Faculté des sciences

OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa.L)

Xu, YanXia ; Zhang, SaiNa ; Guo, HaiPeng ; Wang, SuiKang ; Xu, LiGen ; Li, ChuanYou ; Qian, Qian ; Chen, Fan ; Geisler, Markus ; Qi, YanHua ; Jiang, DeAn

In: The Plant Journal, 2014, p. –

Members of the ATP Binding Cassette B/Multidrug-resistance/P-glycoprotein (ABCB/MDR/PGP) subfamily were shown to function primarily in auxin transport. However, none of rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-D and IAA.... Mehr

Zum persönliche Liste hinzufügen
    Summary
    Members of the ATP Binding Cassette B/Multidrug-resistance/P-glycoprotein (ABCB/MDR/PGP) subfamily were shown to function primarily in auxin transport. However, none of rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-D and IAA. OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock-down alleles. OsABCB14 is localized at the plasma membrane pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (–Fe). Their Fe concentration is higher and up-regulation of Fe-deficiency responsive genes is lower in osabcb14 mutants than in wild type rice, Nipponbare (NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in iron homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition.