Letters to the Editor

Emergence of OXA-72-producing Acinetobacter pittii clinical isolates

Sir,

The genus Acinetobacter comprises 47 characterised genotypic species, among which species belonging to the Acinetobacter calcoaceticus–Acinetobacter baumannii complex are the most clinically relevant. Within this complex, A. baumannii, Acinetobacter nosocomialis (formerly genomic species 13TU) and Acinetobacter pittii (formerly genomic species 3) are frequently associated with hospital-acquired infections [1]. Carbapenem resistance is being increasingly reported in Acinetobacter spp. isolates and this resistance trait is often related to the production of acquired carbapenem-hydrolysing class D β-lactamases (CHDLs) that are disseminating worldwide [2]. Five groups of acquired CHDLs have been identified to date in A. baumannii, namely OXA-23, OXA-24/40, OXA-58, OXA-143 and OXA-235 [2]. OXA-72 is a point mutant of OXA-40 that was first described in carbapenem-resistant A. baumannii clinical isolates in China [2]. It was then reported in Colombia from a clinical isolate (A. pittii 2688), which has been used here as a reference strain [3].

This study was initiated by the isolation of three imipenem-non-susceptible Acinetobacter spp. isolates recovered in three hospitals in France in 2011–2013. Isolate RA1 was from the sputum of a patient hospitalised in November 2011, isolate RA2 was from pus of an 84-year-old patient in December 2011, and isolate RA3 was recovered after rectal screening of a 56-year-old patient in May 2013. These isolates were resistant to penicillins and penicillin–inhibitor combinations and were of intermediate susceptibility to carbapenems according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (http://www.eucast.org/clinical_breakpoints/). By contrast, they remained susceptible to ceftazidime and cefepime as well as to amikacin, rifampicin, colistin, fluoroquinolones, tigecycline and tigecycline according to the EUCAST guidelines. The isolates were identified using the API 32 GN system (bioMérieux, Marcy l’Étoile, France), partial sequencing of their 16S rDNA genes and matrix-assisted laser desorption/ionisation time-of-flight mass (MALDI-TOF) analysis. Identification results showed that the three Acinetobacter spp. strains belonged to the A. pittii species.

Since the resistance phenotype to β-lactams suggested the production of a CHDL, corresponding genes were searched by PCR as described previously [2]. Interestingly, PCR followed by sequencing analysis identified the blaOXA-72 gene in the three isolates.

To determine the genetic location of the blaOXA-72 gene, transfer of the ticarcillin resistance marker into A. baumannii BM4547 was attempted by liquid mating-out assays at 37° C and by electrotroduction of a plasmid DNA suspension extracted from the three clinical isolates and the reference strain (A. pittii 2688). Conjugation remained unsuccessful; nevertheless, transformants were obtained for the three clinical isolates and the reference strain, revealing that blaOXA-72 was plasmid-located in all isolates. Plasmid analysis using the A. baumannii PCR-based replicon typing (AB-PBRT) scheme revealed that all French isolates possessed a plasmid of ca. 20 kb in size belonging to the GR12 family plasmid, as defined previously [4], whereas the Colombian isolate was negative for this PCR. Shotgun DNA cloning was then performed to identify the genetic structure surrounding the blaOXA-72 gene. It revealed very similar structures to those identified on the GR12 plasmid-type and blaOXA-72-positive plasmid pMMD identified in a clinical isolate of A. baumannii from Spain [5]. Altogether, these data indicated that these three plasmids, although originating from different strains, were likely the same.

Genotypic comparison was performed by DiversiLab following the manufacturer’s instructions (bioMérieux, La Balme-les-Grottes, France). The clinical isolate of OXA-72-producing A. pittii 2688 from Colombia was used as a reference strain for comparison [3]. Genotyping showed that the four isolates corresponded to three distinct clones (A–C (Fig. 1), with the Colombian isolate being distantly related to the French isolates. Two isolates, namely RA2 and RA3, were closely related. These two isolates have been recovered, respectively, in northern and southern suburb hospitals of Paris in 2011 and 2013. The remaining isolate recovered in another city in France was not related to the others.

This study constitutes the first report of OXA-72-producing A. pittii in Europe following the initial identification of an OXA-72-producing A. pittii in Colombia. The fact that the same clone has been recovered in two different hospital settings 2 years apart likely indicated that this clone might be more widespread than expected. The difficulties in identifying A. pittii species might underestimate their clinical relevance, in accordance with a series of recent studies showing that non-baumannii Acinetobacter spp. were more clinically significant than expected.

Funding: This work was partially funded by a grant from INSERM (UMR914), by the Université Paris-Sud (Paris, France) and by grants from the European Community [R-GNOSIS, FP7/HEALTH-F3-2011-282512 and MAGIC-BULLET, FP7/HEALTH-F3-2001-278232].

Competing interests: None declared.

Ethical approval: Not required.
References


Rémy A. Bonnin¹
Fernando Docobo-Pérez¹
Laurent Poirel¹,²,*
Maria-Virginia Villegas³
Patrice Nordmann¹,²

¹ INSERM U914 ‘Emerging Resistance to Antibiotics’, K.-Bicêtre, France
² Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
³ International Center for Medical Research and Training, CIDEIM, Cali, Colombia

* Corresponding author. Present address: Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, 3 rue Albert Gockel, CH-1700 Fribourg, Switzerland. Tel.: +41 26 300 9580.
E-mail address: laurent.poirel@unifr.ch (L. Poirel)

7 October 2013

http://dx.doi.org/10.1016/j.ijantimicag.2013.10.005