Faculté des sciences

IncH-type plasmid harboring the blaCTX-M-15, blaDHA-1, and qnrB4 genes recovered from animal isolates

Schlüter, Andreas ; Nordmann, Patrice ; Bonnin, Rémy A. ; Millemann, Yves ; Eikmeyer, Felix G. ; Wibberg, Daniel ; Pühler, Alfred ; Poirel, Laurent

In: Antimicrobial Agents and Chemotherapy, 2014, p. AAC.02695–14

The whole sequence of plasmid pENVA carrying the extended-spectrum ß-lactamase gene blaCTX-M-15 was determined. It has been identified from a series of clonally-related Klebsiella pneumoniae ST274 strains recovered from companion animals. This plasmid was 253,984-bp in-size and harbored, in addition to blaCTX-M-15, a large array of genes encoding... More

Add to personal list
    Summary
    The whole sequence of plasmid pENVA carrying the extended-spectrum ß-lactamase gene blaCTX-M-15 was determined. It has been identified from a series of clonally-related Klebsiella pneumoniae ST274 strains recovered from companion animals. This plasmid was 253,984-bp in-size and harbored, in addition to blaCTX-M-15, a large array of genes encoding resistance to many antibiotic molecules including β-lactams (blaTEM-1, blaDHA-1), aminoglycosides (aacA2, aadA1), tetracycline (tetA), quinolones (qnrB4), trimethoprim (dfrA15), and sulfonamides (two copies of sul1). In addition, genes encoding resistance to mercury, tellurium, nickel, and quaternary compounds were identified. In addition, it carried genes encoding for DNA damage protection and mutagenesis repair, and also a CRISPR system locus corresponding to a immune system protecting against bacteriophages and plasmids. Comparative analysis of the plasmid scaffold showed that it possessed a similar structure with only a single plasmid, being pNDM-MAR encoding the carbapenemase NDM-1 and identified from human K. pneumoniae isolates. Both plasmids possessed two replicons, namely those of IncFIB-like and IncHIB-like plasmids, being significantly different from the previously characterized. The blaCTX-M-15 gene, together with the other antibiotic resistance genes, was part of a large module likely acquired through a transposition process. We characterized here a new plasmid type encompassing the blaCTX-M-15 gene identified in a K. pneumoniae of animal origin. It remains to determine to which extend this plasmid type may spread efficiently, and possibly further enhance the dissemination of blaCTX-M-15 among animal and human isolates.