The child's attempts to overcome sociocognitive conflict, under certain specific cognitive and social conditions, can lead to a restructuring of the child's thinking on a supraordinate level.

Sociocognitive Conflict and Intellectual Growth

Nancy Bell, Michèle Grossen, Anne-Nelly Perret-Clermont

Many authors in different domains of psychology (developmental, epistemological, psychoanalytical) have studied the developmental consequences of conflict, conceiving conflict as a nonlinear process bound to different types of vicissitudes that the individual has to confront and surpass. In psychoanalytical theory, for example, conflict is seen as being constitutive to the individual's psychic being. Freudian theory of affective development emphasizes the central role played by the conflict between the pleasure and the reality principles in early childhood and its effects on the child's personality and adaptation to his or her environment. For Piaget, the notion of conflict is essential to the understanding of the child's progression through different stages of cognitive development. Epistemological studies, such as that of Inhelder and others (1974), have shown how cognitive
conflict can be induced by the presentation of a model of reasoning that is incongruent with the cognitive schemes of the child and how this conflict can lead to cognitive growth by provoking the reorganization of the subject’s cognitive schemes in a superordinate system.

What are the sources of such conflict that promote cognitive growth? Our hypothesis is that the origins of cognitive conflict are to be found not only within the individual and his or her physical environment but in his or her social environment as well. We will argue that it is through the child’s interaction with other individuals (peers as well as adults) that the child is exposed to differing cognitive strategies, and this exposure triggers active reconstruction of the child’s cognitions. We have contributed to a series of research studies undertaken in the last decade that have illustrated this sociointeractive approach to studying the social origins of cognitive development. These studies have focused primarily on the process of sociocognitive conflict whereby the subject comes to reorganize and restructure cognitions as a result of confrontation with opposing points of view during social interaction. We suggest that the origin of developmental progress can be found in the subject’s attempt to surmount the sociocognitive conflicts that arise when he or she encounters persons displaying different perspectives but with whom the subject still feels the need for a common understanding or joint action.

Sociocognitive conflict can be induced experimentally as described in the first part of this chapter, which cites several primary results from studies exploring the conditions of emergence of sociocognitive conflict. Then we will elaborate a social-psychological analysis of this phenomenon by examining first the cognitive and then the social factors that play a role in the cognitive conflict resulting in learning and intellectual growth. Let us note here that our isolation of cognitive and social factors should be understood as merely heuristic. In fact, the subsequent developmental progress is the result of both cognitive and social growth, brought about by the subject’s need to find the means to overcome difficulties in the interpersonal coordination of action, speech, and thought.

The studies that we will present first have focused on sociocognitive conflict as created in experimental interaction sessions. But in fact any encounter (for example, a testing situation) can induce sociocognitive conflicts. Further research has shown that the emergence of such conflicts will depend on the subject’s perceptions of the situation, task, partners, purpose of the interaction, and so on. Hence, we will turn to the consideration of these factors, in the later part of the chapter, when we analyze the testing situation as a social event wherein sociocognitive conflicts can also occur.

Experimental Results Concerning the Developmental Effects of Sociocognitive Conflict

Before presenting our results, let us first describe the experimental procedure. The basic experimental paradigm used in most of the research
on sociocognitive conflict employs three steps consisting of a pretest, an experimental interaction session, and a posttest. The experimental tasks have primarily been Piagetian operatory tasks (that is, tests of conservation of liquid, substance, number and so on) although other tasks have been used (such as tasks of motor coordination and drawing). These tasks are intended for subjects ranging from four to seven years of age (with the age of experimental subjects depending on the age of the acquisition of the particular notion under study). Let us briefly describe the experimental procedure using the conservation of liquid as an example:

1. **Pretest:** The conservation of liquid test is administered individually to each subject using a clinical (semi-directive) interview requiring different conservation judgments with accompanying justifications. The aim of the pretest is to ascertain the child’s operatory level.

2. **Interaction Session:** One week later, each nonconserving child is paired with either another nonconserver or a conserving child in order to “play a game” whose aim is the sharing of an equal quantity of juice. The experimenter gives one child a glass that is taller and thinner than the other child’s glass and tells the nonconserving child to pour the same amount of juice for him or herself and the partner. (A third glass, identical to the second glass is at the children’s disposal and may also be used). More often than not, the nonconserving child pours the juice to the same level in both glasses, which elicits disagreement from the partner. The “game” ends when the two children agree that they both have the same amount to drink.

3. **Posttest:** After one week, the nonconserving subjects are retested individually on the conservation of liquid tests and parallel generalization tasks.

Experimental results using this three-step paradigm (reported in Doise and others, 1975; Perret-Clermont, 1980; and Perret-Clermont and Schubauer-Leoni, 1981) indicate that, under certain circumstances, subjects who participate in the interaction session display more cognitive progress on the posttest than subjects in a control group who do not interact with a peer. Other studies using different tasks, such as number and length conservation, spatial transformation, and motor coordination tasks (Ames and Murray, 1982; Carugati and others, 1979; Doise and Mugny, 1981; Glachan and Light, 1981; Levy, 1981; Mackie, 1980; Perret-Clermont, 1980) have repeatedly confirmed these findings, suggesting the importance of social confrontations whereby the nonconserving child is led to restructure his or her reasoning as a consequence of the conflict that emerges between his or her point of view and the differing point of view of the partner in a situation where a common agreement or a joint action is required. The child is faced with a point of view seemingly incompatible to his or her own, which necessitates a cognitive restructuring in order to render the two viewpoints compatible when their coordination is demanded by the situation. The child thereby comes to see his or her own centration differently.
viewpoints compatible when their coordination is demanded by the situation. The child thereby comes to see his or her own centration differently. (We use the word centeration in the Piagetian sense as elementary cognitive schemas that have to be coordinated into more complex structures in order to allow more advanced thinking.) The consequent cognitive reorganization and restructuring can be seen as the product of the subject's new coordinations which result from the coordination of the conflicting centrations.

Empirical evidence of profound cognitive restructuring subsequent to such conflicts is the child's ability to generalize his or her newly acquired conservation judgments to other tasks—for instance, from the concept of the conservation of liquid to other types of conservation, such as the conservation of matter or length. Results regularly have confirmed the hypothesis according to which the cognitive restructuring following an interaction session is observable not only on the task dealt with during the interaction but also on new tasks unfamiliar to the child.

Cognitive Analysis of Sociocognitive Conflict

Imitation or Confrontation? If one analyzes the phenomenon of sociocognitive conflict from a cognitive perspective, one of the first questions that comes to mind concerns the nature of the progress observed after social interaction: Is the child simply repeating or imitating the correct response of his or her partner, or do subjects' posttest performances represent a more general and profound restructuring of cognitions? In other words, is the presentation of a correct model (or answer) a necessary condition for sociocognitive conflict and consequent cognitive growth? Mugny and others (1975-1976) examined these questions in an experiment using two conditions for the interaction session: In the first condition, the experimenter proposes an opposing but incorrect argument to the nonconserving child; in the second condition, the experimenter counterposes the child's incorrect response with the correct conserving argument. Both experimental conditions resulted in significant cognitive progress as compared to the control condition where no conflict was created. Similar results were found in other experiments involving the drawing of geometrical figures (Perret-Clermont, 1980) and spatial transformations (Doise and Mugny, 1981; Levy, 1981), in which, under certain circumstances, children benefited developmentally from social interactions with peers who were less cognitively advanced than themselves. Thus, the presentation of a correct model to the nonconserving child during the interaction session is not a necessary condition and cannot, in itself, explain the cognitive evolution observed from the pretest to the posttest. It thus appears that a confrontation between opposing cognitions can lead to a cognitive restructuring and eventually to a superior cognitive level even if the information provoking the conflict
is incorrect. Furthermore, during the posttest, former nonconservers who interact with conserving partners do not merely repeat the arguments they have heard from their conserving partners, but they often give new and original justifications that they had not been capable of elaborating in the pretest (Perret-Clermont, 1980). Thus, progress observed after social interaction cannot be equated simply with the performance of the better of the partners.

The results of the research just cited converge in suggesting that an important criterion for cognitive progress is that conflict should be socially present. A subject faced with an interaction partner holding a viewpoint similar to his or her own will lack exposure to contradictory perspectives, and such exposure is essential to cognitive restructuring and progress. For example, we have observed nonconserving children quickly come to an agreement, both seemingly unperturbed by the fact that they have established equal levels of juice in two differently shaped glasses! Thus, attempts at cooperative problem solving are not sufficient for the interpersonal interaction to have an effect. Cognitive progress only results from sociocognitive conflict when partners' respective viewpoints are opposed and in need of coordination.

Cognitive "Prerequisites." Although significant cognitive progress can be observed in children after participation in an interaction session, the fact remains that not all children benefit from such a situation. Results show that subjects who have not yet understood basic notions underlying the problem at hand are less likely to progress following the interaction session. For example, Perret-Clermont and Schubauer-Leoni (1981) found that those subjects who did not demonstrate the notion of renversabilité on the conservation of liquid test did not progress at all on the posttest. (Renversabilité is a French term indicating, in this context, that the child believes that when the juice is poured back into the identical glasses it has somehow been transformed and will not be the same amount.) Concerning the conservation of number, Perret-Clermont (1980) observed that only those subjects who already performed at one of the higher levels of nonconservation on the pretest were able to benefit from the social interaction so that their posttest performance showed cognitive restructuring. In order that sociocognitive conflict has developmental consequences, the child needs to have attained a minimum level of task mastery (that is, to possess certain cognitive "prerequisites"), a level that allows the child to understand the problem and to play an active part in the discussion and confrontation. If the child does not comprehend the task or is incapable of perceiving the incompatibility of differing centrations, no conflict will ensue. Such an encounter evidently will have no developmental effect for the child. In fact, if the child lacks the necessary prerequisites, neither interindividual nor individual activity will enable the child to progress (Mugny and others, 1981).
Forms of Conflict: The Role of the Partner's Cognitive Level. Will the confrontation of an opposing strategy automatically have cognitive benefits for the subject, or does the partner's cognitive level play an important role in the emergence of conflict-induced cognitive progress? Studies by Kuhn (1972) suggest that there is an optimal gap between the subject's developmental level and that of a social model. This gap should be small enough so that the difference in behaviors corresponds to the acquisition the child has to make and large enough so that the contradiction between the two sets of behaviors produces cognitive disequilibrium.

Mugny and Doise (1978) explored forms of socioconflicts that could facilitate cognitive progress by manipulating the partner's cognitive level. They examined the collective performance of dyads on a spatial transformation task—specifically, the "three mountains" task (Piaget and others, 1948).

The composition of the dyads was varied as a function of individual performance on the pretest (where subjects were ranked on low, intermediate, and advanced levels). Results show that, when low-level subjects work together with advanced-level subjects, they do not display cognitive progress on the posttest even though they solve the task during the interaction session. This "resolution of conflict" is usually achieved by the imposition of a solution by the advanced subject, thereby eliminating the opportunity for the low-level subject to coordinate his or her approach with that of the advanced partner. Low-level subjects who interacted with another low-level subject likewise showed little progress on the posttest as both tended to use the same problem-solving strategy, thus excluding the possibility of the emergence of conflict.

On the other hand, when the low-level subject is paired with an intermediate subject, the characteristics of the interaction are different: "The intermediate subject, whose system is less stable, is perturbed by the unacceptable solution proposed by the low subject, although he does not yet possess the cognitive instruments necessary to solve the problem. While looking for a satisfactory solution, the intermediate subjects explicate their strategy and the problems they face. As a result, they progress, but so do the low-level subjects who are able to take part in the search for a correct solution" (Mugny and Doise, 1978). Such a confrontation serves to make each partner aware of the existence of alternate solutions, which enhances the possibility of both partners modifying their own solution as they realize its insufficiency. Thus, neither child remains unchanged by the social interaction.

Is Conflict Resolution Necessary for Cognitive Growth? The research presented so far suggests that the important element in sociocognitive conflict is the conflictual aspect of the interaction and not necessarily its resolution. In our research, we have been able to enumerate many different strategies for conflict resolution; however, we have found that the dynamic that occurs between children during the interaction session is not necessarily predictive of the agreement reached at the end of the session or of the
posttest results. We have not yet discovered any direct causal link between the type of conflict resolution achieved and the level of cognitive progress displayed on the posttest. Analyses of our results indicate that, although conflict resolution can lead to cognitive progress, it is not a necessary condition for cognitive restructuring and development.

Conflict resolution during social interaction can in fact prevent the child from progressing beyond his or her initial pretest performance. This was the case in the experiment of Mugny and Doise (1978), cited earlier, where subjects did not progress even though the correct solution had been elaborated during the interaction session, due to the imposition of a solution by the advanced partner. Likewise, Mugny and others (1979) found that subjects who systematically resolved conflict by accepting the contradictory responses of their partner (an adult in this case) did not demonstrate any cognitive progress.

Social Factors in Sociocognitive Conflict

Up to this point we have regarded the child as essentially "generic" with no consideration of specific social characteristics liable to influence cognitive development. However, since sociocognitive conflicts are products of interactions that do not take place in a social vacuum, it is not reasonable to abstract the individual either from interpersonal interactions, which are constitutive of the individual's cognitive mechanisms, or from social background and social group memberships, which play an influential role in behavior. Although cognitive functioning has been seen traditionally as an intraindividual phenomenon, it seems evident to us that it cannot be examined independent of its social context.

Hence we will now look briefly at the occurrence of sociocognitive conflict for subjects belonging to different social groups. We have often observed (Mugny and others, 1981; Perret-Clermont, 1980; Perret-Clermont and Schubauer-Leoni, 1981) a correlation between pretest performance and social category membership, with children from advantaged backgrounds showing significantly higher operatory levels than their disadvantaged peers (an observation often corroborated by results from other cognitive tests). We were thus particularly interested in the amount of progress evidenced by disadvantaged children subsequent to social interaction. Systematic analysis of results by social group has shown that the socioeconomic differences observed on the pretest tend, for the most part, to diminish on the posttest. It is as if the social interaction gave disadvantaged subjects the opportunity more or less to "catch up" with their more cognitively advanced, economically advantaged peers. Thus, we can no longer speak of inherent "socioeconomic or cultural handicaps" if, under certain circumstances, we can reduce these so-called handicaps by a five-to-ten minute experimental session.

These results have led us to investigate the relation between social
category membership and the testing situation in which cognitive development is elicited. Perret-Clermont and Schubauer-Leoni (1981) specifically studied the effect of task presentation on children's responses using the three-step design. In the pretest, two conditions were presented: In the first condition, the Piagetan conservation of liquid task was administered in such a way that the child had to share the juice equally with the experimenter. In the second condition, the child had to give equal amounts of juice to two identical dolls. Pretest results indicate that the presentation of the experimental task had a notable effect on certain social groups: Girls and disadvantaged children seem to be particularly sensitive to this variable, performing more poorly in the test with the dolls. However, these differences disappeared after the experimental interaction session. The observed pretest differences can be taken as indicating that subjects are not faced with the same relation situation, even if it is standardized rigorously in the eyes of the experimenter. Their perception of the situation affects their elaboration of a cognitive competence.

The fact that cognitive performance for certain social groups can vary as a function of task presentation suggests that it is not only individual psychological competencies that are important here but also (and perhaps above all) social ones (such as the ability to establish a certain type of discourse in relation to a given object with a socially defined interlocutor in a given situation). Subjects come to the experimental situation with a wide range of past experience (cognitive "prerequisites," social and relational experience, and so on). These experiential factors will modify the subjects' interpretation of the testing situation and (consequently) their behavior in such a situation.

Further exploration of the effects of the social variables and the relational processes at work in the actualization of an operatory notion is needed. In the following section we will consider both the interaction session and the testing situations (pretest and posttest) as social events in which sociocognitive conflicts take place. It is important to note here that any situation in which the child interacts with another person (be it child or adult) is potentially conflictual. The "individual" testing situation is in fact a complex social interaction. Although the social dynamics of this particular situation are often ignored by traditional psychological analysis, the basic interactional processes are comparable (if not the same) to the more "prototypical" social interaction session. Both contexts are rational settings that require cognitive as well as social skills from their participants.

The Testing Situation as a Social Event

In interactions in which sociocognitive conflict takes place, the participants not only have to activate the cognitions necessary to solve the problem at hand, but they also have to rely on or elaborate the social knowledge that is essential to the comprehension of the interaction. A
sociocognitive conflict can only occur if the context and the object of the interaction are mutually understood by the partners.

Essential to the mutual understanding of the interaction is the sharing of the same implicit assumptions about the situation. Thus, meaningful discourse has as its prerequisite the development of an "intersubjectivity"—that is, a shared social reality that is congruent to the participants. In order for the partners to make sense of an interaction, they need to establish a shared frame of reference, which will permit the development of a tacitly assumed commonality with respect to interpretation of each participant’s utterances (see Rommetveit, 1979). However, as Rommetveit suggests, one of the important features of adult-child interaction is the fact that "this relation is asymmetric in the sense that the [adult], and he alone by virtue of his role, is fully in control of the premises for interpretation and the criteria by which comprehension and intersubjectivity are evaluated" (p. 12).

In our experimental paradigm, this means that one of the conditions of successful participation in the interaction session is the acceptance of the premises imposed by the adult experimenter, which implies making sense of what is going on. This does not necessarily preclude eventual negotiation (which could provoke conflict and hence be seen as part of the learning process that already occurs during the pretest), but it does mean that, faced with a Piagetian task for the first time, the child’s primary task is to try to decode the tacit assumptions of the adult concerning the definition of the situation, the expected roles, the focus of the discussion, and the “taken for granted” aspects of the interaction. All of these are necessary in order for the child to answer the demands of the experimenter, to engage in a sociocognitive conflict, and to benefit from its developmental impact. Let us now analyze the conservation of liquid task from the child’s viewpoint in order to understand better what social knowledge is required to interpret the adult’s discourse and hence to succeed at the task.

Perception of the Experimental Situation and of the Task. The probability of the occurrence of sociocognitive conflict will depend, in large part, on the way in which the partners perceive and comprehend the experimental task and situation, which in turn allows them to enter into discussion of the object of debate as expected by the experimenter. For this reason we will now examine the experimental situation, focusing on the pretest, since it figures predominantly in the child’s initial attempts to make sense of the situation and to elaborate a response (which will then be taken by the adult as an indication of the child’s cognitive level).

In our pretests, as with many experiments, the experimental interaction begins with an unknown (or relatively unknown) adult interrupting the child’s classroom activity to remove him or her from a habitual context with the justification that “we are going to play a game together.” This game, as it turns out, has few features in common with any game the child
is familiar with. In effect, this “game” resembles to a great degree a testing or examination situation where the adult asks a number of questions to which he or she already knows the response and to which the child is obliged to give answers as well as justifications of these answers. In some respects, the whole situation could look very ambiguous.

As we can see, the definition of the situation imposed by the adult will serve to structure the subsequent interaction. The child will modulate his or her social expectations according to his or her representation of the situation: On being told they are going to “play a game,” the child could be led to expect an enjoyable activity, which, perhaps, would have a set of rules, where partners take turns, and so on. One could hypothesize here that a mismatch between the child’s anticipated representation of a “game” and what the adult defines as a “game” could hinder the subject’s chances to answer correctly.

When confronted by such a situation, the child has to rely primarily on implicit cues (such as the experimenter’s voice intonation, body and facial gestures, and other cues embedded in the situation) in order to apprehend that he or she is not intended, in fact, to play a real game but to consider a problem. During the course of the experiment, the dialogue will provide the child with more cues that allow the child to decode the experimenter’s precise (although implicit) expectations and help to construct the social significance of the interaction. The child’s interpretation of the goals of the experimenter and the successful culmination of the interrogation (that it is not a matter of winning the game in the usual sense and that the purpose of the adult’s questioning is evaluative rather than lucid) could determine the quality of the responses.

The subject must also perceive the problem as essentially cognitive and not relational or affective. The social interaction (between adult and child in this context) could elicit a cognitive conflict but concerning another object than the operatory problem proposed by the adult, which would reduce the subject’s chances of attaining a higher operatory level. The importance of the child’s entering into the pretest discussion on a cognitive plane could have eventual repercussions on the social interaction session between children where a sociocognitive conflict must be apprehended as such by the participants. If the conflict becomes relational or affective or if it is resolved on a plane other than cognitive, the conflict will not always have the intended effect on the child’s operatory development.

An important feature in the perception of the situation is the comprehension of the task. The material manipulated by the experimenter (and the child) plays an essential role by providing visual cues to which the child can refer. However, the child must be able to discern which aspects of the material are relevant to the solving of the task. In the conservation of liquid task, the child has to understand that the kind of liquid used and the different dimensions of the glasses are not pertinent cues to
the resolution of the problem, despite the multiple manipulations by the experimenter. In other words, the child must not only understand what the discussion is about but also what it is not about! Despite the perceptual evidence displayed, the experimenter actually is interested in the quantity of juice and not in the level of the juice or in the pouring and drinking of juice. Thus, the more obvious social cues in this situation are, in reality, the very ones that the child must ignore. In order to reach an advanced developmental level in an operatory task, the child has to realize that the perceptual transformation that occurs after each pouring and that seems to have a certain importance (as indicated by the questioning it provokes from the experimenter) is precisely the point not to take into consideration when answering!

The type of material utilized in a task can likewise enhance or inhibit the child's cognitive performance. The presupposition of the conservation of liquid task is that the child should not associate the elements of this new situation with any previous experience.

Social Relations in the Testing Situation. The interpersonal situation in which a cognitive response is solicited from the subject is not only influenced by his or her perception of the task and context but also by the kind of social relations existing between the interactants and by the particular expectations associated with these relations.

In the liquid conservation task, the child is told by the adult to pour an equal quantity of juice for each of them. In light of the social relation existing between the two participants, this request could strike the child as aberrant, given the fact that adults and children are not equal in respect to their social and physical status. In order to become a conserver, the child must come to realize that the physical and social status of the partners are not relevant to the task. The child must abstract the problem from the embedded social relations in the testing situation.

In the research of Perret-Clermont and Schubauer-Leoni (1981), the observation that girls gave conserving judgments more often when they had to share the juice between the experimenter and themselves than when the juice was divided up for two dolls could be explained (partially) by the supposition that it was easier for them to abstract from an actual social relationship than from a "let's pretend" pretext embedded within the testing situation. The "dolls" condition seems to demand more abstraction as the child effectively must understand that the point of the "game" is the equal sharing of the juice and not playing with dolls.

Expectations of Role and Episode. The conservation of liquid task considered as a social event can be analyzed in terms of the expectations the interactants hold concerning their respective roles and the script of the episode. Faced with a novel situation, the child is likely to refer to similar previous interactions in order to orient his or her behavior. School children very probably have developed elaborate schemes of conduct or scripts for
adult-child interactions in a scholastic context and consequently come to this situation with certain preconceived notions of how the adult will behave, how the child must act, and so on.

The child's perception of the roles of the social episode and of the adult's expectations play a crucial part in attempts to solve the task. Through the course of the interaction, the child will be led to choose which aspects of the situation are pertinent to task resolution and which dimensions of the task to abstract from. These will be a function of his or her perception and interpretation of the adult's reactions. This "cueing" will not only determine the child's elaboration of the response in the testing situation but will also provide the basis upon which the child can enter into a sociocognitive conflict.

Summary. In this section we have analyzed the testing situation as a social event comprised of a complex set of elements potentially determinant of the subject's behaviors. One could say that the child's cognitive performance is a product of the social interaction taking place within this situation. In order to enter into the discussion, to display a competency successfully, and eventually to perceive the conflicting position of one's partners during the social interaction, the child must apprehend the definition of the situation and the script of the episode. The child must also accurately perceive the adult's expectations of the partners' respective roles as well as the aim and purpose of the discussion (as it relates to the task material at hand and so on).

The fact that children from advantaged backgrounds show a higher operatory level on Piagetian operatory pretests than disadvantaged children can be reinterpreted in the light of this perspective. It seems that, at a given age, children of high socioeconomic status understand more quickly the social "implicits" (roles, expectations, and so forth) embedded in this particular situation. It is as if they can distance themselves more easily from the normative script and role expectations that are implied by the school context and that are not entirely applicable to the experimental episode. However, given appropriate conditions of social interaction (which permit a better understanding of such a situation), children from disadvantaged backgrounds can "recover," showing posttest performances equal to their privileged peers.

Conclusions

What are the sources of conflict that can promote intellectual growth? As we have seen, the individual's social environment, besides the physical environment, offers important occasions for interactional confrontations of opposing cognitions. The child's attempts to overcome sociocognitive conflict can lead to a restructuring of his or her thinking on a supraordinate level. We have put forth evidence to show that this restruc-
turing is not simply the consequence of imitation but of real conflict. In order that sociocognitive conflict be productive, certain cognitive as well as social conditions need to be fulfilled. The child must possess not only the right cognitive prerequisites for task resolution but also must manage to decipher the social situation.

At this point we suggest that social interaction between peers not only provides the subject with the opportunity to confront his or her response with that of another but also provides the occasion to abstract the pertinent dimensions from the social situation enabling him or her to solve the problem. Thus, a sociocognitive conflict promotes cognitive and social growth. By responding to the social demands of the situation, the child comes to elaborate a social knowledge leading to new frames of understanding. In this perspective, the cognitive progress displayed following conflict can be seen as a product of the complex interplay between the social and cognitive dimensions of the interaction.

References

