Faculté des sciences

Desynchronization of neocortical networks by asynchronous release of GABA at autaptic and synaptic contacts from fast-spiking interneurons

Manseau, Frédé ric ; Marinelli, Silvia ; Méndez, Pablo ; Schwaller, Beat ; Prince, David A. ; Huguenard, John R. ; Bacci, Alberto

In: PLoS Biology, 2010, vol. 8, no. 9, p. e1000492

Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and... Plus

Ajouter à la liste personnelle
    Summary
    Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and prolonged GABAergic self-inhibition due to sustained asynchronous release at FS-cell autapses. Asynchronous release of GABA is simultaneously recorded in connected pyramidal (P) neurons. Asynchronous and synchronous autaptic release show differential presynaptic Ca²⁺ sensitivity, suggesting that they rely on different Ca²⁺ sensors and/or involve distinct pools of vesicles. In addition, asynchronous release is modulated by the endogenous Ca²⁺ buffer parvalbumin. Functionally, asynchronous release decreases FS-cell spike reliability and reduces the ability of P neurons to integrate incoming stimuli into precise firing. Since each FS cell contacts many P neurons, asynchronous release from a single interneuron may desynchronize a large portion of the local network and disrupt cortical information processing.