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Abstract

We present an ontology-driven approach to semantic annotation, indexing and re-
trieval of document units. This approach is based on a novel semantic document model
(SDM) that we developed to make office-like document units be uniquely identified,
semantically annotated with concepts from annotation ontologies and linkable across
document boundaries. In the semantic annotation model that we propose, we first
lexically expand descriptions of ontological concepts to enhance syntactic matching.
Next, we expand a set of syntactic matches with semantically related concepts (i.e.,
semantic matches) discovered by exploring the annotation ontology. Moreover, we
calculate the annotation weight of both the syntactic and semantic matches by tak-
ing into account the effects of the lexical expansion and measuring semantic distance
between ontological concepts. The retrieval model of document units utilizes the in-
verted concept index that we generate from the concepts used in the annotation and
their weights for document units they annotate. Results of the preliminary evaluation
conducted with a prototype implementation are promising. We present the analysis of
these results.
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1 Introduction

The main goal of ontology-driven information retrieval is to enhance search by making use of available se-
mantic annotations and their underlining ontologies. Accordingly, central to the ontology-driven informa-
tion retrieval is the problem of having substantial amount of accurate semantic annotations. Most existing
semantic annotation approaches [5, 13, 9, 2] are based on syntactic matching of ontological concept labels
(descriptions) against document textual content. From the human point of view concept labels often catch
the meaning of concepts in an understandable way. However, poor descriptions of ontological concepts,
ambiguous meanings of concept labels and inefficiency of existing natural language processing (NLP) tech-
niques usually lead to inaccurate semantic annotation. After the syntactic matching the important part is to
discover remaining relevant concepts with the help of formal ontological semantics. Such discovered con-
cepts are usually referred to as semantic matches. The combination of the syntactic and semantic matching
can increase the amount of semantic annotations, but it opens the problem of the annotation relevance [16].
Not all semantic matches are equally relevant to the resource they annotate. Therefore, the major issue in this
scenario is how to assess the relevance of the discovered semantic matches and to use only the most relevant
of them.

Most existing approaches mainly focus on documents as a whole, while we are interested in a finer level of
granularity. In this paper we present an approach to semantic annotation, indexing and retrieval of document
units defined by a new document model, namely semantic document model (SDM) [10]. We created SDM
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to bring the vision of the Semantic Web [1] to office-like desktop documents and to make their units (e.g.,
paragraphs, sections, tables and figures) to be uniquely identified and linkable across document boundar-
ies. Moreover, SDM document units can be easily put in explicit relations with other digital and non-digital
uniquely identified resources. Different logical assertions can be added to these relations as well.

The approach aims to enhance the semantic annotation and indexing of document units by enhancing
both syntactic and semantic matching. To enhance syntactic matching we apply the lexical expansion of
concept descriptions and calculate the weight of each syntactic match. To enhance semantic matching we
introduce an algorithm, namely the concept exploration algorithm, which explores the annotation ontology
starting from the syntactic matches, discovers relevant semantic matches and calculates semantic distances
between syntactic and semantic matches. Based on these semantic distances and the weights of the syntactic
matches we calculate the weights of the discovered semantic matches. The syntactic and semantic matches
together form the concept weight vector of the document unit being annotated. Similarly to document units,
we represent the user queries by concept vectors and the corresponding concept weight vectors, and then
apply modified vector space model for retrieval of document units.

The organization of the paper is as follows. In Section 2, we discuss related work from ontology-driven in-
formation retrieval. In Section 3 we briefly present SDM, focusing only on the aspects which are important to
this work. Section 4 describes the semantic annotation in detail. Section 5 discusses the concepts exploration
algorithm used in the semantic annotation. In Section 6 we explain our model to indexing and retrieval of the
semantically annotated document units. Section 7 provides some details about the prototype development
and discusses results of the conducted evaluation.

2 Related Work

In recent years, an increasing number of IR systems have started to use ontologies to come up with semantic
representations of documents and to help the users clarify their information needs. The majority of ap-
proaches [5, 13, 9, 2, 11] used in these systems is focused on identifying concept instances in documents,
based on the concept descriptions (syntactic matches), and then to use the identified concepts for document
annotation. Only few approaches try also to assess the relevance/weight of the ontological annotations. In
[18] annotation weights are calculated based on the frequency of occurrence of concept instances in the doc-
ument. The approach presented in [13] does not calculate annotation weights but calculates the weight of
each relation instance that associates annotation instances, by analyzing the link structure of the knowledge
base. To the best of our knowledge, the issue of determining annotation weights based on ontology features
has only been addressed in the approach presented in [14]. This approach extends traditional tf-idf method
by taking into account the global usage of concepts, individuals and triples in the annotations.

Besides annotation, ontologies have also been used in the process of enriching and disambiguating user
queries. Approaches presented in [2, 11] use ontologies as thesauri containing synonyms, hypernyms and
hyponyms for the query terms, and do not consider the context of each term, that is, every term is equally
weighted. [3] presents a probabilistic query expansion model based on a similarity thesaurus which was
constructed automatically. In that approach the query is expanded by adding terms that are similar to the
concept of the query, rather than selecting terms that are similar to the query terms. Similarly, in [7], a query
expansion is performed by selecting additional terms from those that are connected to the same concepts as
the userÕs query terms.

The existing approaches to ontology based IR can be grouped into knowledge based (KB) and vector space
(VS) model driven approaches. KB approaches [13, 9] use reasoning mechanisms and ontology query lan-
guages to retrieve desired documents from collections of semantically annotated documents. VS approaches
[18, 11] try to adapt the traditional IR vector space model by representing both documents and queries by
weighted concept vectors. The way in which these vectors are constructed differentiates between the ap-
proaches.

To distinguish our work from the related work discussed above we emphasize the main features of our
approach as follows. Our approach combines the lexically expanded syntactic matching and ontology fea-
tures to compose a document concept vector and to calculate concept weights. The concept weights are
calculated based on the relevance of the lexically expanded syntactic matches and the semantic distances
between concepts in the ontology. The key part of our approach that distinguishes it from similar existing
approaches is the concept exploration algorithm, which calculates the semantic distances between concepts
in the ontology based on the ontology relationships. Similarly as documents, queries are represented by the
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weighted concept vectors and the VS model is applied to calculate similarities between the documents and
the queries.

3 Semantic Document Model - SDM

We created a novel semantic document model (SDM), partly inspired by IBM’s Darwin Information Architec-
ture (DITA)1, which divides digital content into small, self-contained topics that can be reused in different
deliverables. SDM defines a semantic document as a composite resource built of smaller uniquely identified
resources, namely document units (DUs) which hold pieces of document content and are semantically an-
notated by entities (i.e., concepts, properties and instances) from underlined domain ontologies. Moreover,
DUs can be put in different kinds of relationships with other DUs or any uniquely identified digital or non-
digital resource. Structural relationships among DUs build a document’s logical structure. SDM is form-
ally described by the document ontology [10] which defines possible types of DUs, types of relationships
among DUs and provides the annotation interface (e.g., concepts and properties) for adding annotations
to DUs. Two main types of DUs specified by the do:unitType property are document content units (CUs)
and document knowledge units (KUs). CUs represent units of raw digital content and can be further spe-
cialized into discreteCUs (e.g., Graphic and TextFragment) and continuousCUs (e.g., Audio, Video and Sim-
ulation). KUs represent document units that aggregate several CUs and add navigation among them (e.g.,
Paragraph, Section, Slide and Table). The annotation interface (Figure 1) consists of the do:hasAnnotation
property and the do:DUAnnotation concept along with its properties. DU annotations are instances of the
do:DUAnnotation concept characterized by the annotation identifier (do:annotationURI), the annotation
type (do:annotationType) property that specifies the type of the ontological entity (i.e., concept, property
or instance), the annotation entity (do:annotationEntity) property that links the ontological entity to the an-
notation and the annotation weight (do:annotationWeight) that determines the relevance of the ontological
entity for the document unit.

Figure 1: A part of the document ontology (do) that describes the annotation interface for DUs

The semantic document, that is, an instance of SDM is an RDF (Resource Description Framework) graph
whose nodes represent instances of DUs defined in the document ontology to which the annotations (in-
stances of do:DUAnnotation) are linked. Moreover, DUs should also hold the units’ binary content. However,
current implementations of RDF repositories are not meant to store large chunks of binary content, so that
we store the binary content of DUs into a binary content repository and link it to corresponding RDF nodes
via the do:unitContent property.

4 Semantic Annotation of Document Units (DUs)

The semantic annotation of DUs refers to the process of discovering concepts from domain ontologies whose
instances appear in the DUs and their linking to DUs via the annotation interface. We refer to the domain
ontologies whose concepts are used for the annotation as the annotation ontologies in the rest of the paper.

As we pointed out in the Introduction, two major problems with existing semantic annotation approaches
are: a) the problem of inaccurate syntactic matching and b) the problem of determining the relevance of
both the syntactic and the corresponding semantic matches for DUs. In our approach we aim to address

1http://www.oasis-open.org/committees/dita
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both problems. First, to get more accurate syntactic matches we perform lexical expansion of concept de-
scriptions with lexically related terms from lexical dictionaries. Second, to determine the relevance of the
syntactic matches we do the term-weighting of the concept terms regarding the DU content and then, based
on the term weights, and taking into account the origin of the terms, we calculate the weight of the syntactic
matches. To determine the relevance of the semantic matches we calculate the semantic distance between
the semantic matches and their corresponding syntactic matches. Then based on the calculated semantic
distances and the weight of the syntactic matches, we calculate the weight of the semantic matches.

The semantic annotation is performed in three steps: i) the lexical expansion of concept descriptions, ii)
the syntactic matching and iii) the semantic matching. In the rest of the section we describe each step in
more detail.

4.1 Lexical Expansion of Concept Descriptions

Any domain ontology can be represented as a graph O := (C,R, HC , H R ) where C = {c1, c2, c3, ..., cn } is a set
of concepts, R = {r1, r2, ..., rm } is a set of relations and HC , H R are hierarchies defining a partial order over
concepts and relations respectively. Moreover, each concept is described with a set of labels. For example,
the set of labels of the concept c i is Li = {l i 1, l i 2, ..., l i m }. In practice, however, ontology engineers provide
only one label for each ontology concept or even neglect to label concepts considering human readable parts
of concept URIs to be concept labels [17].

The objective of the lexical expansion is to expand concept descriptions in the annotation ontology with
related terms from lexical dictionaries such as WordNet2. In our approach we consider three dimensions of
lexical relations: synonym, hyponym and hypernym. The results of the lexical expansion are the expanded
sets of concept labels. For example, for concept c i ∈C it is:

Le
i = {l i 1, l i 2, ..., l i m , l i m+1, ..., l i k } (1)

where the first m labels are original labels from the ontology and the following k are expanded terms dis-
covered by following the synonym, hypernym and hyponym relations respectively. In order to make a dis-
tinction between the original labels and those coming from the lexical expansion, we introduce a label relev-
ance factor r Fa c t or (l ) and form a concept labels relevance vector. The concept labels relevance vector of
the concept c i is:

−→
RL(c i ) = [r Fa c t or (l i 1), ..., r Fa c t or (l i k )] (2)

where r Fa c t or (l i j ) ∈ R has value 1 if l i j is the original label, has value δs y n if l i j is the synonym, has value
δhy p e r if l i j is the hypernym and has value δhy po if l i j is the hyponym of the original label. In evaluation that
we have conducted (Section 7), we used the values δs y n = 0.7, δhy p e r = 0.47, δhy po = 0.84 which had been
determined in the experimental studies reported in [6].

4.2 Syntactic Matching

In this step, we analyze the content of DUs and check if some of the concept labels, including those from the
lexical expansion, appear in DUs. For the concepts whose labels appear in DUs, (i.e., the syntactic matches)
we calculate weights by taking into account the following factors: 1) the concept labels’ relevance factor (de-
termined in the lexical expansion), 2) the labels’ frequency in the DU and 3) the inverse document unit fre-
quency of the concept labels in a collection of all DUs annotated by the given annotation ontology. Since SDM
(Section 3) defines DUs as small pieces of a document content we do not use a length normalization factor in
determining the weight of the concept labels. That would be appropriate in the case of the text categorization
and indexing of large text documents [15].

Let us consider again the example concept c i ∈ C from Section 4.1 and a document unit d that is being
annotated. Firstly, for each label l i j from the expanded set of the concept’s labels (1) we count the label
frequency LF (l i j ) in the document unit d . Secondly, we calculate the inverse document frequency I DF (l i j )
[14] as l o g N

1+n
where n is a number of DUs to which the label l i j is assigned and N is a total number of DUs in

the collection. Finally, when we have LF (l i j ) and I DF (l i j ) calculated, we calculate the weight of the concept
label l i j for document unit d as follows:

w l i j = LF (l i j ) ∗ I DF (l i j ) (3)

2http://wordnet.princeton.edu/
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The weights of all the concept labels (1) of the concept c i for the document unit d form a concept labels
weight vector:

−→
WL(c i |d ) = [w l i 1 , w l i 2 , ..., w l i k ] (4)

Based on the concept labels weight vector (4) and the concept labels relevance vector (2) we calculate the
weight of the concept c i for the document unit d as a scalar product of these two vectors:

wc i =
−→
WL(c i |d ) ∗

−→
RL(c i ) (5)

If wc i > 0 then the concept c i annotates the document unit d and wc i determines the relevance of this an-
notation.

In the same way as for the concept c i , we calculate the weights of all the other concepts from the annota-
tion ontology for the document unit d . All concepts with weight greater then zero form the concept vector of
the document unit d : −→

d = [c1, c2, ..., cr ]; c i ∈C ∧ wc i ≥ 0 (6)

The weights of the concepts from the concept vector
−→
d form a concept weight vector of the document unit

d : −→
WC (d ) = [wc1 , wc2 , ..., wcr ] (7)

As a result of the syntactic matching we get the initial set of the annotation concepts (i.e., syntactic matches)
for the DU being annotated. These concepts then serve as input concepts for discovering semantic matches.

4.3 Semantic Matching

The objective of the semantic matching is to extend the set of syntactic matches with semantically related
concepts from the annotation ontology. For this purpose we introduce the Concept Exploration Algorithm
(CEA) explained in detail in Section 5. The algorithm starts from an input concept and traverses the onto-
logy graph to discover semantically related concepts. In short, the algorithm calculates semantic distances
between the input concept and the other ontology concepts within a given path distance (i.e., number of
hops in the ontology graph) and retrieves those concepts whose semantic distance from the input concept is
less than a given semantic distance constraint (i.e., a threshold).

By applying the algorithm to all syntactic matches (6) for the document unit d we discover the set of the

document unit’s semantic matches and form the expanded concept vector
−→
d e = [c1, c2, ..., cr , ce 1, ..., ce m ] of

the document unit. For each of the semantic matches ce j the algorithm calculates the semantic distance

SDi s t c (ce j , c i ) from the initial syntactic match c i ∈
−→
d . The weight wce j of the semantic match ce j for the

document unit d is then calculated by the following formula:

wce j =wc i ∗β−SDi s t c (ce j ,c i ); β > 1 (8)

where wc i is the weight of the syntactic match c i and β is a generic coefficient. We devised the formula (6) so
that it satisfies boundary conditions regardless of the value of coefficient β . For the first boundary condition
SDi s t c (ce j , c i ) = 0, meaning that the concepts ce j and c i are semantically identical, wce j = wc i , that is, the
weight of the semantic match is the same as the weight of the initial syntactic match. For the second boundary
condition SDi s t c (ce j , c i )→∞, meaning that the concepts ce j and c i are semantically unrelated, wce i → 0,
that is, the weight of the semantic match tends towards zero. For SDi s t c (ce j , c i ) ∈ (0,∞), the optimal value
of coefficient β has to be experimentally determined. In the evaluation we report in Section 7, we used the
exponential constant e as the value of coefficient β thus (8) belongs to the family of negative exponential
functions.

5 Concept Exploration Algorithm - CEA

The main assumption on which the algorithm is based is the possibility to associate numerical values to
ontological relations, that we refer to as the relation semantic distances (SDi s t r ), and form the weighted
ontology graph. We distinguish between two types of relation semantic distance: SDi s t r

D→R (r ) determining
semantic distance of the concepts belonging to the domain (D) of r from the concepts belonging to the range
(R) of r and SDi s t r

R→D (r ) determining the semantic distance of the concepts belonging to the range of r
from the concepts belonging to the domain of r .
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A measuring of the semantic distance/relatedness has received a great deal of attention in the field of
lexical semantics [12]. In the field of ontology engineering, however, the focus has been on the formal repres-
entation of relations between concepts rather then measuring and quantification of the relational semantic
distances. To the best of our knowledge none of the existing ontology representational languages has built-in
constructs/attributes that could be used to express the value of the semantic distances between ontological
concepts linked by a given relation. In general, the values of the relational semantic distances can be: 1)
specified at design time of the ontology by the domain experts, 2) experimentally devised by using a con-
trolled knowledge/data base and 3) learned over time by exploiting the ontology in real world applications
within the ontology domain. Based on our experience the choice between these three strategies is strongly
domain-dependent. A combination of the strategies is also possible.

The general idea of the algorithm (see Algorithm 1) is to explore the ontology graph starting from the
input concept to find all concepts which satisfy the given semantic distance constraint (SDc ) and the given
path length constraint (PL c ). SDc is the maximum allowed semantic distance between the input and target
concepts. PL c is the maximum number of hops (i.e., ontology relations) allowed to belong to a path between
the input and target concepts.

Algorithm 1 Concept Exploration Algorithm

1: INPUT Ow , c ,SDc , PL c

2: OUTPUT
−→
C ′e ,
−−→
SDe

3: P= Pa t hs 1(Ow , c , PL c ) = {p1, ..., pm } {finds all paths from c with a length ≤ PL c }
4: C=Conc e p t s (P) = {c1, ..., cn } {extracts all concepts from the set of paths P}
5: for all c i such that c i ∈C do
6: Pi = Pa t hs 2(c , c i ,P) = {p i 1, ..., p i k } {finds a set of acyclic paths Pi ⊂P between c to c i }
7: for all p i j such that p i j ∈Pi do
8: SDi s t p (p i j ) {calculates the semantic distance of path p i j }
9: end for

10: SDi s t c (c i , c ) {calculates the semantic distance of the concept c i from c}
11: end for
12:
−→
C ′ = [c ′1, ..., c ′p ], c ′i ∈C and SDi s t c (c ′i , c )≤SDc

13:
−→
SD = [SDi s t c (c ′1, c ), ..,SDi s t c (c ′p , c )]

The algorithm takes the following input: the weighted ontology graph Ow formed by associating values
of the relation semantic distances to the ontology relations; the input concept c ; the semantic distance con-
straint SDc and the path length constraint PL c . The output consists of a vector of discovered related concepts
−→
C ′ and a vector of the semantic distances

−→
SD between the discovered concepts and the input concept. The

algorithm starts by the Pa t hs 1(Ow , c , PL c ) function (line 3) which constructs a set P of all possible acyclic
paths, starting from the input concept c whose length is ≤ PL c . Next, (line 4) the Conc e p t s (P) function
extracts all concepts from the set of paths P and forms a distinct set of extracted conceptsC. Next, (line 6) for
each concept c i ∈ C function Pa t hs 2(c , c i ,P) returns a set of paths Pi (Pi ⊆ P) which start in concept c and
end in concept c i . Next, (line 8) for each path p i j ∈Pi between c and c i , function:

SDi s t p (p i j ) =
n
∑

k=1

SDi s t r
R→D (rk )

�

�

�

�

�

if direction of rk is c → c i

∨ SDi s t r
D→R (rk )

�

�

�

�

�

if direction of rk is c ← c i

(9)

calculates the semantic distance of the path that we refer to as the path semantic distance (SDi s t p ). For those
rk ∈ p i j with the same direction as a direction c → c i , function (9) takes SDi s t r

R→D (rk ) while for rk with the
direction c ← c i , it takes SDi s t r

D→R (rk ).
After the algorithm calculates the path semantic distances of all paths Pi , it calculates the semantic dis-

tance of concept c i from the input concept c by applying function (10). We call this distance the concept se-
mantic distance (SDi s t c ). SDi s t c (c i , c ) can be also considered as the relation semantic distance SDi s t r

R→D (r (c , c i ))
of a new single relation r (c , c i ) from the concept c to c i .

SDi s t c (c i , c ) =SDi s t r
R→D (r (c , c i )) =

1
k
∑

j=1

1
SDi s t p (Pi j )

(10)
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We designed function (10) so that it prioritizes the impact of paths with the small path semantic distances in
determining the concept semantic distance. Finally, the algorithm discards all concepts from the setCwhich

do not satisfy the SDc constraint, forming in that way the output vector of the discovered related concepts
−→
C ′

and the vector of their semantic distances
−→
SD from the input concept c .

6 Indexing and Retrieval of Document Units

Based on the concept vectors and the corresponding concept weight vectors generated during the semantic
annotation we build an inverted concept index of the semantic documents collection (repository). The index
contains a list of concepts (i.e., concept identifiers) from the annotation ontology each of which is assigned
a list of document units it annotates. For each document unit in the concept’s list, the index also stores the
weight of the concept for the document unit.

The search process normally starts with the user constructing a query that reflects his information needs.
The initial form of the user query in our approach is a free text query. Constructing free text queries over-
comes the problem of knowledge overhead, as it does not require the end user to be familiar with any par-
ticular domain ontology. However, the price of free text queries is ambiguity. Keywords may have multiple
meanings (lexical ambiguity) and a complex expression can have multiple underlying structures (structural
ambiguity). Therefore, the first step in the semantic document search that we propose is ’making sense of the
user query’, that is, finding out the semantic meaning of the query. In our approach we model the semantic
meaning of the query by means of a weighted concept vector composed of concepts from the domain onto-
logy. However, it is not easy to find the exact semantic meaning of the query, as there may be more than one
concept which matches a single query keyword. Our solution to this is to find out all the concept matches for
each keyword and calculate their weights. Actually, the way we form semantic queries from free text queries
is quite similar to the semantic annotation of document units. In other words, we treat a free text query the
same way as a document unit in the annotation process. After the syntactic matching (Section 4.3) and the
semantic matching (Section 4.4), a result is a semantic query represented by a query concept vector and a
query concepts weight vector.

Having formed the semantic query, the rest of the search process proceeds as follows. From the concept
index we find all document units which match at least one concept from the query concept set. After that,
we calculate the similarity between the found document units and the query and rank them. The similar-
ity between the query and the document unit is measured by computing the similarity between the query’s
concept weight vector and the document unit’s concept weight vector, previously reduced to the dimen-
sion of the query’s concept vector (i.e., the number of concepts in the query’s concept vector). Suppose
that we have a query q represented by the concept vector −→q = [cq1 , ..., cqn ]N and the concept weight vec-

tor
−→
Wq = [wq1 , ..., wqn ]N , and the document unit d represented with the concept vector

−→
d = [c1, ..., cm ]M

and the concept weight vector
−→
Wd = [w1, ..., wm ]M . The reduced document unit’s concept weight vector

−→
W ′

d = [w
′
1, ..., w ′

n ]
N is formed so that w ′

i = w j if c i exists in
−→
d and c i = c j . If c i does not exist in

−→
d then

w ′
i = 0. The similarity between vectors

−→
Wq and

−→
W ′

d is computed as the cosine of the angle between them:

Si m i l a r i t y (
−→
Wq ,
−→
W ′

d ) =
−→
W q ∗

−→
W ′

d

|−→W q ||
−→
W ′

d |
(11)

The search finishes by ranking the document units based on their similarity to the query and retrieving the
ranked list of the document units.

7 Implementation and Preliminary Evaluation

In order to enable the evaluation of our approach we have developed a prototype consisting of two mod-
ules: the semantic document authoring module and the semantic document retrieval module. The author-
ing module transforms MS Office documents (i.e., Word and PowerPoint) into semantic documents (RDF
instances of SDM - Section 3) and does the semantic annotation and indexing of DUs with a selected domain
ontology. For the lexical expansion of concept descriptions the module uses the WordNet.Net - .Net library
of the WordNet lexical database. For the text analysis of DUs the module uses the Lucene.Net library. The
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semantic document authoring starts by the user selecting the annotation ontology that describes the domain
of the MS Office document being transformed. The rest of the process is completely automated. The re-
trieval module takes user defined free text queries, forms the semantic queries and executes them against
the indexed collection of semantic documents (i.e., the semantic document repository). The prototype is im-
plemented in C# and it is a part of a broader service oriented architecture, namely the semantic document
architecture - SDArch2, which we have developed previously. SDArch makes the prototype remotely access-
ible, so that one can author and store semantic documents into remote semantic document repositories as
well as search and retrieve DUs from the distant repositories. In order to provide a graphical user interface
for the prototype we have developed an MS Office add-in called ’SemanticDoc’. The add-in enables MS Of-
fice users to transform office documents into semantic documents and to search local and remote semantic
document repositories for DUs to be potentially reused. Further information, snapshots and demos of the
add-in can be found on our project web page2.

The experimental evaluation that we discuss hereafter, was designed more as a proof of concept; it was not
meant to address issues of scalability or efficiency. The document collection that we used in the experiments
was composed of 170 Word documents (2735 paragraphs - document units of interest for these experiments)
containing records for steel, aluminum, copper, titanium, and other metals. We optioned the collection from
KEY-to-METALS3 company, which maintains one of the world’s most comprehensive metals database. As the
annotation ontology we used the Metals ontology, which we also got from the same company. The ontology
contains over 3, 500 concepts about metals and their applications. It is an OWL ontology which conforms to
the SKOS specification [16]. SKOS defines a family of relations such as s kos : na r row e r , s kos : b roa d e r
and s kos : r e l a t e d for expressing simple relationships between concepts within an ontology.

Tabel 1 shows a subset of semantic relations in the Metals ontology, along with their SKOS and OWL rep-
resentations and values of the relation semantic distances. The values of the relation semantic distances
were assessed based on the results of the experimental studies [6]. In these studies the authors measured
the semantic similarity/relatedness between terms in WordNet, connected via the hypernymy, hyponymy,
holonymy, meronymy and synonymy relations, and produced the following values: δhy p e r = 0.47, δhy po =
0.84, δhol o = 0.12, δm e ro = 0.16 andδs y n = 0.70. Valueδr = 0 means that two terms are semantically unrelated
via relation r , and δr = 1 that the terms are semantically identical. We calculate the values of the relation se-
mantic distances as 1−δr and take into account the fact that hypernymy and hyponymy as well as holonymy
and meronymy are mutually inverse relations. Moreover, the Metals ontology contains the ow l : s a m e As
relation which links two semantically identical concepts/individuals, so that both of the relation semantic
distances have been assessed as zero.

Semantic relation Representation SDi s t r
R→D (r ) SDi s t r

D→R (r )

hypernym s kos : b roa d e r 1−δhy p e r = 0, 53 1−δhy po = 0, 16
hyponym s kos : na r row e r 1−δhy po = 0, 16 1−δhy p e r = 0, 53
holonym s kos : r e l a t e d Pa r t O f 1−δhol o = 0, 88 1−δm e ro = 0, 84
meronym s kos : r e l a t e d Ha s Pa r t 1−δm e ro = 0, 84 1−δhol o = 0, 88
synonym ow l : e qu i v a l e nt C l a s s 1−δs y n = 0, 30 1−δs y n = 0, 30
identical ow l : s a m e As 0 0

generic sem. relation s kos : r e l a t e d - -

Table 1: Relation semantic distances in Metals ontology

In order to evaluate our approach, we have transformed the evaluation document set into semantic doc-
uments with five different annotation/indexing options:

• AO1 - simple syntactic matching,
• AO2 - lexically expanded syntactic matching,
• AO3 - lexically expanded syntactic matching and semantic matching (SDC = 1),
• AO4 - lexically expanded syntactic matching and semantic matching (SDC = 2),
• AO5 - lexically expanded syntactic matching and semantic matching (SDC = 3).

The first option AO1 - simple syntactic matching is present in most of the existing ontology-driven inform-
ation retrieval approaches [19, 8, 4, 20]. The second option AO2 includes again only syntactic matching but

2http://www.semanticdoc.org
3http://www.keytometals.com/
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now with the lexically expanded concept descriptions. The last three options AO3, AO4 and AO5 comprise
all the features (i.e., lexical expansion, syntactic matching and semantic matching) of the proposed semantic
annotation and indexing. They only differ in the value of the SDC (semantic distance constraint) parameter
of the concept exploration algorithm (Section 5). The value of the path length constraint is fixed at PL c = 3
for these evaluation tests.

As a result of the transformation we obtained five semantic document collections with the corresponding
inverted concept indexes. Table 2 shows for each of the annotation options: 1) the number of concepts from
the annotation ontology (Metals) that have been used in the annotation and indexing, 2) the total number of
syntactic and semantic matches and 3) the average weights of the syntactic and semantic matches based on
20 randomly chosen document units (i.e., paragraphs). First, comparing AO1 and AO2 which both implement
only syntactic matching, we can see that the lexical expansion of concept descriptions increases the number
of concepts involved in the annotation from 211 to 343 and the number of syntactic matches from 1524 to
3182 but also the average weight of syntactic matches from 2.56 to 3.62. In other words these increases show
that the lexical expansion improves both the quantity and quality of the annotation. The next three options
AO3−AO5 produce the same number of syntactic matches as AO2 (3182), since the syntactic matching stays
intact, but they increase the quantity of the annotation by adding certain numbers of semantic matches.
While the number of the semantic matches increases from AO3 to AO5 (i.e., 6714; 11102; 23716) the average
weight of semantic matches decreases (i.e., 2.43; 1.12; 0.27). This was expected as with higher values of the
semantic distance constraint (SDc ) we get more but less relevant semantic matches.

Annotation Number Number of Number of Average weight Average weight
options of concepts syn. matches sem. matches of syn. matches of sem. matches

AO1 211 1524 - 2.56 -
AO2 343 3182 - 3.62 -
AO3 672 3182 6714 3.62 2.43
AO4 795 3182 11102 3.62 1.12
AO5 924 3182 23716 3.62 0.27

Table 2: Annotation data for each annotation option (AO1-AO5)

To evaluate the performance of the proposed concept-based information retrieval we formed five queries
related to the topic of the evaluation document set and asked three of our colleagues from the university to
read the documents and mark document units (i.e., paragraphs) relevant for the queries. The queries were
then executed against each of the five semantic document collections. Figure 2 shows interpolated precision
at standard recall points.

Comparing the P-R curves of AO1 and AO2 we can see that the lexically expanded syntactic matching
outperforms from the simple syntactic matching in both recall and precision. Moreover, all three options (i.e,
AO3, AO4, AO5) which include semantic matching further increase overall precision and recall. Comparing
their P-R curves and by knowing that they differ only in the value of the semantic distance constraint (i.e.,
SDc = 1, SDc = 2, SDc = 3) we can observe that there is an optimal value for the concept semantic distance
(SDi s t c ) with regard to optimal precision and recall. It means that the semantic matches with the concept
semantic distance higher than the optimal value reduce performances. In our evaluation the optimal concept
semantic distance falls in a range between 2 and 3, since the precision of AO4 is higher than of AO3 but then
it drops for AO5. However, we believe that the value of the optimal concept semantic distance is strongly
dependent on the used evaluation document set and the annotation ontology.

The evaluation results indicate that our concept-based semantic annotation, indexing and retrieval ap-
proach: 1) enlarges the amount of semantic annotations and 2) improves the performances of DUs retrieval
not just in terms of recall, as it was to be expected, but also in terms of precision. We plan to perform more
large-scale evaluation on document sets from different domains by using different annotation ontologies.

8 Conclusion

In this paper we present an ontology-driven approach to semantic annotation and indexing of office-like doc-
ument units, which we developed in order to improve the retrieval of such document units. In our approach
we form the annotations by combining syntactic matches of lexically expanded ontological concepts with
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Figure 2: Interpolated precision of AO1-AO5 at standard recall points

semantic matches obtained by exploring the ontology graph. For each, either syntactic or semantic match,
we calculate its relevance/weight for the document unit it annotates. The annotation weights are used in the
indexing of document units and the calculating document units’ similarity with the user queries. In order to
evaluate the approach we have developed the prototype and conducted a preliminary evaluation. Evaluation
results on the chosen document-set and the annotation ontology have shown the improvements of retrieval
performance compared to simple syntactic matching which is applied in most existing ontology-driven in-
formation retrieval approaches. Our future work will be mainly focused on further evaluation of the proposed
approach and its applicability to documents and ontologies from different domains.
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[10] Saša Nešić. Semantic Document Model to Enhance Data and Knowledge Interoperability. Annals of Information
Systems, Springer, 6:135–162, 2009.

[11] Rifat Ozcan and Y. Alp Aslandogan. Concept-Based Information Access. In ITCC ’05: Proceedings of the International
Conference on Information Technology: Coding and Computing, pages 794–799, 2005.

[12] Philip Resnik. Semantic similarity in a taxonomy: An information-based measure and its applications to problems
of ambiguity in natural language. Journal of Artificial Intelligence Research, 11(95–130), 1999.

[13] Cristiano Rocha, Daniel Schwabe, and Marcus Poggi de Aragão. A hybrid approach for searching in the semantic
web. In WWW ’04: Proceedings of the 13th international conference on World Wide Web, pages 374–383, 2004.

[14] Tuukka Ruotsalo and Eero Hyvönen. A Method for Determining Ontology-Based Semantic Relevance. In the 18th
Database and Expert Systems Applications Conference, DEXA, pages 680–688, 2007.

[15] Gerard Salton and Chris Buckley. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Process. Manage.,
24(5):513–523, 1988.

[16] Jouni Tuominen, Matias Frosterus, and Eero Hyvönen. ONKI SKOS Server for Publishing and Utilizing SKOS Vocab-
ularies and Ontologies as Services. In ESWC, pages 768–780, 2009.

[17] Victoria Uren, Philipp Cimiano, Jose Iria, Siegfried Handschuh, Maria Vargas-Vera, Enrico Motta, and Fabio Cirave-
gna. Semantic Annotation for Knowledge Management: Requirements and a Survey of the State of the Art. Journal
of Web Semantics, 4(1):14–28, 2006.

[18] David Vallet, Miriam Fernández, and Pablo Castells. An Ontology-Based Information Retrieval Model. In ESWC,
pages 455–470, 2005.

[19] Wensi Xi, Edward Fox, and Weiguo Fan. Simfusion: measuring similarity using unified relationship matrix. In the
28th ACM SIGIR Int. Conf. on Research and Development in Information Retrieval, pages 130–137, 2005.

[20] Hai Zhuge and Liping Zheng. Ranking Semantic-Linked Network. In the 12th WWW, pages 32–34, 2003.

11



USI Technical Report Series in Informatics

2006

1. Vaide Zuikeviciute, Fernando Pedone
Conflict-Aware Load-Balancing Techniques for Database Replication

2. Nicolas Schiper, Rodrigo Schmidt, Fernando Pedone
Optimistic Algorithms for Partial Database Replication

3. Anna Egorova-Frster, Amy L. Murphy
A Feedback-Enhanced Learning Approach for Routing in WSN

4. Cyrus P. Hall, Antonio Carzaniga, Alexander L. Wolf
DV/DRP: A Content-Based Networking Protocol for Sensor Networks

5. Antonio Carzaniga, Aubrey J. Rembert, Alexander L. Wolf
Understanding Content-Based Routing Schemes

6. Jeff Rose, Cyrus Hall, Antonio Carzaniga
Spinneret: A Log Random Substrate for P2P Networks

7. Paolo Bonzini, Laura Pozzi
Polynomial-Time Subgraph Enumeration for Automated Instruction Set Extension

8. Lasaro Camargos, Marcin Wieloch, Fernando Pedone, Edmundo Madeira
A Highly Available Log Service for Distributed Transaction Termination

2007

1. Lasaro Camargos, Fernando Pedone, Marcin Wieloch
High-Performance Transaction Processing in Sprint

2. Lasaro Camargos, Rodrigo Schmidt, Fernando Pedone
Multicoordinated Paxos

3. Giovanni Denaro, Alessandra Gorla, Mauro Pezz
An Empirical Evaluation of Data Flow Testing of Java Classes

4. Nicolas Schiper, Fernando Pedone
Optimal Atomic Broadcast and Multicast Algorithms for Wide Area Networks

6. Romain Robbes, Michele Lanza
Towards Change-aware Development Tools

7. Aliaksei Tsitovich
Understanding Vulnerabilities

2008

1. Nicolas Schiper, Sam Toueg
A Robust and Lightweight Stable Leader Election Service for Dynamic Systems

2. Nicolas Schiper, Fernando Pedone
Solving Atomic Multicast when Groups Crash

3. Vaide Zuikeviciute, Fernando Pedone
Correctness Criteria for Database Replication: Theoretical and Practical Aspects

4. Jochen Wuttke
Property Templates and Assertions Supporting Runtime Failure Detection

5. Dmitrijs Zaparanuks, Milan Jovic, Matthias Hauswirth
Accuracy of Performance Counter Measurements

6. Romain Robbes, Michele Lanza, Damien Pollet
A Benchmark for Change Prediction

7. Paolo Bonzini, Laura Pozzi
On the Complexity of Enumeration and Scheduling for Extensible Embedded Processors



2009

1. Nicolas Schiper, Pierre Sutra, Fernando Pedone
Genuine versus Non-Genuine Atomic Multicast Protocols

2. Cyrus Hall, Antonio Carzaniga
Doubly Stochastic Converge: Uniform Sampling for Directed P2P Networks

3. Nicolas Schiper, Fernando Pedone
Fast, Flexible, and Highly Resilient Genuine Fifo and Causal Multicast Algorithms

4. Anna Frster, Amy L. Murphy
FROMS: A Failure Tolerant and Mobility Enabled Multicast Routing Paradigm with Reinforcement Learning for WSNs

5. Jochen Wuttke
Defining Model Transformations for Property Templates

6. Antonio Carzaniga, Cyrus Hall, Giovanni Toffetti Carughi, Alexander L. Wolf
Practical High-Throughput Content-Based Routing Using Unicast State and Probabilistic Encodings

7. Domenico Bianculli, Walter Binder, Mauro Luigi Drago
Automated Performance Assessment for Service-Oriented Middleware


	Introduction
	Related Work
	Semantic Document Model - SDM
	Semantic Annotation of Document Units (DUs)
	Lexical Expansion of Concept Descriptions 
	Syntactic Matching
	Semantic Matching

	Concept Exploration Algorithm - CEA
	Indexing and Retrieval of Document Units
	Implementation and Preliminary Evaluation
	Conclusion

