D. tuberspinifera*.

Our study shows that both *D. tuberspinifera* morphotypes are genetically closely related, yet nevertheless distinct. Very little is currently known about the extent and structure of genetic diversity within and among populations of Arcellinida in general and genus *Diffugia* in particular. Therefore, a more comprehensive sampling and the analysis of additional genetic markers are necessary to ascertain if the two morphotypes of *D. tuberspinifera* indeed represent two different species and what the biological relevance of such a difference might be.

Methods

Sample collection and documentation: The two morphotypes of *Diffugia tuberspinifera* (i.e. spine and spineless morphotypes) were collected from Hubian Reservoir, Xiamen, southeast China (24°30’N, 118°10’E) in September and October 2010; *D. mulanensis* was collected from Tingxi Reservoir, Xiamen, southeast China (24°48’N, 118°08’E) in September and October 2010, while *D. labiosa* was collected from Lake Pancharevo, Sofia, Bulgaria (42°35’N, 23°24’E) in May 2010. The day after sampling, the individual cells were identified under inverted microscope and morphologically identical cells from each morphotype were isolated and washed several times with ddH₂O. We prepared several independent DNA extractions from each morphotype, each extraction contained from 1 to 12 cells. Single cell extractions did not work well and this might be due to low DNA concentration or the fact that the opacity of the *Diffugia* shell made it difficult to recognize if the organism was alive or dead. Specimens for scanning electron microscopy (HITACHI S-4800, Japan) observations were prepared following Yang et al. (2004).

DNA extraction, PCR amplification and sequencing: DNA was extracted using the guanidine thiocyanate proto-col (Chomczynski and Sacchi 1987). The SSU rRNA gene sequences of both *D. tuberspinifera* morphotypes and *D. mulanensis* were obtained in two steps. A first amplification was performed using universal SSU rRNA eukaryotic primers EK555F (AGTCTGGTGCCAGCAGCGC) or EK 42F (CCTAARGAYTAAGCCATGCA) and EK1498R (CACCTACGGAACCTTGTATTA) in a total volume of 30 μl with an amplification profile consisting of 4 min at 95 °C followed by 40 cycles of 30 sec at 94 °C, 30 sec at 58 °C and 1 min 30 sec at 72 °C with a final elongation of 10 min at 72 °C. The resulting product served as template for the second amplification using the universal eukaryotic forward primer (Marande et al. 2009) and taxon-specific reverse primers, TubEr (GCATACA-GACCTGTTTTCGCCTCGG) for both spine and spineless morphotypes of *D. tuberspinifera* and MuIR (GCATCACAGAC-CTGTGTTTTGCCCTCA) for *D. mulanensis*. Amplification was carried out in a total volume of 30 μl with an amplification pro-file consisting of 4 min at 95 °C followed by 40 cycles 30 sec at 94 °C, 30 sec at 60 °C and 1 min 30 sec at 72 °C with a final elongation of 10 min at 72 °C. The internal transcribed
Table 1. List of sequenced taxa and their GenBank accession numbers in this study.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>GenBank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSU rRNA</td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>KM975699</td>
</tr>
<tr>
<td>morphotype_1</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>KM975700</td>
</tr>
<tr>
<td>spinose</td>
<td></td>
</tr>
<tr>
<td>morphotype_2</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>KM975701</td>
</tr>
<tr>
<td>spinose</td>
<td></td>
</tr>
<tr>
<td>morphotype_3</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>-</td>
</tr>
<tr>
<td>spinose</td>
<td></td>
</tr>
<tr>
<td>morphotype_4</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>-</td>
</tr>
<tr>
<td>spinose</td>
<td></td>
</tr>
<tr>
<td>morphotype_5</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>-</td>
</tr>
<tr>
<td>spineless</td>
<td></td>
</tr>
<tr>
<td>morphotype_6</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>-</td>
</tr>
<tr>
<td>spineless</td>
<td></td>
</tr>
<tr>
<td>morphotype_7</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>-</td>
</tr>
<tr>
<td>spineless</td>
<td></td>
</tr>
<tr>
<td>morphotype_8</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>KM975702</td>
</tr>
<tr>
<td>spineless</td>
<td></td>
</tr>
<tr>
<td>morphotype_1</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>KM975703</td>
</tr>
<tr>
<td>spineless</td>
<td></td>
</tr>
<tr>
<td>morphotype_2</td>
<td></td>
</tr>
<tr>
<td>D. tuberspinifera</td>
<td>KM975704</td>
</tr>
<tr>
<td>spineless</td>
<td></td>
</tr>
<tr>
<td>morphotype_3</td>
<td></td>
</tr>
<tr>
<td>D. mulanensis_1</td>
<td>KM975696</td>
</tr>
<tr>
<td>D. mulanensis_2</td>
<td>KM975697</td>
</tr>
<tr>
<td>D. mulanensis_3</td>
<td>KM975698</td>
</tr>
<tr>
<td>D. labiosa</td>
<td>-</td>
</tr>
</tbody>
</table>

spacer (ITS1, 5.8S and ITS2) sequences of the D. tuberspinifera the spinose and the spineless morphotypes and D. labiosa, were obtained in two steps. A first amplification was performed using universal SSU rRNA eukaryotic primer EK 42F (CTCAARGAYTAAGCGCATGCA) and universal LSU rRNA eukaryotic primer 803R (ACTTCGGAGGGACCAGCTGA) or ITS4R (TCCTCCGCTTATGATAGC) in a total volume of 30 μl with amplification profile consisting of 4 min at 95 °C followed by 40 cycles 30 sec at 94 °C, 30 sec at 60 °C and 1 min 30 sec at 72 °C with a final elongation of 10 min at 72 °C. The obtained product served as template for the second amplification using taxon-specific forward primer SSUTUBERF (TGTAACACACCCTCCCGTGCT) and universal eukaryotic LSU reverse primers 803R or ITS4R. (Marande et al. 2009) in a total volume of 30 μl with amplification profile consisting of 4 min at 95 °C followed by 40 cycles 30 sec at 94 °C, 30 sec at 60 °C and 1 min 30 sec at 72 °C with a final elongation of 10 min at 72 °C. Extractions that contained five or more cells were amplified two to four times.

The PCR products were screened by gel electrophoresis and amplification products at the expected size were purified with the NucleoFasts 96 PCR Clean Up kit from Macherey-Nagel (Düren, Germany) and sequenced with an ABI PRISM 3700 DNA Analyzer (PE Biosystems, Genève, Switzerland) using a BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit (PE Biosystems). Sequences are deposited in GenBank with the accession numbers given in Table 1.

Alignment and phylogenetic analysis: The SSU rRNA gene and the ITS sequences were aligned manually using the BioEdit software (Hall 1999). Introns, insertions and variable regions in the SSU rRNA alignment that could not be aligned unambiguously were removed from the phylogenetic analysis. The SSU rRNA phylogenetic analysis data set contained 55 amoeba taxa including 37 Arcellinida, 6 Tubulinida, 8 Leptomxyida, and 4 Echinamoebidae that were used as outgroups; a total of 700 characters were kept for phylogenetic analysis. For ITS analysis, we used D. tuberspinifera from both morphotypes and D. labiosa as outgroup. D. labiosa is a closely related species but morphologically and genetically distinct from both D. tuberspinifera morphotypes.

Maximum likelihood trees were built using the RaxML version 7.2.8 algorithm (Stamatakis et al. 2005) as proposed on the Black Box portal (http://phylobench.vital-it.ch/raxml-bb/) using the GTR+Γ+I model. The reliability of internal nodes was estimated by bootstrapping (1000 replicates). Model parameters were estimated in RAxML during the entire tree search. The resulting tree was compared to the one obtained by TREEFINDER (Jobb et al. 2004) with the GTR+I+G model of nucleotide substitution. The reliability of internal nodes was estimated by Expected-Likelihood Weights of local rearrangements edge support = approximate bootstraps (1000 replicates)(Strimmer and Rambaut 2002). Bayesian inference was performed using the software MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001). With two independent sets of four simulta-neous MCMC chains, for 500,000 generations until standard deviation of split frequencies fell below 0.01 as recommended by the manual. Results were saved every 1,000th genera-tion. A burn in of 25% was discarded before summing the results. Trees were viewed using FigTree in the BEAST package (http://tree.bio.ed.ac.uk/software/figtree/). The percent identity between sequences was calculated using the program BioEdit (Sequence Identity Matrix) (Hall 1999).

Acknowledgements
This study was supported by the National Basic Research Program of China (2012CB956103), the National Natural Science Foundation of China (31172114 and 30800907), the National Science Foundation for Distinguished Young Scholars of Fujian Province (2012J06009), the International Science and Technology Cooperation Program of China (2011DFB91710), and Swiss NSF grant n° PZ00P2_122042 (Ambizione fellowship for EL). We
thank Sandra Baldauf and anonymous reviewers for constructive comments on the manuscript.

References

Chardez D (1974) Note sur la Morphologie des Thécamoebiens. 8 p

Lahr DJ, Grant JR, Katz LA (2013) Multigene phylogenetic reconstruction of the Tubulinida (Amoebozoa) corroborates four of the six major lineages, while additionally revealing that shell composition does not predict phylogeny in the Arcellinida. Protist 164:323–339

in the phylogeny of amoeboid protists. Proc Nati Acad Sci USA 101:8066–8071

Schönborn W (1962) Über Planktismus und Zyklomorphose bei Diffugia limnetica (LEVANDER) PENARD. Limnologica 1:21–34

