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Abstract

In polynomial and spline interpolation the k-th derivative of the interpolant, as
a function of the mesh size h, typically converges at the rate of O(hd+1−k) as h → 0,
where d is the degree of the polynomial or spline. In this paper we establish, in the
important cases k = 1, 2, the same convergence rate for a recently proposed family
of barycentric rational interpolants based on blending polynomial interpolants of
degree d.
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1 Introduction

In a recent paper [7], a family of barycentric rational interpolants was investigated. Given
a function f : [a, b] → lR and real values (“nodes”) a = x0 < x1 < · · · < xn = b, the d-th
interpolant, d = 0, 1, . . . , n, is given by the formula

r(x) =
n−d∑

i=0

λi(x)pi(x)

/
n−d∑

i=0

λi(x), (1)

where pi denotes the polynomial of degree ≤ d such that pi(xj) = f(xj) for j = i, i +
1, . . . , i+ d, and

λi(x) =
(−1)i

(x− xi)(x− xi+1) · · · (x− xi+d)

is a blending function. It was shown in [7] that for f ∈ Cd+2[a, b], the error,

e(x) := f(x) − r(x), (2)
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satisfies a bound on the max norm ‖e‖ := maxa≤x≤b |e(x)| of the form

‖e‖ ≤ Chd+1, (3)

where h is the mesh size,
h := max

0≤i≤n−1
(xi+1 − xi).

Here and in all what follows, C is a constant depending only on d, on derivatives of f , and
on the interval length b− a. Thus, for smooth enough f , the interpolant r converges to f
at the rate O(hd+1) as h→ 0.

A natural, though not definitely settled question is that of a good or even optimal choice
of the parameter d for a given function. Through the estimate (3) one might be tempted
to think that d should be taken very large; however, the fact that the pi(x) in (1) are
polynomials of degree up to d, interpolating between arbitrary nodes, necessarily restricts
d (due to Runge’s phenomenon and instability). Nevertheless, numerical experience shows
that d may often be chosen quite large. The authors of [10] remark: “This is the only
method in this chapter for which we might actually encourage experimentation with high
order (say, > 6)”. Furthermore, as this family of rational interpolants is linear in the data,
the condition of r is determined by its Lebesgue constant Λn [4]. Several authors have
recently studied Λn and shown that it may be bounded for equidistant nodes and d ≥ 2 as
[5]

2d−2

d+ 1
ln(n/d− 1) ≤ Λn ≤ 2d−1(2 + ln(n)),

thereby confirming that d may be increased to values which yield a very favourable error
decay with n (up to about d = 20 for large values of n in some cases).

With a view to possible applications such as the numerical solution of differential equa-
tions [2], we study here the rate of convergence of derivatives of r to corresponding deriva-
tives of f . Taking into account that r is a blend of polynomial interpolants of degree at
most d, it is not unreasonable to expect that

‖e(k)‖ ≤ Chd+1−k (4)

for k = 1, 2, . . . , d. In this paper we prove that this holds for k = 1 and k = 2, in some
cases under addition of a mesh ratio condition on the nodes xi; such a condition holds, for
example, in the important equally spaced case, xi = a + i(b − a)/n. We conjecture that
(4) is valid, at least in the equally spaced case, for all k = 1, 2, . . . , d. No fundamental
reason hinders the extension of the method to the cases k ≥ 3; the difficulty is that the
formulas for e(k) become very intricate. In Section 2 we will look more closely at the rate of
convergence at the nodes, while in Section 3 we extend the theory to intermediate points.
The paper ends with numerical examples which confirm the mathematical analysis.

2 Error at the nodes

The Newton error formula

f(x) − pi(x) = (x− xi) · · · (x− xi+d)[xi, xi+1, . . . , xi+d, x]f
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leads to

e(x) =

∑n−d

i=0 λi(x)(f(x) − pi(x))∑n−d

i=0 λi(x)
=
A(x)

B(x)
, (5)

where after cancellation

A(x) :=

n−d∑

i=0

(−1)i[xi, . . . , xi+d, x]f (6)

and

B(x) :=

n−d∑

i=0

λi(x). (7)

Consider the first derivative of e at a node xj , 0 ≤ j ≤ n. By the definition of the
derivative and the fact that e(xj) = 0, we have

e′(xj) = lim
x→xj

e(x)

x− xj

.

This motivates us to look at the product (x− xj)B(x). Defining the functions

Bj(x) :=
∑

i∈Ij

(−1)i

i+d∏

k=i
k 6=j

1

x− xk

(8)

and

Cj(x) :=
∑

i∈I\Ij

(−1)i

i+d∏

k=i

1

x− xk

, (9)

where
I = {0, 1, . . . , n− d}

and
Ij = {i ∈ I : j − d ≤ i ≤ j},

we see that
(x− xj)B(x) = Bj(x) + (x− xj)Cj(x). (10)

Lemma 1

e′(xj) =
A(xj)

Bj(xj)
.

Proof. By (10) we have
e(x)

x− xj

=
A(x)

Bj(x) + (x− xj)Cj(x)
, (11)

and taking the limit of both sides as x→ xj gives the result. 2
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We can use this formula to obtain an error bound at the nodes that requires f to be
in Cd+2[a, b], the same as for the bound (3). To increase readability, we introduce the
following notation:

di(x) := |x− xi|, dik := |xi − xk|,

for nodes xi and xk and for x ∈ [a, b], and when it is clear, we also write di = di(x).

Theorem 1 If f ∈ Cd+2[a, b], then

|e′(xj)| ≤ Chd, 0 ≤ j ≤ n.

Proof. With x = xj in (8), the products alternate in sign as (−1)i does, so that all the
terms in the sum have the same sign and

|Bj(xj)| =
∑

i∈Ij

i+d∏

k=i
k 6=j

d−1
jk .

Therefore, by choosing any i ∈ Ij, we deduce that

1

|Bj(xj)|
≤

i+d∏

k=i
k 6=j

djk ≤ Chd, ∀ i ∈ Ij. (12)

On the other hand it has been shown in [7] that

|A(x)| ≤ C, x ∈ [a, b], (13)

whence the bound follows. 2

To deal with higher derivatives, we consider the Taylor expansion

e(x) = (x− xj)e
′(xj) +

1

2!
(x− xj)

2e′′(xj) +
1

3!
(x− xj)

3e′′′(xj) + · · · (14)

and the Taylor expansion of

qj(x) :=
e(x)

x− xj

,

namely

qj(x) = qj(xj) + (x− xj)q
′
j(xj) +

1

2!
(x− xj)

2q′′j (xj) + · · · .

Dividing (14) by x− xj and comparing terms in the two expansions imply that

e(k)(xj) = kq
(k−1)
j (xj), (15)

in particular,
e′′(xj) = 2q′j(xj). (16)
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Differentiating (11) and substituting x = xj give

q′j(xj) =
A′(xj)

Bj(xj)
−
B′

j(xj)A(xj)

B2
j (xj)

−
Cj(xj)A(xj)

B2
j (xj)

, (17)

which we will use to derive a bound for e′′(xj). We begin with a lemma.

Lemma 2 If f ∈ Cd+2+k[a, b] for k ∈ lN, then

|A(k)(x)| ≤ C, x ∈ [a, b].

Proof. The case k = 0 has been treated in [7]. For k 6= 0 and using the derivative formula
for divided differences (see [1] and [8]), we have

A(k)(x) = k!

n−d∑

i=0

(−1)i[xi, . . . , xi+d, (x)
k+1]f,

where (x)k stands for a k-fold argument. Then, with a similar approach to [7, p. 322],
A(k)(x)/k! equals

−

n−d−1∑

i=0, i even

(xi+d+1 − xi)[xi, . . . , xi+d+1, (x)
k+1]f, (n− d) odd,

−

n−d−2∑

i=0, i even

(xi+d+1 − xi)[xi, . . . , xi+d+1, (x)
k+1]f + [xn−d, . . . , xn, (x)

k+1]f, (n− d) even.

Using the same argument as in [7], we are done. 2

Theorem 2 If d ≥ 1 and if f ∈ Cd+3[a, b], then

|e′′(xj)| ≤ Chd−1.

Proof. We write equation (16) with (17) in the form

e′′(xj) = 2(L1 − L2 − L3),

where

L1 :=
A′(xj)

Bj(xj)
, L2 :=

B′
j(xj)A(xj)

B2
j (xj)

, L3 :=
Cj(xj)A(xj)

B2
j (xj)

,

and we show that
|L1| ≤ Chd, (18)

and
|L2|, |L3| ≤ Chd−1. (19)
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Equation (18) immediately follows from equation (12) and Lemma 2. To deal with L2, we
notice that

B′
j(x) =

∑

i∈Ij

(−1)i+1
i+d∑

m=i
m6=j

1

x− xm

i+d∏

k=i
k 6=j

1

x− xk

,

so that its absolute value in x = xj is bounded by

|B′
j(xj)| ≤

∑

i∈Ij

i+d∑

m=i
m6=j

d−1
jm

i+d∏

k=i
k 6=j

d−1
jk . (20)

To derive a bound of the quotient of (20) with |Bj(xj)|
2, we use (12) with i ∈ Ij equal to

the index in the outer sum in (20) :

|B′
j(xj)|

|Bj(xj)|2
≤
∑

i∈Ij

i+d∑

m=i
m6=j

d−1
jm

i+d∏

k=i
k 6=j

d2
jk

i+d∏

k=i
k 6=j

d−1
jk ≤

∑

i∈Ij

i+d∑

m=i
m6=j

i+d∏

k=i
k 6=j
k 6=m

djk ≤ Chd−1

and this, together with (13), gives the bound on L2 in (19).
Finally, we treat L3. We split Cj(xj) into two parts,

Cj(xj) =

j−d−1∑

i=0

(−1)i

i+d∏

k=i

1

xj − xk

+
n−d∑

i=j+1

(−1)i

i+d∏

k=i

1

xj − xk

,

where empty sums are meant to equal 0. The terms in both sums are alternating in sign
and increasing, respectively decreasing, in absolute value, so that

|Cj(xj)| ≤

j−1∏

k=j−d−1

d−1
jk +

j+1+d∏

k=j+1

d−1
jk . (21)

We now divide every term in equation (21) by |Bj(xj)|
2. Using (12) with i = j − d for the

first term and i = j for the second, we obtain

|Cj(xj)|

|Bj(xj)|2
≤

∏j−1
k=j−d d

2
jk∏j−1

k=j−d−1 djk

+

∏j+d

k=j+1 d
2
jk∏j+d+1

k=j+1 djk

=

∏j−1
k=j−d djk

dj,j−d−1
+

∏j+d

k=j+1 djk

dj,j+d+1
.

Since
dj,j−d

dj,j−d−1
≤ 1,

dj,j+d

dj,j+d+1
≤ 1,

it follows that

|Cj(xj)|

|Bj(xj)|2
≤

j−1∏

k=j−d+1

djk +

j+d−1∏

k=j+1

djk ≤ Chd−1,

which, together with (13), gives the bound on L3 in (19). 2
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3 Error at intermediate points

We now consider the rate of convergence of the derivative of the error at any point x in
[a, b]. For the first derivative we obtain the same rate of convergence as at the nodes,
namely O(hd), but only under the stricter condition that f ∈ Cd+3[a, b].

Theorem 3 If d ≥ 2 and if f ∈ Cd+3[a, b], then

‖e′‖ ≤ Chd.

Proof. Due to the continuity of e′, it is sufficient to let x ∈ (xj , xj+1) and to show that

|e′(x)| ≤ Chd, (22)

independently of j. To establish (22), we differentiate (5), to obtain

e′(x) =
A′(x)

B(x)
− A(x)

B′(x)

B2(x)
. (23)

In the proof of Theorem 2 of [7] it was shown that

|B(x)| ≥
1

Chd+1
, ∀x ∈ [a, b],

and so, from Lemma 2, it follows that

|A′(x)|

|B(x)|
≤ Chd+1.

Since |A(x)| ≤ C, it remains to show that

|B′(x)|

|B2(x)|
≤ Chd. (24)

We use the following index sets introduced in [7] and which subdivide I:

J1 = {i ∈ I : i ≤ j − d}, J2 = {i ∈ I : j − d+ 1 ≤ i ≤ j}, J3 = {i ∈ I : j + 1 ≤ n− d}.

Now

|B′(x)| =

∣∣∣∣∣
∑

i∈I

d∑

m=0

(−1)i+1

(x− xi) · · · (x− xi+d)(x− xi+m)

∣∣∣∣∣ ≤
d∑

m=0

(Mm,1 +Mm,2 +Mm,3), (25)

where we have interchanged the summation order and set

Mm,p :=

∣∣∣∣∣∣

∑

i∈Jp

(−1)i+1

(x− xi) · · · (x− xi+d)(x− xi+m)

∣∣∣∣∣∣
, p = 1, 2, 3.
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If Jp = ∅, then Mm,p = 0. J2 is not empty since d ≥ 2.
For every fixed m, the terms in the sums in Mm,1 and Mm,3 are alternating in sign and
increasing, respectively decreasing, in absolute value and so

Mm,1 ≤
1

dj−d · · · djdj−d+m

and Mm,3 ≤
1

dj+1 · · · dj+1+ddj+1+m

.

In the same proof in [7, p. 322], it has been shown that

|B(x)| ≥ |λi(x)|, ∀ i ∈ J2. (26)

Next, we divide Mm,1 by |B(x)|2 and use (26) with i = j − d+ 1, so that

Mm,1

|B(x)|2
≤

d2
j−d+1 · · ·d

2
j+1

dj−d · · · djdj−d+m

=
dj−d+1 · · · djd

2
j+1

dj−ddj−d+m

,

and since dj/dj−d+m ≤ 1 for m = 0, . . . , d and dj−d+1/dj−d ≤ 1:

Mm,1

|B(x)|2
≤ dj−d+2 · · ·dj−1d

2
j+1 ≤ Chd.

Similarly
Mm,3

|B(x)|2
≤ Chd.

Finally we bound Mm,2/|B(x)|2. Choosing the same i ∈ J2 in (26) as in each term of the
sum in Mm,2, it follows

Mm,2

|B(x)|2
≤
∑

i∈I2

d2
i · · · d

2
i+d

di · · · di+ddi+m

=
∑

i∈I2

di · · · di+m−1di+m+1 · · · di+d ≤ Chd.

Thus (24) follows from (25). 2

In the case d = 1, we obtain the same rate of convergence, O(h), as for the larger d in
Theorem 3 but only under a bounded mesh ratio.

Theorem 4 If d = 1 and if f ∈ C4[a, b], then

‖e′‖ ≤ C(2β + 1)h,

where

β := max
{

max
1≤i≤n−1

di,i+1

di,i−1

, max
0≤i≤n−2

di+1,i

di+1,i+2

}
.
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Proof. Again we determine the open subinterval (xj , xj+1) containing x and consider (23).
Since the bounds for |A(x)|, |A′(x)| and |B(x)| from the previous theorem also hold for
d = 1, we bound |B′(x)|/|B(x)|2 for d = 1 and J2 = {j}. Using similar arguments as in
that theorem, we obtain

|B′(x)|

|B(x)|2
≤

1∑

m=0

(
1

|B(x)|2

∣∣∣∣∣
∑

i∈I

(−1)i+1

(x− xi)(x− xi+1)(x− xi+m)

∣∣∣∣∣

)

≤

1∑

m=0

(
d2

jd
2
j+1

dj−1djdj−1+m

+
d2

jd
2
j+1

djdj+1dj+m

+
d2

jd
2
j+1

dj+1dj+2dj+1+m

)

≤ 2
d2

j+1

dj−1
+ dj+1 + dj + 2

d2
j

dj+2

≤ 2(2β + 1)h.

2

For the second derivative the mesh ratio enters every bound.

Theorem 5 If d ≥ 3 and if f ∈ Cd+4[a, b], then

‖e′′‖ ≤ C(β + 1)hd−1.

Proof. We continue to work with x ∈ (xj , xj+1), and we express the error e in (5) as

e(x) = ψ(x)ẽ(x),

where

ψ(x) := (x− xj)(x− xj+1), ẽ(x) :=
A(x)

B̃(x)
and B̃(x) := ψ(x)B(x).

Now, by the Leibniz rule,

e′′(x) =

2∑

i=0

(
2

i

)
ψ(2−i)(x)ẽ(i)(x)

= 2
A(x)

B̃(x)
+ 2ψ′(x)

(
A′(x)

B̃(x)
− A(x)

B̃′(x)

B̃2(x)

)

+ ψ(x)

(
A′′(x)

B̃(x)
− 2A′(x)

B̃′(x)

B̃2(x)
+ 2A(x)

B̃′2(x)

B̃3(x)
−A(x)

B̃′′(x)

B̃2(x)

)
.

(27)

Every factor A(k)(x) can be bounded using Lemma 2. In the coming arguments we use the
following result.
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Lemma 3 If d ≥ 1 and if x ∈ [a, b], then

1

|B̃(x)|
≤ Chd−1.

Proof. For x ∈ (xj , xj+1), the definition of B̃ reads

B̃(x) = ψ(x)B(x) = ψ(x)
n−d∑

i=0

λi(x).

Since
|B(x)| ≥ |λi(x)|,

for any i ∈ J2, we deduce from the definition of λi that

1

|B̃(x)|
≤

∏i+d

k=i dk

djdj+1
=

i+d∏

k=i
k 6=j,j+1

dk ≤ Chd−1, ∀i ∈ J2, (28)

which evidently holds also at the nodes. 2

The factors which remain to be bounded are the following:

N1(x) :=
B̃′(x)

B̃2(x)
, N2(x) := ψ(x)

B̃′(x)

B̃(x)
, N3(x) := ψ(x)

B̃′′(x)

B̃2(x)
. (29)

We split B̃ into five parts:

B̃(x) = ψ(x)

(
j−d−1∑

i=0

λi(x) + λj−d(x) +

j∑

i=j−d+1

λi(x) + λj+1(x) +
n−d∑

i=j+2

λi(x)

)

=: K1(x) +K2(x) +K3(x) +K4(x) +K5(x).

(30)

For symmetry reasons, it is sufficient to study the first three terms, K1, K2 and K3, since
K4 and K5 are analogous to K2 and K1. We begin with the first derivative of K1:

K ′
1(x) = ψ′(x)

j−d−1∑

i=0

λi(x) + ψ(x)

j−d−1∑

i=0

λ′i(x). (31)

The terms in both sums alternate in sign and increase in absolute value; we deduce that

|K ′
1(x)| ≤ 2h

j−1∏

k=j−d−1

d−1
k + djdj+1

j−1∑

m=j−d−1

d−1
m

j−1∏

k=j−d−1

d−1
k . (32)
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We next turn to K2, which after simplification reads

K2(x) = (x− xj+1)(−1)j−d

j−1∏

k=j−d

(x− xk)
−1. (33)

It follows that

|K ′
2(x)| ≤

j−1∏

k=j−d

d−1
k + dj+1

j−1∑

m=j−d

d−1
m

j−1∏

k=j−d

d−1
k . (34)

We may rewrite K3 as

K3(x) =

j∑

i=j−d+1

(−1)i

i+d∏

k=i
k 6=j,j+1

(x− xk)
−1, (35)

which yields the following bound for its derivative:

|K ′
3(x)| ≤

j∑

i=j−d+1

i+d∑

m=i
m6=j,j+1

d−1
m

i+d∏

k=i
k 6=j,j+1

d−1
k . (36)

In view of deriving a bound on N1, we first take the quotient of (32) with |B̃(x)|2. Choosing
i = j − d+ 1 in (28), we obtain

|K ′
1(x)|

|B̃(x)|2
≤ 2h

∏j−1
k=j−d+1 d

2
k∏j−1

k=j−d−1 dk

+ dj+1

j−1∑

m=j−d−1

dj

∏j−1
k=j−d+1 d

2
k

dm

∏j−1
k=j−d−1 dk

≤ 2h

∏j−1
k=j−d+1 dk

dj−d−1dj−d

+ h

j−1∑

m=j−d−1

dj

∏j−1
k=j−d+1 dk

dmdj−d−1dj−d

.

Since dj−d+1/dj−d−1 ≤ 1 and dj−d+2/dj−d ≤ 1, and dj/dm ≤ 1 for m ≤ j − 1, we see that

|K ′
1(x)|

|B̃(x)|2
≤ 2h

j−1∏

k=j−d+3

dk + h

j−1∑

m=j−d−1

j−1∏

k=j−d+3

dk ≤ Chd−2.

Using similar arguments, a bound of the same order may be derived for |K ′
2|/|B̃|

2 and for

|K ′
3|/|B̃|

2. The result is
|N1(x)| ≤ Chd−2.

To deal with N2, we use the mesh ratio β. Again we begin with the term involving K ′
1,

choose i = j − d + 1 in (28) and, instead of cancelling factors in the numerator and
denominator, we use the fact that dk/dk−1 ≤ 1 for k = j − d+ 1, . . . , j − 1:

|ψ(x)|
|K ′

1(x)|

|B̃(x)|
≤ 2h

djdj+1

∏j−1
k=j−d+1 dk

∏j−1
k=j−d−1 dk

+ d2
j+1

j−1∑

m=j−d−1

d2
j

∏j−1
k=j−d+1 dk

dm

∏j−1
k=j−d−1 dk

≤ 2h
djdj+1

dj−d−1dj−1

+ h

j−1∑

m=j−d−1

d2
jdj+1

dmdj−d−1dj−1

.
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Since dj/dj−d−1 ≤ 1, and dj/dm ≤ 1 for m ≤ j − 1, we obtain

|ψ(x)|
|K ′

1(x)|

|B̃(x)|
≤ 2h

dj+1

dj−1
+ h

j−1∑

m=j−d−1

dj+1

dj−1
≤ Cβh.

Similar arguments lead to a bound of the same order for |ψ(x)||K ′
2|/|B̃|. For |ψ(x)||K ′

3|/|B̃|
we may cancel the whole product in every term of the inner sum without making use of
the mesh ratio:

|ψ(x)|
|K ′

3(x)|

|B̃(x)|
≤ djdj+1

j∑

i=j−d+1

i+d∑

m=i
m6=j,j+1

d−1
m ≤ Ch.

Thus we have
|N2(x)| ≤ C(β + 1)h.

A bound for N3 may be derived using similar arguments as for N1 and the following
observation: the differentiation of B̃′ leads to a supplementary factor (x − xi)

−1 in some

of the terms of B̃′′. Since i 6= j, j + 1, the absolute value of this factor can be eliminated
through multiplication with |ψ|:

|ψ(x)|

|x− xi|
=
djdj+1

di

≤ Ch.

Consequently
|N3(x)| ≤ Chd−1.

This last step concludes the proof, since bringing together all the bounds on the terms of
the expansion (27) of e′′ yields the claimed result. 2

Theorem 6 If d = 2 and if f ∈ C6[a, b], then

‖e′′‖ ≤ C(β2 + β + 1)h.

Proof. If we expand again the factors N1, N2 and N3 in (29) in the special case d = 2, we
see that everyone of them may be bounded by a linear function of β. 2

4 Numerical examples

In order to evaluate the derivatives of r, we write it in its barycentric form

r(x) =

∑n

i=0
wi

x−xi
fi∑n

i=0
wi

x−xi

, (37)

where the formulas for the weights wi are given in [7]. Elegant formulas for the derivatives
of an interpolant given in this form have been derived by Schneider and Werner in [11].
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In particular, using their formulas for the nodal case, one can easily compute the first and
second derivatives of r at all the nodes at once. Following [3], it is sufficient to construct
differentiation matrices D(1) and D(2) of size (n+ 1) × (n+ 1). If f is the vector of length
n + 1 of the values f(xk), then the product D(1)f , respectively D(2)f , yields the vector of
the first, respectively second, derivative of r at the nodes.

Table 1: Error in the derivatives of r interpolating f1

first derivative second derivative
n error order error order

10 1.2e−01 5.0e−01
20 5.2e−03 4.5 4.5e−02 3.5
40 1.9e−04 4.7 3.3e−03 3.8
80 7.2e−06 4.7 2.5e−04 3.7
160 2.9e−07 4.6 2.1e−05 3.6
320 1.3e−08 4.5 1.9e−06 3.4
640 6.8e−10 4.3 1.9e−07 3.3

To illustrate our theoretical results, we started with an example of [7], namely the in-
terpolation of the function f1(x) := sin(x) for x ∈ [−5, 5]. We used the rational interpolant
with d = 4 and sampled f1 at equidistant nodes. Our aim was to survey the estimated
approximation orders of the derivatives of the interpolant and compare them with the re-
sults obtained for the interpolant itself. We computed the error at the same eleven nodes
for different values of n. Table 1 shows the errors and orders for the first and second
derivatives. Comparing these results with the approximated orders in [7], we see that the
order decreases almost exactly by one unit at every differentiation.

Table 2: Error in the derivatives of r interpolating f2

first derivative second derivative
n error order error order

10 4.1e−01 1.5e+00
20 3.3e−02 3.6 2.7e−01 2.5
40 9.4e−05 8.5 1.6e−03 7.4
80 1.9e−06 5.7 7.2e−05 4.5
160 1.4e−07 3.7 1.4e−05 2.3
320 1.2e−08 3.5 2.3e−06 2.7
640 1.5e−09 3.0 3.1e−07 2.9

With the next example we studied the convergence rates at intermediate points. For
that purpose, we sampled Runge’s function f2(x) := 1/(1+x2) at equidistant nodes in the
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interval [−5, 5]. We chose d = 3 and computed the maximum error at 1000 equidistant
points inside the interval which are not nodes. Table 2 displays our results, which illustrate
Theorems 3 and 5 in this particular case.

Table 3: Error in the derivatives of r interpolating f3

first derivative second derivative
n error order error order

10 2.8e−01 2.0e+01
20 7.7e−02 1.9 2.0e+00 3.3
40 1.2e−02 2.7 5.9e−01 1.7
80 1.5e−03 3.0 1.6e−01 1.9
160 2.0e−04 2.9 3.9e−02 2.0
320 2.4e−05 3.0 9.9e−03 2.0
640 3.0e−06 3.0 2.5e−03 2.0
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1st derivative
2nd derivative

Figure 1: Errors in the rational interpolation with d = 3 of f3 sampled at Chebyshev points
in [−1, 1] and approximation of its first and second derivatives

As mentioned in the Introduction, we plan to apply the results explained in the present
paper to the study of the numerical solution of differential equations. For this reason we
experimented with the exact solution of a model problem from Stoer and Bulirsch [12],
adapted to the interval [−1, 1], namely

f3(x) :=
e−20

1 + e−20
e10(x+1) +

1

1 + e−20
e−10(x+1) − cos2(

π

2
(x+ 1)).
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This time, we sampled the function at Chebyshev points of the second kind and interpolated
the computed values using the rational interpolant with d = 3. Table 3 shows the maximum
error at 1000 equidistant points and the experimental convergence rates. It can be proven
that for such Chebyshev points of the second kind, the mesh ratio β is bounded by 3 for all
n. Again, the k-th derivative of the rational interpolant converges at the rate of O(hd+1−k)
as h→ 0 in the cases k = 1, 2. We also supply a graphical survey of this same experiment
at even values of n in Figure 1. In a log-log scale, the errors in the approximation of the
first two derivatives of f3 are added to those of its rational interpolant. For n ≥ 20 the
curves are nearly straight lines of slopes −4, −3 and −2.

Table 4: Error in the derivatives of the cubic spline interpolating f2

first derivative second derivative
n error order error order

10 7.6e−02 3.7e−01
20 2.0e−02 1.9 2.9e−01 0.3
40 3.4e−03 2.5 1.1e−01 1.4
80 3.9e−04 3.1 2.5e−02 2.2
160 4.7e−05 3.0 6.1e−03 2.0
320 5.9e−06 3.0 1.5e−03 2.0
640 7.1e−07 3.1 3.8e−04 2.0
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Figure 2: Errors in the spline and rational (FH) approximations with d = 3 of the first
(k = 1) and second (k = 2) derivatives of f2 sampled at equidistant points in [−5, 5]

We sampled all three functions at equidistant nodes and at Chebyshev points. The
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experimental convergence rates, in the cases not displayed in Tables 1, 2 and 3, are very
similar and thus omitted.

Finally we repeated the computation with f2, this time using the cubic spline with the
not-a-knot end conditions. Since Runge’s function is analytic, the spline interpolant and
its derivatives have the same convergence orders as the rational interpolant with d = 3
and its derivatives (see [6]). Table 4 reveals that the experimental orders coincide for large
enough n, but the error in the rational function is considerably smaller than that of the
spline. The difference is due to the faster error decay of the derivatives of the rational
interpolant for small values of n. Figure 2 confirms this observation: for n ≥ 50 the
curves corresponding to the errors in the spline and rational approximations of the first
respectively second derivative of f2 are almost parallel.

5 Conclusion

Our results show the O(hd+1−k) convergence of the k-th derivative of a family of barycentric
rational interpolants for k = 1 and 2. The question of a recursive approach for larger k’s
arises naturally; we tried to find such a proof, unfortunately without success in the general
case studied here. However, the first and last authors have recently discovered a proof
that works for the error at the nodes and under the restriction that these are equally or
quasi-equally distributed [9].

Acknowledgement. The authors thank the referees for their constructive comments.
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