

Figure S1a. ORTEP View of 2 (ellipsoids at the 50\% probability level). Hydrogen atoms have been omitted for clarity.

Figure S1b. Packing diagram of compound 2 seen along the a-axis (ellipsoids at the 50% probability level). Hydrogen atoms have been omitted for clarity.

Table S1. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound 2.

C1-N1	$1.3808(17)$	C5-C4	$1.388(2)$
C1a-N1a	$1.3787(17)$	C5a-C4	$1.386(2)$
C1-N2	$1.2968(19)$	N1-C11	$1.4150(17)$
C1a-N2a	$1.2983(19)$	N1a-C11a	$1.4172(17)$
N1-C2	$1.3976(17)$		
N1a-C2a	$1.4000(17)$	N1-C1-N2	$114.4(1)$
N2-C5	$1.3965(18)$	N1a-C1a-N2a	$114.7(1)$
N2a-C5a	$1.4107(19)$	C1-N1-C11	$124.3(1)$
C2-C3	$1.3879(18)$	C1a-N1a-C11a	$125.9(1)$
C2a-C3	$1.3852(19)$		
C2-C5	$1.4136(18)$	C1...C1a	$6.449(2)$
C2a-C5a	$1.4107(19)$		

Figure S2. Stacked ${ }^{1} \mathrm{H}$ NMR plots of the aromatic section of complexes 5 (diastereopure, bottom) and $\mathbf{6}$ (top).

Figure S3. Pluton drawing of one of the four crystallographically independent complex cations of $\mathbf{9}$. Severe disorder in the anions could not be refined to acceptable levels, which prevents a full discussion of data. The bite angle of $\mathbf{9}$ is in the expected range (78.5° in average over the four independent residues, cf Table 2). The bonds between the ruthenium center and the solvent ligands also follow the same trend as observed in $\mathbf{6}$, with the MeCN trans to the carbene markedly more distant from the Ru center than the other three MeCN ligands: Ru-C1 1.97; Ru-N1 2.12; Ru-N2 2.04; Ru-N3 2.03; Ru-N4 2.01; Ru-N5 2.06;

Figure S4.CV diagram (left) and DPV measurement (right) of complexes 5 and $\mathbf{8}$ (ca. 1 mM) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte at $100 \mathrm{mV} \mathrm{s}^{-1}$ scan rate; $\mathrm{Fc}^{+} / \mathrm{Fc}$ used as internal reference.

Figure S5. CV (left) and DPV (right) plot of complexes 7 and $\mathbf{1 0}$ (ca. 1 mM) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 0.1 M
$\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ as supporting analyte, $50 \mathrm{mV} \mathrm{s}^{-1}$ scan rate $\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right.$ used as internal standard, $\mathrm{E}_{1 / 2}\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)=0.41 \mathrm{~V}$ vs. SCE).

Figure S6. Absorption spectra of complexes 7 at $0.0 \mathrm{~V}, 7^{+}$at +1.23 V and 7^{2+} at $+1.5 \mathrm{~V}\left(\mathrm{MeNO}_{2}\right.$ solution).

Figure S7. Stability tests: MV species $\mathbf{6}^{+}$at 1.46 V observed at 1590 nm (left). Fully oxidized $\mathbf{6}^{\mathbf{2 +}}$ species at 1.6 V observed at 820 nm (right).

Figure S8. Stability tests: MV species 7^{+}at 1.23 V observed at 1730 nm (left). Dication 7^{2+} at 1.5 V observed at 740 nm (right).

Figure S9. IVCT band of the mixed-valent species $\mathbf{6}^{+}$(left) 7^{+}(right; blue solid lines) and corresponding (symmetric) Gaussian fitting curves (red dashed lines; normalized to experimentally determined extinction coefficient at $\lambda_{\max }$ standard deviation $700 \mathrm{~cm}^{-1}$ and $720 \mathrm{~cm}^{-1}$, respectively). The poor fit demonstrates the asymmetric shape of the IVCT band.

Table S2. Crystallographic data for compounds 2, 6, and 10.

	2	6	10	
CCDC No.				
mol formula	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}$	$\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{~F}_{24} \mathrm{~N}_{22} \mathrm{P}_{4} \mathrm{Ru}_{2}$	$\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~F}_{12} \mathrm{~N}_{7} \mathrm{P}_{2} \mathrm{Ru}$	
Crystal system	Monoclinic	Monoclinic	Triclinic	
Space group	$P 2{ }_{1} / \mathrm{C}$	$P 2_{1} / \mathrm{C}$	P_{-1}	
Unit cell				
a / \AA	9.2616(4)	12.154(2)	10.4632(9)	
b / \AA	20.3317(6)	28.597(6)	12.4848(13)	
c / \AA	7.5352(3)	21.640(4)	18.8260(15)	
$\alpha /{ }^{\circ}$	90	90	97.959(8)	
$\beta{ }^{\circ}$	96.336(3)	90.03(3)	103.187(6)	
$\gamma /{ }^{\circ}$	90	90	114.396(6)	
Volume / \AA^{3}	1410.24(9)	7521(3)	2104.2(3)	
Z	4	4	2	
T /K	200	100	150	
μ / mm^{-1}	0.09	0.60	0.79	
Abs. corr.	none	numerical	Numerical	
Total reflecns	19196	13538	15954	
Unique reflecns	2652	13538	7309	
parameters	217	956	551	
$\mathrm{R}_{1}{ }^{\text {a }}$ [$\left.\mathrm{I}>2 \sigma(\mathrm{I})\right]$	0.0388,	0.0657	0.0585	
$\mathrm{wR}_{2}{ }^{\text {b }}$ [$\left.\mathrm{I}>2 \sigma(\mathrm{I})\right]$	0.1024	0.1556	0.1401	
GOOF	1.048	0.979	1.049	
$\rho_{\text {fin }}(\mathrm{max}, \mathrm{min}) / \mathrm{e} \AA^{-3}$	0.18, -0.20	0.77, -0.87	0.81, -0.69	
$\begin{aligned} & \text { a) } \mathrm{R}_{1}=\Sigma \\|\left\|F_{\mathrm{O}}\right\|-\left\|F_{\mathrm{C}}\right\|\|/ \Sigma\| F_{\mathrm{O}} \mid \\ & \text { b) } \\ & \mathrm{wR}_{2}=\left[\Sigma \mathrm{w}\left(F_{\mathrm{O}}{ }^{2}-F_{\mathrm{C}}{ }^{2}\right)^{2}\right. \end{aligned}$	$\left.\left.\left(W_{(}{ }^{2}\right)^{2}\right)\right]^{1 / 2}$;	$1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(\mathrm{ap})^{2}+\mathrm{b}\right.$	$\mathrm{p}=\left(F_{\mathrm{O}}{ }^{2}+2 F_{\mathrm{C}}{ }^{2}\right) / 3$	

