DU LANGAGE NATUREL AUX LANGAGES LOGIQUES: ESQUISSE D'UNE APPROCHE CATÉGORIELLE

Pierre JORAY

Par rapport à l'ordre évident, nécessaire, universel, que la science, et singulièrement l'algèbre, introduisent dans la représentation, le langage est spontané, irréfléchi; il est comme naturel. Il est aussi bien, et selon le point de vue sous lequel on l'envisage, une représentation déjà analysée qu'une réflexion à l'état sauvage. A vrai dire, il est le lien concret de la représentation à la réflexion. Il n'est pas tant l'instrument de communication des hommes entre eux, que le chemin par lequel, nécessairement, la représentation communique avec la réflexion.
Michel Foucault.

S'il est un peu présomptueux de vouloir enrichir les réflexions que, depuis toujours, les logiciens ont menées concernant les rapports de leur discipline à l'analyse des langues naturelles, j'aimerais ici plus simplement proposer le parcours méthodologique auquel m'ont conduit mes recherches sur la notion de catégorie.

Loin de vouloir rejeter les idées du passé, je montrerai premièremenent comment cette notion peut offrir les moyens de revenir à un style d'analyse bien connu de l'ancienne logique mais que la logique moderne, absorbée qu'elle était par les problèmes des fondements des mathématiques, a quelque peu laissé de côté. Je décrirai ensuite ces moyens pour arriver enfin à l'exemple d'une analyse qui emprunte cette voie. Dans cette dernière partie, je montrerai que le pronom relatif recouvre une fonction qui est digne de l'intérêt du logicien.

Travaux de logique, 10, 1996.
1. Catégories et parties du discours

Les auteurs, philosophes, logiciens ou linguistes, qui ont écrit sur la notion de catégorie, insistent fréquemment sur son caractère fondamentalement intuitif. Et, faisant abstraction de l'aspect souvent technique des définitions rencontrées, il m'apparaît en effet que l'idée générale de catégorie langagière repose sur quelques constats relativement simples. Afin de rendre compte de la grande multiplicité de sens dont une langue articulée est capable, il faut disposer d'un certain nombre de classes – ou catégories – pour regrouper les expressions et parties d'expressions de cette langue selon les modes fondamentaux de signification dont elle dispose. Ces classes doivent être accompagnées de règles de composition qui expriment la manière dont les éléments de telles et telles catégories se combinent pour former les expressions douées de sens de la langue en question. La notion de catégorie repose à la fois sur des considérations d'ordre sémantique – on s'appuie, pour la comprendre, sur la notion d'expression douée de sens – et des considérations d'ordre syntaxique – par les règles de composition. C'est pourquoi je parlerai de catégories syntaxico-sémantiques (dorénavant CSS), et ceci non pas par manque d'esprit de décision, ni même pour conserver un flou conceptuel qui pourrait m'etre utile, mais bien pour garder à l'esprit ces deux aspects fondamentaux.\footnote{On trouve dans Bochenski (1962) une description des catégories qui se veut uniquement syntaxique. Je parlerai aussi, à l'occasion de la description structurelle de ma deuxième partie, de catégories simplement syntaxiques.}

Bien entendu, l'idée de catégoriser le langage n'est pas nouvelle, elle remonte même à l'Antiquité, mais on peut affirmer que les réflexions modernes concernant les CSS débutent avec E. Husserl. Dans ses Logische Untersuchungen, il montre que toute langue articulée doit faire fond sur ce qu'il nomme une «armature idéale» (Husserl 1962: 134). Cette armature est la donnée d'un certain nombre de classes d'équivalence substitutionnelle – les catégories – associées à des règles de composition de leurs éléments entre eux. Deux termes ou parties d'expression t1 et t2 d'une langue donnée L ressortissent à la même catégorie lorsqu'à l'intérieur d'une expression douée de sens E
de L qui contient t_1, on peut substituer t_2 à t_1 sans que E ne perde son caractère sensé (la substitution ne doit pas retirer à E son statut d'expression douée de sens, mais elle peut, en revanche, modifier son sens spécifique).

Prenons un exemple dans une langue dont la syntaxe est simple, celle de la logique des propositions. Les symboles ∧ et ∨ sont de même CSS car, lorsqu'on substitue le premier au second dans l'expression douée de sens (1), on obtient (2), qui elle aussi est douée de sens:

\[(1) \quad p \lor \lnot q \]
\[(2) \quad p \land \lnot q \]

En revanche \lnot n'est pas de la même CSS que les deux précédents car, si on le substitue à ∨ dans (1), on obtient (3), qui n'est pas douée de sens (on dit plutôt aujourd'hui qu'elle n'est pas bien formée):

\[(3) \quad p \lnot q \]

C'est à partir de réflexions sur le langage en général et en particulier sur les langues naturelles que la notion de CSS a été élaborée, mais c'est avec les langages artificiels de la logique qu'elle a trouvé son champ d'application le plus immédiat. Les exemples leur sont en effet souvent empruntés car, contrairement aux langues naturelles, ces langages offrent avec leur lexique et leur syntaxe beaucoup plus simples un contexte adéquat à la mise en évidence des traits importants d'une théorie des catégories.

Néanmoins, les auteurs s'accordent pour la plupart sur le caractère universel du concept de CSS. Ils admettent que son application doit être possible, au moins dans ses principes, à toute langue articulée, artificielle ou naturelle. Une partie de la problématique des catégories chez Husserl, par exemple,

\[2 \text{ Les deux expressions n'ont pas forcément le même sens, l'une peut être vraie et l'autre fausse, mais les deux sont sens et c'est uniquement ce qui importe.} \]
\[3 \text{ Au contraire de (1) et (2), (3) ne fait pas sens, on ne peut pas lui attribuer de valeur de vérité.} \]
concerne le langage logique, mais sa visée est tout à fait générale et il prend ses exemples dans la langue vernaculaire. Tarski de son côté écrit, au sujet de la théorie des CSS de S. Lesniewski:

La théorie des catégories sémantiques s'enracine si profondément dans les intuitions fondamentales relatives au sens des expressions, qu'il est impossible d'imaginer un langage scientifique dont les propositions posséderaient un sens intuitif distinct et dont la structure ne pourrait s'accorder avec cette théorie [...]. (Tarski 1974: t. 1, 215)

Cependant, pour chaque type de langue, il est nécessaire de spécifier la réflexion élémentaire en apportant des réponses à certaines questions:

Premièrement, il faut pouvoir distinguer, parmi les expressions de la langue que l'on se propose d'étudier, celles qui font sens de celles qui ne font pas sens.

Deuxièmement, parmi ces expressions et les parties qui les composent, la distinction doit encore être faite entre celles qui font sens par elles-mêmes et celles qui ne peuvent faire sens que par leur association avec d'autres expressions ou parties d'expression. Les premières, qui sont dites catégorématiques, sont rangées dans les CSS de base, alors que les secondes, dites syncatégorématiques, le sont dans les CSS dérivées\(^4\). Pour repren dre l'exemple de la logique des propositions, l'expression

\[(1) \ p \supset \neg q \]

ainsi que ses parties «p», «q» et «¬q» sont catégorématiques, elles expriment un sens unitaire – en l'occurrence une valeur de vérité. En revanche, les parties «¬» et «p ⊃» sont syncatégorématiques; elles sont incomplètes et nécessitent, pour former un sens unitaire, d'être associées à autre chose. C'est à ce niveau qu'interviennent les règles, car il s'agit de savoir comment et avec quels types d'expressions les associer si on veut être assuré d'obtenir des expressions douées de sens. Mes deux parties d'expression «¬» et «p ⊃» doivent être complétées à droite par

\(^4\) On parle aussi de CSS fonctionnelles.
une expression propositionnelle. Si on leur adjoind, par exemple,
l'expression (1) (mise entre parenthèses pour éviter des confu-
sions de lecture), on obtient les expressions complètes (4) et (5):

\[(4) \sim(p \supset \sim q)\]
\[(5) p \supset (p \supset \sim q)\].

Chaque catégorie dérivée est ainsi accompagnée d'une règle
de composition, qui exprime comment ses éléments doivent être
complétés pour former une expression complète, autrement dit
un catégorème. Cette règle est propre à la catégorie qu'elle
accompagne, elle en est indissociable car c'est elle qui la diffé-
rencie des autres catégories.

On rencontre une situation analogue avec le langage mathé-
matique de l'Analyse: les symboles de fonction sont des expres-
sions incomplètes; ils demandent à être complétés par un ou
plusieurs éléments issus d'ensembles déterminés. Une expres-
sion comme «cos(x)» n'exprime à elle seule aucun nombre.
C'est seulement lorsqu'elle est complétée, par exemple par le
nombre 0, qu'elle devient l'expression d'un nombre déterminé:
«cos(0)», qui exprime le nombre 1. On dit alors que la fonction
est saturée par son (le cas échéant, ses) argument(s)\(^5\).

Au-delà d'une simple ressemblance formelle, cette comparai-
son peut s'avérer conceptuellement fort utile. On peut com-
prendre, par son biais, toute l'entreprise catégorielle comme un
élargissement aux questions de grammaticalité des notions de
fonction et d'argument\(^6\). On sait par ailleurs quelle importance a
éue pour le développement de la logique moderne l'application
par Frege de ces notions à l'analyse de la proposition\(^7\). Mais ici,
il'intérêt principal de cette manière d'aborder la théorie des CSS
est qu'elle permet de renouer avec une manière d'analyser les
faits de langue qui reste quelque peu oubliée aujourd'hui et qui
traditionnellement servait à l'élargissement des connaissances à

\(^5\) Il faut remarquer la différence avec nos exemples, qui consiste en l'usage de la variable x.
Celle-ci a pour rôle d'indiquer la place encore vide que prendra l'argument de la fonction.
Une expression comme «cos(x)» est donc bien en un sens incomplète.

\(^6\) En particulier à partir des articles d'Ajdulicwicz (1967) et de Bar-Hillel (1953). Cf. à ce
sujet ici même l'article de Bourquin.

\(^7\) Cf. Frege (1971: 91).
la fois en grammaire et en logique: cette manière, c'est celle de la théorie des *parties du discours*.

Et grâce au nouvel élargissement des concepts de *fonction* et *argument* au champ de l'analyse langagière, c'est avec une grande précision conceptuelle qu'il est dès lors possible de revenir, en termes de CSS, à l'idée de parties du discours. L'analyse catégorielle ainsi conçue permet de mettre en évidence une base commune à toutes les grammaires, qui correspond à celle que Husserl qualifiait de «grammaire pure logique» (Husserl 1962: 86). Cette base donne une justification théorique à un regain d'intérêt du logicien pour l'analyse des faits langagiers et, comme on le verra dans ma quatrième partie sur le pronom relatif, pour un style d'analyse qui, à bien des égards, rappelle l'analyse traditionnelle en parties du discours.

Il ne s'agit pourtant pas, bien entendu, de revenir au vieux parallélisme logico-grammatical des XVIIe et XVIIIe siècles, car la base commune envisagée est ici – et de loin – bien plus modeste que celle des grammaires générales de l'époque classique. Elle constitue en fait ce qu'on pourrait appeler le degré minimal de la grammaticalité, c'est-à-dire un ensemble de conditions élémentaires du sens, en dessous desquelles il devient en quelque sorte impossible d'imaginer un langage articulé. On peut décrire formellement cette base. C'est ce que je vais examiner à présent, sous la dénomination de *structure catégorielle*.

2. Une structure catégorielle

Formellement, une structure catégorielle est la donnée de trois ensembles: un *alphabet*, un ensemble de *séquences catégorielles* et un ensemble de *règles*.

L'alphabet A est l'union des trois ensembles suivants, dont le premier contient les symboles destinés à représenter les catégories de base, le second un symbole de connecteur catégoriel et enfin le troisième des parenthèses:

8 On trouve un cas exemplaire avec les écrits de Port-Royal. Cf. à ce sujet Joray (1993: 54 sqq.).
A = A1 ∪ A2 ∪ A3
A1 = \{b_1, b_2, ..., b_n\}
A2 = \{/\}
A3 = \{,\}.

Par cet alphabet, rien n’est encore dit, ni du nombre des catégories de base, ni du contenu qu’elles sont destinées à recevoir. C’est ici la plus grande généralité qui est visée et ces questions cruciales ne se poseront que lorsqu’il s’agira d’appliquer la structure à une langue donnée.

Avant d’en venir aux séquences catégorielles qui sont en quelque sorte les phrases du langage formel de ma structure, il me faut définir les mots, autrement dit, les expressions catégorielles, qui désigneront toutes les catégories possibles à partir des catégories de base (b_i).

Expressions catégorielles (EC):

(i) Les b_i sont des EC.

(ii) Si C, C_1, C_2, ..., C_n sont des EC,

alors (C/C_1C_2...C_n) est une EC.

(iii) Rien n’est EC sinon par ce qui précède.

Les EC constituées d’un unique symbole désigneront les catégories de base, alors que les fractions désigneront les catégories dérivées. Cette écriture fractionnelle permet la reconnaissance immédiate du type des foncteurs de la catégorie désignée: les C_i du dénominateur indiqueront le nombre et les catégories respectives des arguments du foncteur, alors que le C du numérateur indiquera la catégorie du «résultat», c’est-à-dire la catégorie du tout formé du foncteur saturé par ses arguments.

L’ensemble des catégories qu’une telle définition engendre est considérable, il dépasse de loin les catégories que l’on peut rencontrer dans les langues dont nous avons l’habitude. On a aussi bien des CS³ simples comme b_4, que des CS composées comme b_4/b_3b_1, ou encore des CS «surcomposées» comme

9 Dans le contexte purement syntaxique de cette formalisation, je parlerai simplement de catégories syntaxiques, abrégé en CS.
\((b_4/b_1)b_3b_5/b_1(b_5/b_3)b_2\). On peut enfin définir les phrases de la structure:

Séquences catégorielles (SC):

(i) Une EC est une SC.
(ii) Si A et B sont des SC, alors AB est une SC.
(iii) Rien n'est SC sinon par ce qui précède.

Encore une fois, cette définition est très large puisque toute suite possible de EC est une SC. Autrement dit, on admet comme phrase dans la structure n'importe quel agencement de catégories. Bien entendu, seule une partie de ces agencements sera associée aux expressions douées de sens du langage auquel on appliquera la structure, et on parlera alors de *séquences catégorématiques*. Pour délimiter le sous-ensemble que celles-ci formeront dans l'ensemble des SC, il faut ici introduire une règle\(^{10}\):

Règle de simplification (Rs):

Soient E et E' deux SC. E' est issue de E par l'application de Rs si et seulement si:
- on obtient E', lorsqu'en parcourant E de droite à gauche, à la première rencontre d'une suite d'EC de la forme\(^{11}\)
 \((C/C_1C_2...C_n)C_1C_2...C_n,\)
- on la remplace par C.

On peut résumer Rs par le schéma suivant:\(^{11}\):

\[
Rs: ...((C/C_1C_2...C_n)C_1C_2...C_n... \rightarrow ...)C...
\]

\(^{10}\) Je parle plus haut d'un ensemble de règles, car même si j'ai choisi d'en présenter ici une seule, il est possible d'en ajouter d'autres. C'est d'ailleurs le cas de la majorité des grammaires catégorielles, cf. à ce sujet Casadio (1988).

\(^{11}\) Ce que la règle dit, formellement, c'est que lorsqu'on rencontre dans une séquence une suite associée à un foncteur suivie de ses arguments, on peut la simplifier en la remplaçant par la catégorie du résultat de la fonction. Par exemple, un foncteur propositionnel binaire associé à deux propositions se simplifie en une unique proposition. Il faut ajouter que le schéma ne dit pas dans quel sens la séquence doit être parcourue. Ce sens est pourtant important car il impose une seule manière d'appliquer la règle. Pour simplifier plusieurs segments de la SC, il faudra donc appliquer plusieurs fois la règle.
Pour définir la notion de *séquence catégorématique*, il me faut préalablement introduire celle de *preuve catégorielle*, de manière à disposer des moyens formels pour montrer qu'une séquence est ou n'est pas *catégorématique*.

D1: Une *preuve catégorielle* est une suite ordonnée finie de SC répondant aux deux conditions:

1. Chacune des SC, exceptée la première, est issue par la règle d'une SC qui la précède.
2. La dernière SC est constituée d'un unique symbole de catégorie de base (b_i).

D2: Une *séquence catégorématique* est la première ligne d'une preuve catégorielle.

L'idée qui justifie ces définitions est simple: une séquence est *catégorématique* lorsqu'après un certain nombre de simplifications, on aboutit à une catégorie de base\footnote{Il n'est pas indispensable d'adopter cette forme un peu surprenante de preuve, dont la conclusion se trouve en tête. Mais, outre sa proximité avec la manière effective de procéder dans l'analyse des énoncés, elle présente l'avantage d'être totalement déterministe, si une preuve n'aboutit pas, on est assuré que sa première ligne n'est pas catégorématique.}. C'est une manière générale d'aborder ce qu'Ajdukiewicz nommait *syntactic connexion*\footnote{Cf. Ajdukiewicz (1967) et le commentaire qu'en donne ici même Bourquin.}.

Cependant, l'édifice catégoriel est présenté uniquement sous son angle syntaxique. Afin de fixer précisément l'attribution d'un sens à chacun des symboles, il faudrait encore lui associer une sémantique. Jusque-là, par souci d'éclairer mes choix syntaxiques, je n'ai mentionné le sens que prendront mes symboles que d'une manière informelle, et mon intention n'est pas ici d'aller bien au-delà. Je souligne simplement que, lorsqu'il s'agira de spécifier la structure pour une analyse d'un type particulier de langue, le plus important sera de déterminer un ensemble précis de valeurs pour les b_i. C'est la nature des langues visées, mais aussi le cadre de l'analyse qu'on envisagera qui détermineront cet ensemble, autrement dit, ce que seront les catégorèmes et dans combien de catégories différentes on les rangerà.
3. Structure catégorielle et langages logiques

Du point de vue de la logique, la première unité d'analyse qui puisse signifier comme un tout est la proposition. Le projet général de la logique peut être considéré comme une tentative de régler les discours du vrai et du faux, et on reconnaît précisément la proposition comme l'entité logique porteuse d'une valeur de vérité. Cependant, lorsqu'il s'agit de rendre compte des articulations du discours déductif, un calcul des propositions est rapidement insuffisant. Une analyse de la proposition est indispensable et ainsi la prise en considération d'éléments qui ne lui sont pas réductibles. Or dès qu'on s'enquiert de la valeur de vérité d'une proposition, on doit considérer que ce qu'elle dit se rapporte à quelque chose. Si ce qu'elle affirme ne porte pas sur un certain référent, sa valeur ne peut être déterminée. Dans un langage logique on va ainsi admettre comme catégories de base, d'une part une catégorie pour les propositions – désignée habituellement par S –, de l'autre une catégorie pour les entités qui dénotent quelque objet – la catégorie des noms, désignée par N. Par cette spécification de la structure catégorielle, on obtient la définition suivante des expressions catégorielles (EC) pour les langages logiques:

(i) N et S sont des EC.
(ii) Si C, C₁, C₂, ..., Cₙ sont des EC, alors (C/C₁C₂...Cₙ) est une EC.

15 Le sens du mot «nom» dépasse ici largement son sens grammatical. Il désigne très généralement tout terme, simple ou composé, dont la fonction logique est de dénoter.
16 Ne faut-il pas envisager encore d'autres CSS de base par exemple en divisant celle des noms en deux CSS distinctes: une pour les noms individuels, une autre pour les noms généraux. Je pense que non, principalement pour les deux raisons suivantes: 1. Avec une telle distinction catégorielle entre noms, un prédicat qui porte indifféremment sur les deux types de noms ressortit dans les deux cas à des catégories différentes. 2. Les arguments en faveur d'une telle distinction relèvent plus à mon sens de l'ontologie que de la logique proprement dite, ils reviennent particulièrement à une manière d'aborder le problème des universaux. Or d'un point de vue logique neutre, il est déjà possible de construire des systèmes possédant un grand pouvoir déductif et descriptif avec N et S uniquement. On peut formellement se passer d'une troisième catégorie, alors que, pour les raisons évoquées plus haut, on ne peut faire l'économie ni de S, ni de N. La question reste cependant ouverte. On pourra se reporter à l'important article d'Ajdukiewicz (1978), dont le propos est repris par Bochenski (1962). Cf. aussi, concernant la position nominaliste d'un logicien comme Lesniewski, l'article de Kalinowski (1996).
(iii) Rien n’est EC sinon par ce qui précède.

Cette définition reste encore très large, car elle permet d’atteindre l’infinité des CSS que l’on peut dériver à partir de N et S. On a d’une part des catégories de base, de l’autre des catégories dérivées, qui regroupent une grande diversité de foncteurs: des prédicats (S/N, S/NN,...), des opérateurs (S/S, S/SS,...), des foncteurs nominaux (N/N, N/NN,...), et en plus de ces foncteurs dits réguliers (c’est-à-dire, formateurs de S ou de N uniquement), des foncteurs dits paramétrés (foncteurs formateurs de foncteurs), comme par exemple (S/N)/(S/N)(S/N), qui combinent un couple de propriétés en une seule propriété. Et dans chacune des deux familles de foncteurs (réguliers et paramétrés), on trouve d’une part des foncteurs homogènes, dont les arguments sont tous de même catégorie, de l’autre des combinaisons plus complexes, dites inhomogènes, dont les arguments sont de CSS différentes: par exemple, N/NS (régulier inhomogène) ou encore (S/SS)/(S/N)(S/NNN) (paramétré inhomogène).

En fait, de cette richesse potentielle, les systèmes standard de la logique n’ont retenu qu’une petite partie. Leur relative pauvreté catégorielle s’explique par la visée dans laquelle ils ont été élaborés. On y trouve les foncteurs des catégories rencontrées dans les théories que ces systèmes avaient pour but de fonder: principalement l’arithmétique.

Une manière d’élargir les visées de la logique et d’en investir plus largement la théorie est d’offrir dans les langages formels une plus grande diversité catégorielle. Ce voeu, Tarski l’exprimait déjà en 1931, lorsqu’il affirmait:

Le langage d’un système complet de logique devrait contenir en tant que tel – en acte ou en puissance – toutes les catégories sémantiques possibles apparaissant dans les sciences déductives. Cette circonstance confère justement à ce langage un caractère universel dans un certain sens et est un des facteurs auxquels la logique doit son importance fondamentale pour l’ensemble du savoir déductif. (Tarski 1974: t. I, 219)
Le problème n'est cependant pas tellement celui de la possibilité d'un tel langage, offrant l'expression de constantes pour toutes les catégories possibles. Les systèmes développements de S. Lesniewski en constituent un exemple élabouré de longue date, et Tarski lui-même, qui fut un étudiant de Lesniewski, en connaissait par ailleurs déjà les réalisations. Les questions rencontrées ici ne se posent pas à mon sens en termes de pure possibilité d'accès aux CSS, mais sont à caractère épistémique: comment comprendre le sens et le rôle de toutes les catégories? et, de manière plus pragmatique, quelles sont celles susceptibles d'enrichir la recherche logique? La réponse de Tarski est claire: il faut disposer des CSS apparaissant dans les sciences déductives. Mais cette position, qui s'inscrit dans la visée fondationnelle de la logique des années trente, ne me paraît pas entièrement satisfaisante car elle repousse volontairement hors des préoccupations du logicien tout un pan de la connaissance déductive: celui d'une rationalité qui échappe aux normes des discours scientifiques reçus. Une étude plus large des activités rationnelles devrait permettre un élargissement du champ de la logique formelle. À cette étape de la réflexion, c'est vers l'analyse discursive et langagière qu'il faut se tourner. Cette voie constitue l'accès le plus immédiat aux traces de nos activités rationnelles qui, une fois analysées, serviront de guide au logicien. Dans cette perspective s'inscrit ce que je m'efforce de cerner dans le présent travail: une méthodologie qui, à l'aide d'un outil d'analyse basé sur les catégories, vise à un élargissement des connaissances logiques. Mais tout ceci se comprendra plus aisément par un exemple.

4. Un exemple d'analyse: le pronom relatif

J'aimerais maintenant m'appuyer sur une analyse concrète afin d'examiner de quelle manière l'étude de faits langagiers, avec l'aide de l'outil catégoriel, permet de compléter notre connaissance de ce que j'ai nommé le champ de la logique. Le

choix que j'ai fait d'étudier un certain nombre de propositions relatives mérite tout d'abord quelques explications.

Dans une opposition comme celle que le français connaît entre des énoncés simples et des énoncés composés, la grammaire distingue généralement deux types de composition : la coordination et la subordination. On peut rendre compte avec une certaine aisance de l'articulation logique des énoncés propositionnels composés par coordination en s'appuyant sur les opérateurs classiques de nos systèmes de logique. Dans le cas des énoncés composés par subordination, en revanche, l'analyse se fait avec une plus grande difficulté, souvent par le biais de traductions détournées et qui mettent à mal notre compréhension intuitive des énoncés à examiner. Que ce soit dans une logique des propositions - qui souvent suffit à rendre les cas de coordination - ou une logique des prédicats - qui semblent au moins nécessaire dans bien des cas de subordination - on ne trouve comme opérateurs n-aires (n>1) que des exemples dont les arguments sont de même catégorie. Les opérateurs binaires, les relateurs et les foncteurs portent soit uniquement sur des propositions, soit uniquement sur des expressions nominales. Aucun d'entre eux ne relève de ce que j'ai nommé plus haut une catégorie inhomogène. Autrement dit, il n'y a aucun foncteur qui admette des arguments de catégories différentes, par exemple N et S à la fois. De tels foncteurs correspondraient plus directement aux articulations par subordination.

La relative, comme le dit la grammaire, est une proposition subordonnée\(^\text{18}\), et sa fréquence dans le discours - en particulier dans le discours déductif ou argumentatif - justifie déjà son intérêt comme objet d'une analyse en termes de logique. On peut en outre soupçonner que le foncteur qui domine sa construction - le pronom relatif - joue un rôle logique particulier. Ce rôle ne doit pas être interpreting attaché à la relative au sens strict, ni même bien entendu à une particularité de la langue française. Fuchs et Milner (1979: 13), par exemple, parlent de manière générale d'un «phénomène de relativisation» et insistent sur le fait que celui-ci relève de la linguistique générale.

Plusieurs éléments incitent notamment à penser que la relative joue un rôle dans la fonction référentielle du discours. D'une part, comme je l'ai déjà relevé, dans la plupart des cas, une logique des prédicats est indispensable pour mener à bien son analyse. En effet, si une conditionnelle permet parfois de traduire un énoncé contenant une relative, il est cependant nécessaire de disposer d'un langage qui permette d'indiquer que l'antécédent et le conséquent de cette conditionnelle disent quelque chose d'un même objet, ou du moins d'objets qui entretiennent un certain type de relation19. D'autre part, comme l'avaient déjà remarqué Arnauld et Nicole dans la *Logique* de Port-Royal la relative forme avec son antécédent ce qu'ils nomment un *terme complexe* (Arnauld et Nicole 1981: 119). La proposition relative entre effectivement dans la composition d'une partie d'énoncé dont la fonction est référentielle. En d'autres termes, le pronom relatif est un foncteur dont un argument au moins est de catégorie S, alors que son résultat est référentiel, donc de la catégorie N. La terminologie de Port-Royal est ici instructive, les auteurs opposent le *complexe* et le *composé*. Il est vrai que dans la *Logique* cette opposition porte sur les propositions, mais elle repose en fait sur la nature des termes (sujet et/ou attribut) de ces propositions (*ibid.*). Par extension, on pourrait ainsi dire: un terme complexe est un terme comprenant comme une de ses parties une proposition, alors qu'un terme composé est lui uniquement constitué de termes plus simples. La relative avec son antécédent forme ainsi un terme complexe, alors que la conjonction de deux noms offre un exemple de terme composé, comme dans:

Le cercle et le triangle sont des figures

On trouve chez Bolzano, dans un passage qui s'appuie précisément sur des exemples de relatives, une analyse tout à fait similaire:

[Il y a] une différence singulière entre les parties d'une idée (*Vorstellung*): certaines sont elles-mêmes des idées alors que d'autres

19 Cf. infra pp. 73-74.
par contre sont des propositions entières. Prenons pour exemple l'idée de terrien (*Erdengeschöpf*). Il m'apparaît qu'une de ses parties doit être considérée en elle-même comme une idée. Il s'agit de celle qui peut être exprimée par le mot *individu* (*Geschöpf*). La partie restante, celle qui exprime que cet individu vit sur la Terre, m'apparaît en revanche comme une proposition complète. Celle-ci cependant est combinée d'une telle façon avec l'idée d'individu, que le complexe ainsi formé (la pensée d'un individu qui habite la Terre) n'assure rien. En conséquence, il ne constitue pas une proposition mais seulement une simple idée. (Bolzano 1963: 88. Selon ma traduction)

La relative est bien un exemple de ce genre, elle forme avec son antécédent un terme complexe, c'est-à-dire un terme dont une partie est une proposition et qui, comme un terme simple, est susceptible d'être l'objet d'une prédication. Mais voyons cela avec les exemples sur lesquels je me propose d'appuyer mon analyse.

(1) La maison qui est rouge est grande
(2) Le triangle est la figure que les mathématiciens préfèrent.

Voilà deux énoncés propositionnels complexes qui comprennent chacun une relative. Dans le premier, celle-ci est un constituant du sujet, alors que dans le second, elle est un constituant de l'attribut. Il est aisé de se convaincre à chaque fois que le complexe formé par la relative et l'antécédent relève de la catégorie N. On peut en effet lui substituer un élément nominal simple et obtenir un énoncé bien formé. Par les substitutions de «la maison qui est rouge» par «la maison» et de «la figure que les mathématiciens préfèrent» par «une figure», on obtient:

(1') La maison est grande
(2') Le triangle est une figure
qui sont deux énoncés bien formés. Ils possèdent une connexion syntaxique au sens d’Ajdukiewicz, autrement dit leur séquence catégorielle est catégorématicque 20.

Étant admis que le complexe contenant la relative est de la catégorie N, il s’agit maintenant de comprendre comment ses parties s’agencent et de quelles catégories elles relèvent. Je n’examinerai ainsi que les termes complexes eux-mêmes, laissant de côté ce que la grammaire nomme la proposition principale.

Partons de l’idée que le pronom relatif domine la construction, qu’il en est le foncteur dominant. La question consiste à savoir comment le catégoriser. On sait déjà qu’il résulte de son application à ses arguments un terme et donc que figure un N au numérateur de son expression catégorielle. Mais il reste à déterminer le nombre et la catégorie de ses arguments. Suivant en cela les analyses qui précèdent, on peut imaginer que le relatif joint en un tout nominal deux éléments: d’une part la proposition relative elle-même, de l’autre l’élément nominal auquel elle est attachée. Le pronom relatif serait de cette manière conçu comme un foncteur formateur de nom à deux arguments, l’un nominal, l’autre propositionnel. Sa catégorie serait ainsi N/NS 21. Dans

\[(1) \text{La maison qui est rouge est grande} \]

on sait que «la maison qui est rouge» est de catégorie N. Par analogie avec des exemples comme (1’) et (2’), on sait aussi que «la maison» et «rouge» sont de catégorie N et que le verbe «est» est un foncteur S/NN. On obtient alors la catégorisation suivante:

\[(1) \text{La maison qui est rouge est grande} \]

\[
\begin{array}{cccc}
N & N/NS & S/NN & N.
\end{array}
\]

20 On obtient en effet la séquence et la preuve catégorielles suivantes (idem pour (2’)):
- (1) La maison est grande
 \[
 \begin{array}{ccc}
 N & S/NN & N.
 \end{array}
 \]
- (i) S/NN N N
- (ii) S

21 Le choix de l’ordre des arguments est ici de peu d’importance. Si je prends NS, plutôt que SN, c’est pour indiquer que, le plus souvent, l’antécédent précède la relative.
La séquence catégorielle qui en résulte ne peut malheureusement pas être simplifiée en N comme prévu, car la règle ne peut s'y appliquer:

(i) N/NS N S/NN N.

Il manque, on le voit, un second argument N pour le S/NN du verbe. Autrement dit, avec cette catégorisation, la relative apparaît comme une proposition incomplète. Il en est de même avec

(2) Le triangle est la figure que les mathématiciens préfèrent

\[\begin{array}{c}
N \\
N/NS \\
N \\
S/NN \\
\end{array} \]

dont la séquence catégorielle est identique à celle de l'exemple (1).

Il faut donc peut-être catégoriser le relatif d'une autre manière. En examinant la séquence (i), on remarque que si le N de l'antécédent n'avait pas à être présent comme premier argument du relatif, il pourrait alors constituer l'argument qui manque au verbe. Cela signifie alors une catégorisation du relatif en N/S, un foncteur formateur de nom à un seul argument, de la catégorie des propositions. On obtient de cette manière les catégorisations suivantes:

(1) La maison qui est rouge est grande

\[\begin{array}{c}
N \\
N/S \\
S/NN \\
N \\
\end{array} \]

(2) Le triangle est la figure que les mathématiciens préfèrent

\[\begin{array}{c}
N \\
N/NS \\
N \\
S/NN. \\
\end{array} \]

Et, dans les deux cas, la séquence catégorielle (i) suivante, avec ses simplifications, qui mènent bien, cette fois, au N prévu:

(i) N/S S/NN N N
(ii) N/S S
(iii) N.

\[\text{Pour clarifier la présentation, je souligne chaque fois les parties qui peuvent être simplifiées par l'application de la règle.} \]
Cependant, bien que cette manière de catégoriser le relatif soit conforme aux critères de connexion syntaxique, elle entraîne des conséquences négatives.

Premièrement, le niveau d'analyse qu'elle permet reste trop général. La relative se trouve en effet rangée sans distinction plus fine dans le vaste ensemble des procédés dont la langue dispose pour nominaliser une proposition. Par exemple, on ne peut distinguer les relatifs du *que* des complétives. Ainsi les deux termes complexes des exemples (1) et (3) ne se distinguent-ils pas par l'analyse catégorielle.

(1) *La maison qui est rouge* est grande

\[
\begin{array}{cccc}
N & N/S & S/NN & N \\
\end{array}
\]

(3) Je vois *que la maison est rouge*

\[
\begin{array}{cccc}
N/S & N & S/NN & N \\
\end{array}
\]

Que l'analyse vienne à confondre des faits aussi différents signifierait déjà un échec de ma démarche. De plus, cette catégorisation implique une partition peu naturelle de l'énoncé qui est due au regroupement en un seul constituant discontinu de l'antécédent et de la relative sans son pronom. Le découpage plus habituel du complexe en d'une part la relative, de l'autre l'antécédent paraît intuitivement plus adéquat. C'est aussi le découpage que suggère le parallélisme entre les deux énoncés:

(1') *La maison* est grande

(1) *La maison qui est rouge* est grande

à travers lequel, on constate que la nominalisation n'est pas l'unique aspect de la relativisation. La relative apparaît en effet comme un ajout à «la maison» et le terme complexe comme comprenant deux constituants.

Deuxièmement, plutôt que de rapprocher les relatives introduites par *qui* et *que* des complétives, il serait souhaitable de pouvoir les rapprocher des autres relatives, en particulier celles introduites par *dont*, comme avec

(4) La maison dont le toit est rouge est grande

(i) N/S N/NS N NN N
(ii) N/S S N
(iii) N N

où l'on constate qu'il est impossible de catégoriser le relatif dont en N/S, car la séquence catégorielle du terme complexe ne peut alors être simplifiée jusqu'à obtenir un N. Par contre une catégorisation en N/NS est ici satisfaissante:

(4) La maison dont le toit est rouge est grande

(i) N/NS N S/NN N N
(ii) N/NS N S
(iii) N.

L'analyse en N/NS de qui et que dans les exemples (1) et (2) privait la proposition Relative d'un de ses constituants nominaux. Ici la proposition reste complète et l'antécédent peut donc garder sa place comme argument direct du relatif dont. C'est bien dont qui est le foncteur dominant et qui lie en un tout la relative et l'antécédent. La relative reste en un sens indépendante du relatif car y figure avec «le toit» le sujet qui manquait dans mon exemple (1). Il est remarquable lorsqu'on compare mes exemples (1) et (2) avec (4), que qui et que cumulent les deux fonctions de foncteur relatif et de sujet (ou objet direct) de la relative – les deux fonctions qui se rapportent ici respectivement à «dont» et à «le toit». Il conviendrait peut-être de marquer ce cumul dans mon analyse en attribuant aux relatifs qui et que, non pas une seule, mais deux catégories: N/NS pour le foncteur, N pour le constituant de la relative.

En français, les pronoms relatifs qui et que se trouvent toujours en tête de la proposition (parfois après une préposition); c'est la variation désinentielle qui permet d'indiquer la fonction du pronom dans la relative: sujet avec -i; objet direct, parfois indirect ou même attribut avec -e. Je me propose ainsi (sans
doute un peu artificiellement) de ranger la désinence dans la catégorie N; le radical *qu-* devient ainsi le foncteur relatif, il relève de la catégorie N/NS. J'obtiens avec cela les analyses suivantes:

(1) *La maison qu-i est rouge* est grande

\[
N \quad N/NS \quad N \quad S/NN \quad N
\]

(2) *Le triangle est la figure qu-e les mathématiciens préfèrent*

\[
N \quad N/NS \quad N \quad N \quad S/NN.
\]

Et dans les deux cas, la preuve catégorielle:

(i) \[N/NS \quad N \quad S/NN \quad N \quad N\]

(ii) \[N/NS \quad N \quad S\]

(iii) \[N\]

Cette manière de faire peut sembler un arrangement artificiel en vue de conserver l'analyse en N/NS. Celle-ci (mise à part la division du mot en radical et désinence) est cependant très proche d'une description traditionnelle de la grammaire qui remonte à Port-Royal. On trouve en effet dans la *Grammaire générale et raisonnée* l'analyse suivante:

[Le] pronom relatif a quelque chose de commun avec les autres pronoms, et quelque chose de propre. Ce qu'il a de commun, est qu'il se met au lieu du nom [...]. Ce qu'il a de propre peut être considéré en deux manières. La 1. en ce qu'il a toujours rapport à un autre nom ou pronom qu'on appelle antécédent [...]. Mais cet antécédent est quelquefois sous-entendu et non exprimé [...]. La 2. chose [...] est que la proposition dans laquelle il entre (qu'on peut appeler *incidente*) peut faire partie du sujet, ou de l'attribut d'une autre proposition, qu'on peut appeler principale. (Arnauld et Lancelot 1966: 66-67)

Le relatif a une double fonction, il est à la fois un pronom anaphorique et un foncteur qui permet à la relative d'être une partie d'un des termes de la principale. On trouve encore dans la *Grammaire Larousse* une description toute proche des Port-Royalistes:
Le pronom relatif représente l'antécédent dans la proposition relative, mais, en outre, il unit proposition principale et proposition subordonnée relative (Chevalier et al. 1964: § 240).

Bien entendu, l'analyse en N/S a pour elle l'avantage de la simplicité et le logicien pourrait s'y arrêter. Cependant, il s'empêcherait par là de distinguer entre des types très différents de nominalisation. Mais ce qui échappe encore à la catégorisation en N/S, et que celle en N/NS permet de retenir, c'est la fonction anaphorique du pronom relatif: le pronom reprend son antécédent à l'intérieur de la relative. Et même si cette reprise semble relever largement d'un phénomène proprement linguistique, elle a cependant aussi son importance logique.

La prendre en considération, c'est pouvoir distinguer entre l'antécédent comme constituant du terme complexe et le constituant nominal qui le reprend à l'intérieur de la relative. Dans la plupart des cas cette reprise est si l'on peut dire «fidèle», c'est-à-dire que le pronom anaphorique et son antécédent sont coréférentiels. Il en va ainsi de mes exemples (1) et (2), où le cumul des fonctions du foncteur et du pronom est rendu possible par la corréférence. Dans une telle situation, il est plus simple de dire que la prédication porte sur l'antécédent lui-même. C'est pourquoi de tels exemples admettent plus facilement une analyse en N/S.

Cependant, dans un exemple de relative introduite par dont, comme (4):

(4) La maison dont le toit est rouge est grande

s'il y a bien anaphore, celle-ci n'est en revanche pas coréférentielle. Elle a besoin d'un élément nominal, «le toit», séparé du pronom relatif. La variété des types de relation que l'on peut

rencontrer avec de telles anaphores est sans doute importante. Je m'arrêterai simplement ici à en relever un qui intéresse particulièremment le logicien; celui des relations de partie à tout ou relations méréologiques\(^{27}\). (4) en est un exemple, ce que «le toit» y désigne est donné par la relative comme une partie du tout désigné par «la maison». C'est le principal intérêt de considérer, à côté de mes premiers exemples avec *qui* et *que*, un exemple avec *dont* qui permet de montrer que la langue a la capacité, dans la construction du terme complexe, d'associer une prédication de multiples manières au terme antécédent. Dans la plupart des cas, cette prédication porte directement sur le référent de celui-ci (par l'intermédiaire des relatifs *qui* ou *que*), mais la souplesse du foncteur relatif, avec les différentes relations dont le rappel anaphorique est capable, permet de faire porter cette prédication sur une partie, un ingrédient ou encore un objet associé au référent de l'antécédent.

Mon but n'est pas ici d'examiner la nature exacte des relations qui sont en cause. Il me faut cependant souligner que tout type de relation ne peut être pris en compte dans une représentation formelle. Le caractère extensionnel de la sémantique formelle impose en effet à la logique de se limiter à l'ensemble, déjà vaste, des relations de partie à tout\(^{28}\). J'espère simplement avoir montré que, pour étudier la notion de terme complexe, il convient de prendre en considération certaines relations (et en particulier des relations méréologiques) et aussi qu'une étude catégorielle d'énoncés empruntés à la langue naturelle rend possible la mise en évidence de tels faits.

5. Pour conclure

Au terme de ces pages, on l'aura compris, ce n'est pas tant le résultat des analyses qui précèdent que je voudrais relever, que le chemin par lequel j'y suis parvenu. Je pense avoir montré de quelle manière une théorie des catégories syntaxico-séman-

27 On trouvera ici même, dans l'article de Gessler, une description de la notion de classe méréologique développée par S. Lesniewski.

28 On trouvera dans Miéville (à paraître) un essai de formalisation du phénomène d'anaphore associative en termes de relations méréologiques.
tiques peut être pour le logicien bien plus qu'un outil de contrôle de la bonne formation des expressions de ses langages artificiels. En fournissant, avec un ensemble de conditions élémentaires de la grammaticalité, une base commune aux langues formelles et naturelles, une telle théorie offre à la fois le cadre à l'intérieur duquel on peut enrichir un langage logique, ainsi que les moyens d'analyse permettant, dans ce cadre, la sélection des formes particulières que notre rationalité semble privilégier.

Bien entendu, je n'ai donné avec mon exemple de la proposition relative qu'une esquisse de cette démarche, qui va du champ d'investigation que sont les langues naturelles, jusqu'aux réalisations formelles. D'une part les analyses proposées demandent encore à être affinées, bien que les traits saillants des faits langagiers étudiés soient plus utiles à mon propos que les finesse qui attrireraient l'attention du linguiste. De l'autre, et plus essentiellement, il manque encore à mon travail le volet constructif, autrement dit l'aménagement d'un langage logique dans le but d'y intégrer les résultats des analyses.

Les systèmes standard se prêtent difficilement à ce genre d'exercice, car ils présentent des possibilités catégorielles restreintes. Et, bien qu'il reste à examiner avec plus de précision la nature de ces limitations, je pense trouver un contexte plus prometteur avec des systèmes qui, comme ceux de la logique développementale de Lesniewski, donnent déjà accès à toute la potentialité des catégories.

Centre de Recherches Sémiologiques
Séminaire de logique
Espace Louis-Agassiz 1
CH 2000 NEUCHATEL
Bibliographie

