

doi:10.1016/j.gca.2004.06.033

²³⁰Th/²³⁴U/²³⁸U and ²³¹Pa/²³⁵U ages from a Single Fossil Coral Fragment by Multi-collector Magnetic-sector Inductively Coupled Plasma Mass Spectrometry

RICHARD A. MORTLOCK, 1.* RICHARD G. FAIRBANKS, 1.2 TZU-CHIEN CHIU, 2 and JAMES RUBENSTONE 1.†

1 Lamont Doherty Earth Observatory, Columbia University, Palisades, New York 10964 USA
2 Department of Earth and Environmental Sciences, Columbia University, New York, New York 10027 USA

(Received September 26, 2003; accepted in revised form June 25, 2004)

Abstract—The ²³⁰Th/²³⁴U/²³⁸U age dating of corals via alpha counting or mass spectrometry has significantly contributed to our understanding of sea level, radiocarbon calibration, rates of ocean and climate change, and timing of El Nino, among many applications. Age dating of corals by mass spectrometry is remarkably precise, but many samples exposed to freshwater yield inaccurate ages. The first indication of open-system ²³⁰Th/²³⁴U/²³⁸U ages is elevated ²³⁴U/²³⁸U _{initial} values, very common in samples older than 100,000 yr. For samples younger than 100,000 yr that have ²³⁴U/²³⁸U _{initial} values close to seawater, there is a need for age validation. Redundant ²³⁰Th/²³⁴U/²³⁸U and ²³¹Pa/²³⁵U ages in a single fossil coral fragment are possible by Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (MC-MS-ICPMS) and standard anion exchange column chemistry, modified to permit the separation of uranium, thorium, and protactinium isotopes from a single solution. A high-efficiency nebulizer employed for sample introduction permits the determination of both ²³⁰Th/²³⁴U/²³⁸U and ²³¹Pa/²³⁵U ages in fragments as small as 500 mg. We have obtained excellent agreement between ²³⁰Th/²³⁴U/²³⁸U and ²³¹Pa/²³⁵U ages in Barbados corals (30 ka) and suggest that the methods described in this paper can be used to test the ²³⁰Th/²³⁴U/²³⁸U age accuracy.

Separate fractions of U, Th, and Pa are measured by employing a multi-dynamic procedure, whereby 238 U is measured on a Faraday cup simultaneously with all minor isotopes measured with a Daly ion counting detector. The multi-dynamic procedure also permits correcting for both the Daly to Faraday gain and for mass discrimination during sample analyses. The analytical precision of 230 Th/ 234 U/ 238 U and 231 Pa/ 235 U dates is generally better than $\pm 0.3\%$ and $\pm 1.5\%$, respectively (2 Relative Standard deviation [RSD]). Additional errors resulting from uncertainties in the decay constant for 231 Pa and from undetermined sources currently limit the 231 Pa/ 235 U age uncertainty to about $\pm 2.5\%$. U isotope data and 230 Th/ 234 U/ 238 U ages agree with National Institute of Standards and Technology (NIST) reference materials and with measurements made by Thermal Ionization Mass Spectrometry (TIMS) in our laboratory. *Copyright* © 2005 Elsevier Ltd

1. INTRODUCTION

Uranium series age dating of corals, by high-precision and high-accuracy mass spectrometric techniques, has advanced our understanding of the timing and magnitude of sea level change (Edwards et al., 1987; Bard et al., 1990; Fairbanks, 1990; Stirling et al., 1995; Chappell et al., 1996; Yokoyama et al., 2001; Gallup et al., 2002; Cutler et al., 2003), has greatly extended the calibration of 14C years to calendar years (Bard et al., 1990; Burr et al., 1998; Chiu et al., 2003), and has made possible reconstructions of past atmospheric radiocarbon variations (Bard et al., 1990; Edwards et al., 1993; Beck et al., 2001; Cao et al., 2003). A potential shortcoming of uranium series dating is that open system behavior is not uncommon in coral exposed to freshwater over prolonged periods, particularly alteration in a phreatic lens. This may lead to either gain or loss of U and Th, modifying the sample [230Th/234U] activity ratio and thus compromising the accuracy of age determinations in fossil corals (Edwards et al., 1987; Hamelin et al., 1991; Gallup et al., 1994, Thompson et al., 2003). In many instances, the suitability of samples for ²³⁰Th/²³⁴U/²³⁸U dating cannot be confirmed by available screening criteria, so the data must be scrutinized by other means, such as the degree of

departure of the [234U/238U] initial activity ratio of a coral (or

2. ANALYTICAL METHODS

2.1. Sampling

U-series and a companion archive sample are taken from 2 concentric cores (13 mm and 5 mm) drilled into 4 mm thick coral slabs while submerged in water. The coring tubes are thin-walled stainless steel tubes impregnated on one end with fine diamonds. The concentric coring assures consistent sampling procedures and the proximal location of the multiple age determinations. Systematic and proximate sampling is of particular importance if U-series dates of fossil material are to be paired with radiocarbon ages and other sample analyses such

 $[\]delta^{234} U_i)$ from modern day seawater (Edwards et al., 1988; Hamelin et al., 1991; Henderson et al., 1993). $^{231} Pa~(t_{1/2}=32,760~yr;$ Robert et al., 1969; Schmorak, 1977) is produced directly by α - decay of $^{235} U$ and provides a redundant means for confirming $^{230} Th/^{234} U/^{238} U$ ages in the range of 10 ka to 150 ka. Only a few studies have reported high-precision mass spectrometric Pa measurements in fossil corals (Edwards et al., 1997; Gallup et al., 2002; Cutler et al., 2003) using thermal ionization mass spectrometry (TIMS). In this work, we describe a new procedure for determining both the $^{230} Th/^{234} U/^{238} U$ and $^{231} Pa/^{235} U$ ages from a single coral fragment by MC-MS-ICPMS and discuss some clear advantages.

^{*} Author to whom correspondence should be addressed (mortlock@LDEO.columbia.edu).

[†] Present address: U.S. Nuclear Regulatory Commission, Mail Stop T7F3, Washington, DC 20555 USA

Table 1. Chemical separation of U, Th, and Pa from coral samples.

First Column	$500\mu l, AG1-X8~200-400 m$			
Step	description	comments		
1. Cleaning	2 ml 7N HNO ₃			
	1 ml 0.1N HCl			
	1 ml 12N HCl			
	1 ml 0.13N HF in 12N HCl			
	1 ml Mili-Q H ₂ O			
2. Cleaning	repeat of step 1			
3. Condition	20 drops 7N HNO ₃			
	20 drops 7N HNO ₃			
4. Load sample	16 drops 7N HNO ₃			
Wash beaker	16 drops 7N HNO ₃			
Wash column	16 drops 7N HNO ₃	major waste cations eluted		
7. Collect Th	15 drops 12N HCl	Th eluted, absorption of U and Pa		
	30 drops 12N HCl			
	15 drops 12N HCl			
8. Collect Pa	15 drops 0.13N HF in 12N HCl	Pa eluted, absorption of U		
	30 drops 0.13N HF in 12N HCl			
	30 drops 0.13N HF in 12N HCl			
9. Collect U	15 drops 1N HBr	U eluted		
	30 drops 1N HBr			
	30 drops 1N HBr			
Second Column	100 μl, AG1-X8 200–400m			
10. Cleaning	20 drops 7N HNO ₃			
	20 drops 0.1N HCl			
	20 drops 12N HCl			
	20 drops 0.13N HF in 12N HCl			
	20 drops Mili-Q H ₂ O			
11. Cleaning	Repeat of step 10.			
12. Condition	10 drops 0.13N HF in 12N HCl			
	10 drops 0.13N HF in 12N HCl			
13. Load & collect Pa	10 drops 0.13N HF in 12N HCl	Pa eluted		
14. Wash beaker	7 drops 0.13N HF in 12N HCl			
15. Final collection Pa	16 drops 0.13N HF in 12N HCl			
	5 drops 0.13N HF in 12N HCl			

as X-ray diffraction (XRD), thin sections, and other isotopic analyses. The larger (500 mg) of the cored samples is used for the U-series, and the small piece (50 mg) is archived. Fragments are cleaned multiple times in Mili-Q (18 M Ω) water with an ultrasonic probe cleaner immediately before analysis. Although fossil corals are microscopically screened for any extraneous material, the U-series samples in this study were not chemically cleaned before dissolution due to potential Th adsorption problems. Samples are routinely screened for calcite by XRD at 0.2% detection limits and for detrital material by examination of thin sections. Nevertheless, the reliability of U-series dates determined from samples found to contain significant 232 Th (greater than 1 ppb) should be questioned.

2.2. Chemical Procedures

A previously calibrated mixed $^{233}\text{U}^{-229}\text{Th}$ spike is added to the sample in sufficient quantity, based on the estimated age of the sample, to approximate a $^{229}\text{Th}/^{230}\text{Th}$ target ratio equal to 10. ^{233}Pa spike is added to approximate a $^{233}\text{Pa}/^{231}\text{Pa}$ target ratio equal to 2. The levels of activity in the ^{233}Pa spike introduced to the ICP-MS source are very small (<10^4 dpm) and we have not found it necessary to take special precautions during sample preparation and introduction. The handling of ^{237}Np during the initial preparation of spike must be performed in a laboratory suited for such purposes.

laboratory suited for such purposes.

The use of a mixed ²³⁶U-²²⁹Th spike would avoid the potential for contaminating the Pa fraction with ²³³U and is a suggested improvement over our ²³³U spike. In the discussion to follow, we present evidence to suggest that contamination of the Pa fraction with U is not encountered with our methods. Coral samples are dissolved in 1 mL

concentrated nitric acid. Following overnight sample dissolution and spike equilibration, 9 mg Fe (as FeCl $_3$) is added. NH $_4$ OH is added to pH 7 to 8 to precipitate iron hydroxide. The precipitated solution is centrifuged, the supernatant is discarded, and the precipitate is washed in Mili-Q water and centrifuged again. The precipitate is dissolved in 0.5 mL 16N HNO $_3$ sealed and refluxed at 110°C until the solution is clear. The samples are heated to near dryness in a filtered atmosphere.

Separation of U, Th, and Pa in solution is achieved through anion exchange column chemistry. In the case where only U and Th measurements are required, separation of U from Th can be accomplished by the chemistry presented in Edwards (1988) as modified by Bard et al. (1990). With TIMS, a second column cleaning of the Th fraction (to remove U) is necessary since the presence of U interferes with the ionization of Th. The time consuming additional cleaning step is not required with MC-MS-ICPMS. The complete column chemistry used to separate U, Th, and Pa is described in Table 1. Since both ²³³U and ²³³Pa are used as a spike, *any* U eluted with the Pa fraction presents an isobaric interference and compromises the accurate determination of ²³³Pa. Therefore, the collected Pa fraction requires an additional cleaning step, and a second column exchange of the Pa fraction successfully separates residual U from Pa. The analyses of procedural blanks (spiked) confirmed the absence of any U in the Pa fraction and complete separation among the elements used in this procedure. The final collected U fraction is dried, redissolved in 0.5 mL 7N HNO₃, dried and diluted with 2% HNO₃ to produce a solution of ~30 to 50 ppb U. The Th fraction is dried, redissolved in 0.5 mL 7N HNO3, dried and diluted to volume of 3 mL with 2% HNO3 in 1% HF. The Pa fraction is dried, redissolved, and diluted to a volume of 2 mL with 2% HNO₃ in 1% HF. During drying steps, care must be taken to prevent the Pa

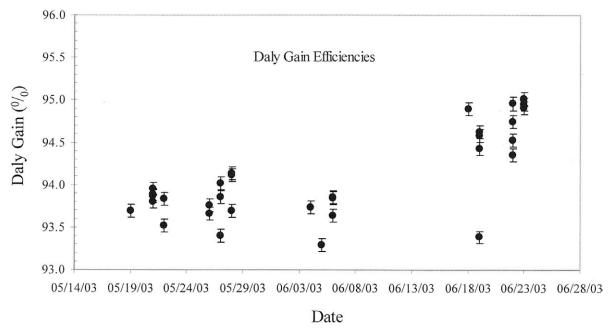


Fig. 1. Plot of Daly/Faraday gain efficiency (from $^{235}\text{U}/^{238}\text{U}$) vs. time where the percent gain is calculated as the ratio of the Daly to Faraday measurement to a Faraday-to-Faraday measurement. Error bars denote the typical 2-sigma standard deviation for the gain measurement ($\pm 0.08\%$).

fraction from drying to hardness to avoid formation of insoluble fluorides.

2.3. Mass Spectrometry

U, Th, and Pa isotopic measurements are made using a multi-collector magnetic sector double-focusing Inductively Coupled Mass Spectrometer (FISONS PLASMA 54). U-series ages of fossil corals have been previously obtained by MC-MS-ICPMS using a similar instrument (Stirling et al., 2001), and a detailed description of the PLASMA 54 instrument design can be found elsewhere (Walder et al., 1993) along with initial results (Halliday et al., 1995, Halliday et al., 1998). In general, the instrument combines a double focusing magnetic sector mass spectrometer with an ICP source. Our instrument is equipped with a nine-collector Faraday cup array. Behind the Faraday array is an additional 30-cm radius electrostatic analyzer (ESA) filter and an ion-counting Daly detector. The secondary ESA reduces abundance sensitivity to better than 0.3 ppm (measured as the contribution to mass 237 from mass 238). Our instrument is equipped with an additional single stage rotary pump (S-option) that improves the vac-

uum in the expansion region by a factor of 10 (to $0.1~e^{-4}$ mbar) vs. the standard interface-pumping configuration. The improved vacuum translates directly to a 50% increase in sensitivity.

Sample solutions are introduced using a desolvating nebulizer (CETAC MCN6000). In practice, sample introduction is considerably simpler than TIMS. We initially used an MCN 100 micro-nebulizer (CETAC) with the MCN6000 but found superior washout, particularly for Th, using the MNC6000 fitted with PFA spray chamber and PFA 50 nebulizer (Elemental Scientific Inc.). Sample volume uptake is 60 μ L/min. Typical sensitivity for our instrument coupled with the MCN6000 nebulizer is \sim 0.4 pA ppb⁻¹ for ²³⁸U. Maximum ²³⁵U intensities as measured on the Daly detector are limited to a range of 0.5 to 1×10^6 ions s⁻¹. ²³⁰Th and ²³¹Pa intensities, depending on the age of the sample, are in the range of 10^3 to 10^4 ions s⁻¹ and 200 to 500 ions s⁻¹, respectively. Ionization efficiencies (the ratio of atoms detected to atoms introduced) for U, Th, and Pa are \sim 0.1%, which are about a factor of 5 to 10 lower than those reported by TIMS (Edwards et al., 1987; Pickett et al., 1994; Stirling et al., 1995). For the U, Th, and Pa data collection, a minimum of 75, 50, and 40 ratio measurements are made, respectively. Each U or Th analysis takes about one h and

Table 2. Collector	configurations f	for multi-dynami	c isotopic	analysis of	II Th	and Pa by	v MC-MS-ICPMS

Collector	Axial (Daly)	High 1	High 2	High 3	High 4	comments
				8 -		
Uranium	²³⁵ U		²³⁸ U			gain meas.
	²³⁴ U	²³⁵ U		²³⁸ U		bias meas.
	²³³ U				²³⁸ U	
Thorium	²²⁹ Th				²³⁸ U	
	²³⁰ Th			^{238}U		
	²³² Th	²³⁵ U	²³⁸ U			bias meas.
	²³⁵ U	²³⁸ U				gain meas.
Protactinium	²³¹ Pa				²³⁸ U	Č
	²³³ Pa	^{235}U		²³⁸ U		bias meas.
	²³⁵ U		²³⁸ U			gain meas.

The normalization of Th and Pa isotopes to ²³⁸U within a sequence eliminates the need to gain correct the ²²⁹Th/²³⁰Th, ²²⁹Th/²³²Th, and ²³¹Pa/²³³Pa ratios, and so the ²³⁵U sequence in the Th and Pa routines is not necessary. Nevertheless, we routinely measure the Daly gain at higher precision by measurement of the ²³⁵U/²³⁸U ratio in order to identify detector drift or noise that might otherwise go undetected.

consumes $\sim\!0.3~\mu g$ U and 1 to 10 pg $^{230} Th.$ Each Pa analysis takes $\sim\!30$ min and consumes 300 to 500 fg $^{231} Pa.$ The total amounts of Pa and Th consumed are comparable to filament loadings performed with TIMS. Rinsing of the nebulizer (with ultra pure 2% HNO $_3$ for U and 2% HNO $_3$ in 1% HF for Th and Pa) is continued until count rates less than 2 cps are observed for $^{234} U,~^{230} Th,$ and $^{233} Pa.$ Procedural blanks are less than 10 to 40 fg and 1 to 5 pg for $^{230} Th$ and $^{232} Th$ respectively, and less than 5 pg for $^{238} U.$

The precise determination of isotopic ratios of U, Th, and Pa requires that mass fractionation (bias) and gain efficiency (calibration of the Daly detector) be known. Plasma sources produce mass fractionation that is time independent. Therefore, it is possible to correct for biasing in samples by comparison with the results obtained from standards by MC-ICP-MS, assuming that tuning parameters affecting the temperature of the sampled plasma, particularly torch position and gas flows, remained unchanged. There are, however, distinct advantages to making simultaneous fractionation and gain corrections. The Daly detector can display excellent internal precision (<0.08% 2RSD) during a one h analysis, but differences in gain efficiencies of as much as 1% may be observed during the course of a day (Fig. 1). Simultaneous corrections for mass bias and Faraday/Daly gain also eliminate the need for separate calibration measurements. Consequently, we employ separate multi-dynamic routines for U, Th, and Pa (Table 2). This approach is similar to that described in Luo et al. (1997), where it was demonstrated that multi-static routines yielded superior analytical precision for both U and Th isotopic analyses. In the case of uranium, ²³⁵U is measured sequentially using both the Daly and Faraday collectors. The measured Daly to Faraday gain is then used to correct the ²³⁴U/²³⁸U and ²³³U/ ²³⁸U ratios. Mass bias is calculated by comparison of the measured $^{235}\text{U}/^{238}\text{U}$ ratio with the accepted value (0.0072527). Under typical plasma conditions (cool gas = 16 L min^{-1} , auxiliary gas = 2 L min^{-1} , nebulizer gas = 0.45 L min^{-1} , sweep gas = 2.7 L min^{-1} , and N_2 = 0.010 L min^{-1}) our mass fractionation is $\sim 0.7\%$ amu⁻¹.

Before Th and Pa measurement, $\sim \! 100$ ng of natural U (NIST CRM 129) is added to each solution. Isotopic measurements of Th (229 Th, 230 Th, 232 Th) and Pa (231 Pa, 233 Pa) are made with the Daly detector and are accompanied by simultaneous measurement of 238 U using one of the high-mass Faraday cups (Table 2). The "normalization" of intensities to 238 U eliminates the need for gain correction of the 229 Th/ 230 Th, 229 Th/ 230 Th, and 231 Pa/ 233 Pa ratios. In the case of Th and Pa, mass fractionation is determined during sample analysis by comparison of the measured 235 U/ 238 U ratio with the accepted value. Since natural uranium may contain a small quantity of 230 Th and 231 Pa (decay products of U) an aliquot of CRM 129 is cleaned before analysis, to separate U from Th and Pa (steps 1 thru 9 in Table 1). The cleaned U

shows no detectable 230 Th and 231 Pa. Measurement precision of the U and Th isotope ratios are generally better than $\pm 0.08\%$ and $\pm 0.3\%$ (2 RSD), respectively. Precision of the 233 Pa/ 231 Pa ratio measurement in the speleothem standard averaged less than 0.8% (2 RSD).

2.4. Calculations

Standard isotope dilution equations are used to calculate the concentrations of $^{230} Th,\,^{234} U,\,$ and U in samples. $^{234} U/^{238} U$ isotope ratios are corrected for contributions from the spike. Contributions to the $^{235} U/^{238} U$ ratios from the spike are negligible and can be ignored. The $^{230} Th/^{234} U/^{238} U$ age and $^{231} Pa/^{235} U$ ages are calculated using the age equations reported in Ivanovich et al. (1992).

The determination of Pa concentrations and ²³¹Pa dating by Thermal Ionization Mass Spectrometry (TIMS) is described in detail elsewhere (Pickett et al., 1994; Edwards et al., 1997); however, some of the associated analytical difficulties will be discussed here. Unlike U and Th, there is no long-lived isotope to serve as a spike for measurement of Pa. The short-lived 233 Pa isotope ($t_{1/2}=26.967$ days; Jones et al., 1986) is the only spike option. A standard isotope dilution approach must be modified because no certified reference standard for Pa exists and the ²³³Pa spike concentration cannot be accurately determined before spiking and analysis. This is due to the rapid decay of ²³³Pa to ²³³U; and therefore, the ²³³Pa concentration must be calculated by reverse isotope dilution methods. In this study, we chose a 500 ka speleothem as our ²³¹Pa standard. We assume secular equilibrium ([231Pa/235U] ratio equal to unity) for the speleothem, and calculate the concentration of the 233Pa spike from the U concentration of the speleothem and the measured ²³³Pa/²³¹Pa activity. Standard isotope dilution equations permit the calculation of the ²³¹Pa concentration and age of samples.

3. RESULTS

Before developing procedures for determining both 230 Th/ 234 U/ 238 U and 231 Pa/ 235 U ages from a single fragment, we verified the accuracy of the 230 Th/ 234 U/ 238 U method via MC-MS-ICPMS. The mean value of 34 measurements of the 234 U/ 238 U ratio of NIST U-010 made during the course of a three-yr study was 5.42 ± 0.02 (2 SD) \times 10^{-5} , within the uncertainty of the certified value of 5.47 (± 0.06) \times 10^{-5} . The average value of δ^{234} U in seawater and modern corals (*Acropora hyacinthus sp.*) collected at Kiritimati Island is 146.3 ± 1.2 (1 SD; n = 5)

Sample	TIMS age	$\delta^{234} Ui$	MC-MS-ICPMS age	δ^{234} Ui		
RGF12-5-2^	11,623(60)	142	11,440(27)	146		
RGF12-9-3*	11,919(118)	145	12,052(49)	141		
CHR5-2-5*	11,951(154)	142	11,966(30)	144		
RGF12-9-5^	12,301(86)	147	12,253(75)	143		
RGF12-12-2*	12,809(73)	145	12,848(50)	143		
RGF12-15-4*	13,175(87)	142	13,042(34)	145		
RGF12-17-2*	13,206(49)	144	13,229(32)	143		
RGF12-21-2*	13,389(117)	143	13,605(37)	143		
RGF12-21-6^	13,745(174)	146	13,624(51)	143		
RGF12-21-10^	13,697(138)	141	13,682(31)	144		
RGF9-8-2^	14,278(100)	139	14,133(40)	145		
RGF9-11-2*	14,365(59)	145	14,301(23)	145		
RGF9-12-7*	14,505(30)	144	14,446(25)	145		
RGF9-20-2*	18,078(64)	147	18,224(65)	144		
RGF9-21-11*	18,297(142)	143	18,019(298)	143		
RGF9-27-5^	19,068(92)	144	19,125(110)	142		
RGF9-32-4^	20,670(120)	141	20,389(158)	143		
RGF9-34-8^	22,198(258)	140	21,852(82)	145		

Table 3. Comparison of TIMS and MC-MS-ICPMS ages.

Data are from Fairbanks (1990) and Hamelin et al. (1991) although those ages have been recalculated using the half-lives reported in Cheng et al. (2000). TIMS data was acquired using either the Lamont Doherty VG Micromass 30 instrument (*) or the Lamont Doherty VG Micromass Sector instrument (*). Numbers in brackets represent analytical error (2 SD) only.

and 145.9 ± 0.8 (1 SD; n = 8), respectively, and is consistent with the range of values for modern corals and seawater published elsewhere (Chen et al., 1986; Delanghe et al., 2002). δ^{234} U initial in 75 fossil corals (6 ka to 15 ka) averages 145 ± 2 (1 SD) and is consistent with δ^{234} U of the modern corals and seawater, all by the same MC-MS-ICPMS method.

As a more thorough accuracy test of our methods, we compare coral ages previously determined by TIMS with those determined by MC-MS-ICPMS. All TIMS data were generated on either the Lamont-Doherty VG Micromass 30 mass spectrometer or VG Micromass Sector 54 mass spectrometer. Ten of the TIMS ²³⁰Th/²³⁴U/²³⁸U ages have been published elsewhere (Bard et al., 1990; Fairbanks, 1990). We observe fine agreement between the two analytical methods (Table 3), with 70% of the paired ages overlapping within the measured error. Agreement between TIMS and MC-MS-ICPMS ²³⁰Th/²³⁴U/ ²³⁸U ages have been reported elsewhere in fossil corals in the age range of 125 ka to 600 ka (Stirling et al., 2001), and confirms the reliability of MC-MS-ICPMS in U-series dating. The markedly improved precision of the MC-MS-ICPMS results vs. the earlier Lamont-Doherty TIMS data are also clearly demonstrated (Fig. 2). Fractional errors associated with our PLASMA 54 measurements are typically one half to one third the errors associated with measurements made on Lamont TIMS instruments, and our PLASMA 54 errors are comparable to the most precisely measured TIMS results published elsewhere (Stirling et al., 1995; Edwards et al., 1997; Burr et al., 1998; Gallup et al., 2002). High-precision ²³⁰Th/²³⁴U/²³⁸U dating of speleothems has been reported using a single collector magnetic sector ICP-MS (Shen et al., 2002). However, the improved abundance sensitivity of the PLASMA 54 eliminates the application of tailing corrections, and the multi-collector capability of the PLASMA 54 eliminates the need for external mass bias and intensity bias corrections, both of which must be performed sequentially when using the single collector instrument.

3.1. ²³¹Pa/²³⁵U Age Dating

The precision and accuracy of the ²³¹Pa/²³⁵U dating method is largely limited by the measurement precision of the ²³³Pa/²³¹Pa ratio and our external reproducibility, which is limited by our ability to accurately calculate the concentration of our ²³³Pa spike and the efficiency by which we are able to chemically separate ²³³U and ²³³Pa. Any estimate in the ²³¹Pa/²³⁵U age uncertainty must also include the uncertainty in the ²³¹Pa decay

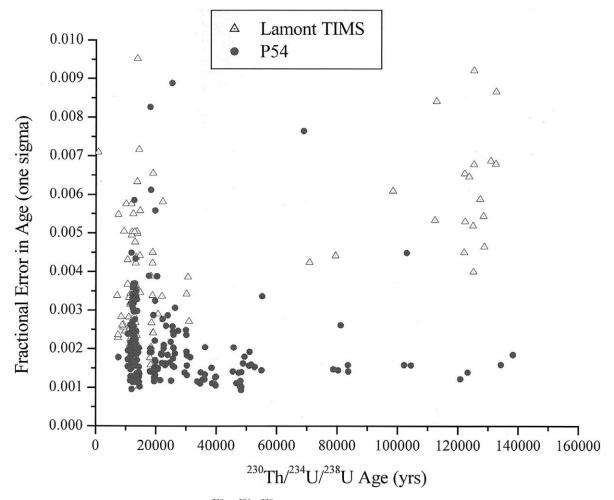


Fig. 2. Fractional error in age vs. ²³⁰Th/²³⁴U/²³⁸U age for Lamont TIMS (triangles) and Plasma 54 (filled circles) measurements. Samples are from Barbados, Kiritimati Island, and Araki Island.

constant. As a check on measurement precision of the ²³³Pa/²³¹Pa ratio and our chemical separation methods, we prepared a mixed ²³³Pa and ²³¹Pa standard of ~11 pg g⁻¹ and 3 pg g⁻¹, respectively. The mixed standard was prepared immediately following "milking" of ²³³Pa from ²³⁷Np and subsequent purification of ²³³Pa from ²³³U. Replicate measurements of the 233/231 mass ratios in the mixed standard were made 6 to 150 days after preparation of the standard. The concentration of ²³³Pa in the mixed standard at any given time can be described by the following equation:

$$^{233}Pa = ^{233}Pa_0 * e^{-\lambda_{233}*t}$$
 (1)

where 233 Pa $_0$ is the initial concentration (\sim 11 pgg $^{-1}$) and $\lambda_{233} = 2.570 \times 10^{-2}$ days $^{-1}$ is the decay constant of 233 Pa (Jones et al., 1986). Thus, the calculated concentration of 233 Pa in the standard was \sim 9 pg g $^{-1}$, 4 pg g $^{-1}$, and 0.2 pg g $^{-1}$ at 7, 40, and 150 days, respectively. Aliquots of the 40-day-old mixed standard were treated by the column chemistry described in Table 1. Assuming no fractionation of Pa from U during storage and assuming Pa and U behave similarly during sample nebulization, ionization in the plasma, and during transport and ion detection, the 233/231 mass ratio in the mixed standard should be constant with time regardless of the decay of 233 Pa to 233 U. Conversely, the 233 Pa/ 231 Pa ratio of the pure mixed standard in which the daughter product of 233 Pa (233 U) was removed (i.e., column chemistry) will have a 233 Pa/ 231 Pa ratio equal to the following:

$$233/231 = 233/231_0 * e^{-\lambda t}$$
 (2)

Where $233/231_0$ is the ratio in the parent solution, λ is the decay constant for 233 Pa, and t is the time elapsed between preparation of the mixed standard and the final column separation of Pa from U.

The 233/231 mass ratio in two aliquots of standard in which we separated ²³³Pa from ²³³U 40 days after initial purification measured 1.2056 and 1.2100. Solving for 233/2310 in Eqn. 2, the decay-corrected 233/231 ratios of these solutions are equal to 3.367 and 3.379, respectively (Table 4), which are indistinguishable from the measured mean value of 3.374 ± 0.007 (2) SD; n = 3). The data in Table 4 suggest that the 233/231 ratio of the mixed standard measured at day 40 is \sim 1% lower than the ratio measured at either day 6 or day 150. We do not have an explanation for the offset but suggest an increase in background current (dark noise) resulting from the accumulated exposure of the Daly knob to ²³³Pa might be responsible. Accumulated exposure would be presumed to have been at a minimum during analysis at day 6 (first exposure) and day 150 (minimum ²³³Pa activity). In light of this anomaly, it is advisable to monitor background counts to determine if background current increases from prolonged exposure to β-decaying ²³³Pa nuclide. Nevertheless, the consistency between values with and without column chemistry and analyses of procedural blanks provides convincing evidence for complete chemical separation of U and Pa. More importantly, the overall consistency between the 233/231 mass ratios in solutions across a twenty-fold range in ²³³Pa concentration suggests negligible (less than 1%) differences between ²³³U and ²³³Pa during sample introduction and detection by MC-MS-ICPMS. Evidently, interference of ²³³Pa by ²³³U is not observed during ratio measurements. This

Table 4. Measured 233/231 mass ratios in a mixed standard originally containing approximately 11 pg g $^{-1}$ 233 Pa and 3 pg g $^{-1}$ 231 Pa.

Days after purification	Measured 233/ 231 ratio	Column Separation	Calculated 233/ 231 ratio
6	3.4235 (0.0342)	None	_
7	3.4239 (0.0311)	None	_
8	3.4161 (0.0342)	None	_
40	1.2056 (0.0086)	YES	3.3671 (0.0240)
40	1.2100 (0.0055)	YES	3.3795 (0.0187)
43	3.3736 (0.0405)	None	
44	3.3715 (0.0223)	None	_
43	3.3781 (0.0276)	None	_
150	3.4297 (0.0361)	None	_
150	3.4239 (0.0236)	None	_
150	3.4403 (0.0143)	None	_

Ratio measurements were made 6 to 150 days after the initial purification of ²³³Pa in the mixed standard. The measured 233/231 ratios at day 40 have been recalculated by correction of the decay of ²³³Pa (Eqn. 2). Numbers in quotes represent the analytical errors (2 SD) in the measured ratio or the estimated error in the recalculated ratio.

observation reaffirms several clear advantages of MC-MS-ICPMS. Since it is not necessary to minimize in growth of ²³³U from decay of ²³³Pa, isotopic measurements of samples do not have to be made soon after (days to weeks) the column separation of Pa from U. Nor is the accuracy of ²³¹Pa/²³³Pa ratio measurements dependent on the efficiency of uranium "burnoff" from filaments, as required by TIMS. It is highly recommended, however, that consistency standards (with and without column chemistry) and blanks be processed and analyzed simultaneously with samples so that potential errors introduced during chemical processing, or from changes in instrument performance, can be immediately identified.

Having established an initial estimate of the precision and accuracy in $^{233}\mathrm{Pa}/^{231}\mathrm{Pa}$ measurements, we determined the $^{230}\mathrm{Th}/^{234}\mathrm{U}/^{238}\mathrm{U}$ and $^{231}\mathrm{Pa}/^{235}\mathrm{U}$ ages of four Barbados fossil corals (30 ka) by the methods described in this work (Table 5). These samples were chosen as a test of the U-Th-Pa methodology because X-ray diffraction indicated detectable calcite at <0.3%, and $^{230}\mathrm{Th}/^{234}\mathrm{U}/^{238}\mathrm{U}$ ages of these samples were determined previously by MC-MS-ICPMS. While the sea level record (Fairbanks, 1989; Fairbanks, 1990) suggests that these corals were exposed to percolating vadose freshwater for $\sim 15,000$ yr, these samples were expected to yield concordant $^{230}\mathrm{Th}/^{234}\mathrm{U}/^{238}\mathrm{U}$ and $^{231}\mathrm{Pa}/^{235}\mathrm{U}$ ages based on the general absence of diagenesis on Barbados coral samples younger than 82,000 yr before present (BP).

Replicate 230 Th/ 234 U/ 238 U and 231 Pa/ 235 U ages were determined from individually cored pieces (A and B). The same stock 233 Pa spike was used to prepare each set of samples and reference standard. A and B samples were spiked, processed, and analyzed approximately one month apart. We chose a Yemen speleothem, Y99-7Ra, as our 231 Pa and U reference standard. The age of the Yemen speleothem (585 \pm 53 ka; determined by 230 Th/ 234 U/ 238 U method), its uranium content (3 ppm), and negligible 232 Th content (60 pg g $^{-1}$) make it an ideal standard since it can be assumed that Pa and U are in secular equilibrium ([231 Pa/ 235 U] activity = 1) and the uranium content is close to that of corals. The 233 Pa spike concentration was calculated from the measured 233 Pa/ 231 Pa activity ratio and the

Sample	U-Th age (yr)	U-Pa age (yr)	δ^{234} Ui (initial)	U-Th age* (yr)	δ ²³⁴ Ui* (initial)
RGF12-28-6a	29,844(76)	27,068(581)□	142		
RGF12-28-6b	29,641(88)	29,877(430)	141		
Average	29,742(203)	29,877(430)	171	29,590 (82)	137
RGF12-28-7a	30,028(60)	29,860(489)	145	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
RGF12-28-7b	29,708(68)	29,669(459)	143		
Average	29,868(320)	29,765(191)		30,158 (123)	139
RGF12-29-2a	30,290(73)	30,035(488)	142		
RGF12-29-2b	30,011(68)	30,645(338)	140		
Average	30,150(279)	30,340(610)		30,275 (80)	138
RGF12-30-3a	30,679(54)	30,220(579)	144		
RGF12-30-3b	30,515(75)	31,123(419)	145		
Average	30,597(164)	30,672(900)		30,292 (95)	140

Table 5. 230 Th/ 234 U/ 238 U and 231 Pa/ 235 U ages and initial δ^{234} U from Barbados coral samples.

All coral species are *Acropora palmata* and are listed in stratigraphic sequence. ²³⁰Th/²³⁴U/²³⁸U and ²³¹Pa/²³⁵U ages were determined from the same dissolved fragment. A and B designate replicates from different fragments. ²³⁰Th/²³⁴U/²³⁸U ages denoted by * were previously determined by methods without Pa spiking and with chemical separation of U and Th only. Numbers in quotes represent the analytical error (2 SD) or the difference between replicates.

denotes sample outliers and are not included. Ages were calculated using the following equations (Ivanovich et al., 1992):

$$\begin{bmatrix}
^{230}Th^{234}U\end{bmatrix} = \frac{1 - e^{-\lambda_{230}*t_1}}{\begin{bmatrix}
^{234}U^{238}U\end{bmatrix}} + \left(1 - \frac{1}{\begin{bmatrix}
^{234}U^{238}U\end{bmatrix}}\right) * \frac{\lambda_{230}}{\lambda_{230} - \lambda_{234}} * (1 - e^{-(\lambda_{230} - \lambda_{234}) * t_1})$$

$$\begin{bmatrix}
^{231}Pa \\
^{235}U\end{bmatrix} = 1 - e^{-\lambda_{231}*t_2}$$

In all calculations, we use decay constants of $\lambda_{230} = 9.1577 \times 10^{-6} \text{ year}^{-1}$, $\lambda_{231} = 2.1158 \times 10^{-5} \text{ year}^{-1}$, and $\lambda_{234} = 2.8263 \times 10^{-6} \text{ year}^{-1}$, (Cheng et al., 2000; Roberts et al., 1969).

U concentration of the speleothem. The 233 Pa spike concentrations used with sample set A and B were calculated to be 10.30 pg g-1 and 4.24 pg g⁻¹, respectively.

We estimate the uncertainty in the 231 Pa/ 235 age in Table 5 to be about $\pm 2.5\%$ by combining the analytical precision with an estimate of the external error ($\pm 1\%$: Table 4), and the uncertainty in the decay constant for 231 Pa ($\pm 0.6\%$). 231 Pa/ 235 U ages of the four Barbados samples are strati-

²³¹Pa/²³⁵U ages of the four Barbados samples are stratigraphically consistent and are consistent with the paired ²³⁰Th/²³⁴U/²³⁸U ages (Table 5). Excluding one discordant ²³¹Pa/²³⁵U age (RGF12-28-6A), the average ²³¹Pa/²³⁵U age is identical to the ²³⁰Th/²³⁴U/²³⁸U age, and so we conclude that this procedure can be used to obtain ²³¹Pa/²³⁵U ages to the precision necessary to confirm the reliability of closed system ²³⁰Th/²³⁴U/²³⁸U ages.

4. DISCUSSION

High-precision and high-accuracy 230 Th/ 234 U/ 238 U ages paired with AMS radiocarbon dates of corals and speleothems (Edwards et al., 1993; Bard, 1998; Burr et al., 1998; Beck et al., 2001) and radiocarbon dating of microfossils samples from varved sediments (Goslar et al., 2000; Hughen et al., 2000) provide the opportunity to extend the record of Δ^{14} C from 12,000 to 50,000 yr. High-precision and high-accuracy 230 Th/ 234 U/ 238 U ages on corals from submerged fossil reefs and elevated terraces permit reconstructions of the magnitude and timing of past sea level changes (Edwards et al., 1987; Bard et al., 1990; Fairbanks 1990; Chappell et al., 1996; Yokoyama et al., 2001; Gallup et al., 2002; Cutler et al., 2003). Corals exposed to freshwater during sea level regressions may experience gain or loss of U and Th. The increased likelihood that corals have been exposed to freshwater, in either the vadose or

phreatic zone before the last glacial maximum low stand, presents challenges to both extending the ¹⁴C calibration and to precise and accurate dating of past sea level changes. The δ²³⁴U_i measured in a fossil coral relative to that of modern seawater is the first indicator of open system ²³⁰Th/²³⁴U/²³⁸U ages. There are, however, limitations with the use of δ^{234} U_i as an a priori criterion. The historical data compiled for seawater and modern corals defines a range of generally accepted δ^{234} U_i values of between 140 and 150%e, rather than a single accepted value. Although conservative behavior of U and $\delta^{234}U_i$ in seawater has been firmly demonstrated (Delanghe et al., 2002), it has been suggested that the $\delta^{234}U_i$ of seawater may not be constant through time. (Hamelin et al., 1991; Richter and Turekian, 1993; Esat and Yokoyama; 2000). Despite these findings, it clear is that departures in excess of 10% in fossil coral δ^{234} U_i from a seawater value of ~145% suggest diagenetic alteration. In cases where coral samples have been exposed to freshwater and the $\delta^{234}U_i$ is within 10% of modern seawater, it is necessary to have an additional chronometer to test for age concordance. ²³¹Pa/²³⁵U dating can confirm the accuracy of ²³⁰Th/²³⁴U/²³⁸U ages. The 30 ka Barbados samples dated in this study represent the youngest of the Barbados corals believed to have been exposed to freshwater from the lowering of sea level at the last glacial. Verification of MC-MS-ICPMS techniques and closed system $^{230}\text{Th}/^{234}\text{U}/^{238}\text{U}$ ages for these samples demonstrates the potential for extending an accurate and precise radiocarbon calibration and sea level record from corals.

5. CONCLUSIONS

The precise and accurate determination of 230 Th/ 234 U/ 238 U and 231 Pa/ 235 U ages from a single fossil coral fragment has

been demonstrated by multi-collector magnetic sector inductively coupled mass spectrometry (MC-MS-ICPMS). The ICP-MS method simplifies analytical procedures, reduces sample size, significantly reduces sample handling, and increases sample throughput when compared to TIMS. The MC-MS-ICPMS method makes redundant dating of corals by ²³⁰Th/ ²³⁴U/²³⁸U and ²³¹Pa/²³⁵U a routine procedure. Although ionization efficiencies for U, Th, and Pa are superior by TIMS methodology, routine precision for our ²³⁰Th/²³⁴U/²³⁸U dates is (0.3%; 2 RSD) comparable to the most precise measurements reported by TIMS. The analytical precision in determining ²³¹Pa/²³⁵U by MC-MS-ICPMS is similar to that achieved by TIMS. Our estimate of the uncertainty in our ²³¹Pa/²³⁵U dates is $\pm 2.5\%$ (2 RSD) and includes estimates in the uncertainty of λ_{231} and an unidentified external error. Further tests of replicate samples and of a homogenized coral standard will assist in identifying and substantially reducing the sources of external error. Our MC-MS-ICPMS methodology is sufficient to test for concordance of ²³⁰Th/²³⁴U/²³⁸U and ²³¹Pa/²³⁵U ages in the age range of 10 ka to 150 ka.

Acknowledgments—Martin Fleisher and Robert Anderson provided technical assistance and ²³³Pa spike. Li Cao assisted with PLASMA 54 measurements and Dr. Albert Matter (University of Bern) kindly provided the Yemen speleothem. This manuscript has benefited from comments provided by Y. Amelin, T. Esat, Y. Asmerom, and D. Pickett and one anonymous reviewer. This work was supported by grants from the National Science Foundation (OCE98-18349, OCE98-11637, OCE95-12391, and ATM03-27722). This is Lamont Contribution 6629.

Associate editor: Y. Amelin

REFERENCES

- Bard E. (1998) Geochemical and geophysical implication of the radiocarbon calibration. *Geochim. Cosmochim. Acta* **62**, 2025–2038.
- Bard E., Hamelin B., and Fairbanks R. G. (1990) U-Th ages obtained by mass spectrometry in corals from Barbados; sea level during the past 130,000 years. *Nature* 346, 456–458.
- Beck J. W., Richards D. A., Edwards R. L., Silverman B. W., Smarr P. L., Donahue D. J., Osterheld-Herrera S., Burr G. S., Calsoyas L., Lull A. J. T., and Biddulph D. (2001) Extremely large variations of atmospheric ¹⁴C concentration during the last glacial period. *Science* 292, 2453–2458.
- Burr G. S., Beck W. J., Taylor F. W., Recy J., Edwards R. L., Cabioch G., Correge T., Donohue D. J., and O'Malley J. M. (1998) A high resolution radicarbon calibration between 11,700 and 12,400 calendar years BP derived from ²³⁰Th Ages of Corals from Espiritu Santo Island, Vanuatu. *Radiocarbon* 40, 1093–1105.
- Cao L., Fairbanks R. G., Mortlock R. A., and Guilderson T. (2003) Radiocarbon record of rapid deep water production changes during the last deglaciation (abstr.). EOS 84, 907.
- Chappell J., Omura A., Esat T., McCulloch M., Pandolfi J., Ota Y., and Pillans B. (1996) Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227–236.
- Chen J. H., Edwards R. L., and Wasserburg G. J. (1986) ²³⁸Ú, ²³⁴U and ²³⁰Th in seawater. *Earth and Planetary Science Letters* **80**, 241–251.
- Cheng H., Edwards R. L., Hoff J., Gallup C. D., Richards D. A., and Asmeron Y. (2000) The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, 17–33.
- Chiu T.-C., Fairbanks R. G., Mortlock R. A., Guilderson T., and Bloom A. (2003) Atmospheric radiocarbon production between 30,000 and 50,000 years B.P. and the influence of geomagnetic field intensity fluctuations. (abstr.) EOS 84, 528.

- Cutler K. B., Edwards R. L., Taylor F. W., Cheng H., Adkins J., Gallup C. D., Cutler P. M., Burr G. S., and Bloom A. L. (2003) Rapid sea level fall and deep-ocean temperature change since the last interglacial period. *Earth and Planetary Science Letters* 206, 253–271.
- Delanghe D., Bard E., and Hamelin B. (2002) New TIMS constraints on the Uranium-238 and Uranium-234 in seawater from the main ocean basins and the Mediterranean Sea. *Marine Chemistry* **80**, 79–93.
- Edwards R. L. (1988) High-precision thorium-230 ages of corals and the timing of the sea level fluctuations in the late Quaternary. Ph.D. Thesis, California Institute of Technology.
- Edwards R. L., Chen J. H., and Wasserburg G. J. (1987) ²³⁸U-²³⁴U-²³⁰Th-²³²Th systematics and the precise measurements over the past 500,000 years. *Earth and Planetary Science Letters* **81**, 175–192.
- Edwards R. L., Taylor F. W., and Wasserburg G. J. (1988) Dating earthquakes with high precision thorium-230 ages of very young corals. *Earth Planet. Sci.* **4,** 347–379.
- Edwards R. L., Beck J. W., Burr G. S., Donahue D. J., Chappell J. M. A., Bloom A. L., Druffel E. R. M., and Taylor F. W. (1993) A large drop in atmospheric ¹⁴C/¹²C reduced melting in the Younger Dryas, documented with ²³⁰Th ages of corals. *Science* **260.** 962–968.
- Edwards R. L., Cheng H., Murrell M. T., and Goldstein S. J. (1997) Protactinium-231 dating of carbonates by thermal ionization mass spectrometry: implication for Quaternary climate change. *Science* 276, 782–786.
- Esat T. and Yokoyama Y. (2000) Correlated uranium and sea-level fluctuations in the late quaternary oceans. V. M. Goldschmidt Conference Journal of Conference Abstracts, Oxford, U. K., Cambridge Publications, pp. 387–388.
- Fairbanks R. G. (1989) A 17,000-year glacio-eustatic sea level record influence of glacial melting rates on the Younger Dryas event and deep sea circulation. *Nature* 342, 637–642.
- Fairbanks R. G. (1990) The age and origin of the "Younger Dryas climate event" in Greenland Ice Cores. *Paleoceanography* **5**, 937–948
- Gallup D. C., Edwards R. L., and Johnson R. G. (1994) The timing of high sea levels over the past 200,000 years. *Science* **263**, 796–800.
- Gallup D. C., Cheng H., Taylor F. W., and Edwards R. L. (2002) Direct determination of the sea level change during termination II. *Science* **295**, 310–313.
- Goslar T., Arnold M., Tisnerat-Laborde N., Hatte C., Paterne M., and Ralska-Jasiewiczowa M. (2000) Radiocarbon calibration by means of varves versus C-14 ages of terrestrial macrofossils from Lake Gosciaz and Lake Perespilno, Poland. *Radiocabon* 40, 335–348.
- Halliday A. N., Lee D-C., Christensen J. N., Walder A. J., Freeman P. A., Jones C. E., Hall C. M., Yi W., and Teagle D. (1995) Recent developments in inductively coupled plasma magnetic sector multiple collect mass spectrometry. *International J. of Mass Spectrometry and Ion Processes* 146/147, 21–33.
- Halliday A. N., Lee D.-C., Christensen J. N., Rehkämper M., Yi W., Luo X., Hall C. M., Ballentine C. J., Petke T., and Stirling C. (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry and paleoceanography. *Geochim. Cosmochim. Acta* 62, 919–940.
- Hamelin B., Bard E., Zindler A., and Fairbanks R. G. (1991) ²³⁴U/²³⁸U mass spectrometry of corals: How accurate is the U-Th age of the last interglacial period? *Earth and Planetary Science Letters* **106**, 169–180.
- Henderson G. M., Cohen A. S., and O'Nions R. K. (1993) ²³⁴U/²³⁸U ratios and ²³⁰Th ages for Hateruma Atoll corals: implications for coral diagenesis and seawater ²³⁴U/²³⁸U ratios. *Earth Planet. Sci. Lett.* **115**, 65–73.
- Hughen K. A., Southon J. R., Lehman S. J., and Overpeck J. T. (2000) Synchronous radiocarbon and climate shifts during the last deglaciation. *Science* 290, 1951–1954.
- Ivanovich M., Latham A. G., and Ku T.-L. (1992) Uranium-series disequilibrium applications on geochronology. In *Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences* 2nd Edition, (eds Ivanovich M. and Harmon R. S.), Oxford University Press, pp 62–94.

- Jones R. T., Merritt J. S., and Okazaki A. (1986) A measurement of the thermal neutron capture cross section of ²³²Th. *Nucl. Sci. Eng.* 93, 171–180
- Luo X., Rehkamper M., Lee D.-C., and Halliday A. N. (1997) High precision ²³⁰Th/²³²Th and ²³⁴U/²³⁸U measurements using energyfiltered ICP Magnetic sector multiple collector mass spectrometry. *Inter. J. Mass Spectrom. and Ion Proc.* 171, 105–117.
- Pickett D. A., Murrell M. T., and Williams R. W. (1994) Determination of femtogram quantities of protactinium in geologic samples by thermal ionization mass spectrometry. *Anal. Chem.* 66, 1044–1049.
- Richter F. M. and Turekian K. K. (1993) Simple models for the geochemical response of the ocean to climate and tectonic forcing. *Earth Planet Sci. Lett.* 19, 121–131.
- Robert J., Miranda C. F., and Muxart R. Mesure de la période du protactinium-231 par microcalorimétrie. *Radiochim. Acta* 11: 104– 108, 1969.
- Schmorak M. R. J. (1977) Nucl. Data Sheets. 21, 91-200.
- Shen C.-C., Edwards R. L., Cheng H., Dorale J. A., Thomas R. B., Moran S. B., Weinstein S. E., and Edmonds H. N. (2002) Uranium and thorium isotopic and concentration measurements by magnetic

- sector inductively coupled plasma mass spectrometry. *Chem. Geol.* **185,** 165–178.
- Stirling C. H., Esat T. M., McCulloch M. T., and Lambeck K. (1995) High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the last interglacial. *Earth Planet Sci. Lett.* 135, 115–130.
- Stirling C. H., Esat T. M., Lambeck K., McCulloch M. T., Blake S. G., Lee D.-C., and Halliday A. N. (2001) Oribital forcing of the marine isotope stage 9 interglacial. *Science* 291, 290–293.
- Thompson W. G., Spiegelman M. W., Goldstein S. L., and Speed R. C. (2003) An open system model for U age determinations of fossil corals. *Earth and Planet. Sci. Lett.* **210**, 365–381.
- Walder A. J., Koller D., Reed N. M., Hutton R. C., and Freedman P. A. (1993) Isotopic ratio measurement by inductively coupled plasma multiple collector mass spectrometry incorporating a high efficiency nebulization system. J. Anal. At. Spectrom. 8, 1037–1041.
- Yokoyama Y., Esat T. M., and Lambeck K. (2001) Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age. *Earth Planet. Sci. Lett.* **193**, 579–587.