Using automata to detect and correct errors in the written English of French-speakers

Natalie Kübler & Etienne Cornu

Abstract

This paper presents a second-language grammar checking approach based on a particular form of finite state automata. Three types of automata are used to track down an error: data extraction automata which build complex noun phrases and identify verbal groups, filter automata which look for specific contexts and detection automata which are used to find specific errors.

1. Introduction

The work we present here is part of the ARCTA Prototype project which consists in the development of a second language grammar checker for French native speakers who write in English. In this article, we describe the formalism we have used to encode and detect errors.

The general subject of error detection has developed rapidly over the last few years. However, even today's best grammar checkers have severe limitations when dealing with texts written in a second language. Several questions must be answered in order to achieve the goal of detecting and correcting the errors people really make: Which errors should be dealt with? How should the linguistic data be organized? Which mechanism can be used? Tschumi & Tschichold (this issue) answer the first question and we will try to address the other two.

Organizing the linguistic data in a grammar checker represents the first important step, especially in the field of second-language error detection. The errors that native speakers of French make in English must be taken into account when structuring this information. The specific

◊ This research was supported by a grant from the Swiss CERS/KWF (2054.2).

1 For a general presentation of the project, see the article by C. Tschumi, F. Bodmer, E. Cornu, F. Grosjean, L. Grosjean, N. Kübler & C. Tschichold (this issue).
linguistic structures concerned influence the functionalities implemented in the prototype, and, conversely, the mechanism selected to detect errors has an impact on the organization of the data.

The specific mechanism implemented in our prototype is based on a variation of finite state automata, i.e. the augmented transition networks first described by Woods (1970). They operate on two levels: on the terminal symbols, i.e. syntactic categories such as N (noun) or V(verb) that cannot be further analysed, and on two types of non-terminal symbols, noun phrases and prepositional phrases.

2. Linguistic Data

Our prototype contains a dictionary, feature lists and various automata that reflect how linguistic information has been organized. Basic data that concern syntactic category and inflectional information are stored in the dictionary. More specific information about words is either represented under the form of Boolean attributes or consists of tables containing different types of attribute-value pairs.

2.1. Error-oriented language description

Our model does not contain production rules such as $S \rightarrow NP \ VP$ that are found in grammar checkers based on a syntactic theory such as GPSG, LFG (Cornu, 1992) and ACFG (Vosse, 1992). We have determined (see Cornu, 1992) that with today’s parser technology a language description based on the structures present in ill-formed texts is better adapted to the problem.

The errors that we process can be split roughly into three subclasses: morpho-syntactic errors, single word errors, and structural errors. We will present each type below and will then focus on structural errors.

2.1.1. Morpho-syntactic errors

Morpho-syntactic errors occur in situations where grammatical rules govern the morphological aspects of the words; they are therefore based on syntactic categories. Subject-verb agreement or erroneous adjective-noun agreement in the noun phrase belong to this subclass:

In (1), the verb should have the third person singular form collects; in (2), since adjectives are invariably in English, the adjective old should not take a plural ending.

2.1.2. Single-word errors

Errors that are based on specific lexical items and that cannot be associated to word classes are considered to be single-word errors. They are generated mostly by a lack of knowledge about exceptions or idiomatic structures in English (frozen or semi-frozen structures). Function words can also be used erroneously. The confusion between each and every represents one of these errors.

2.1.3. Structural errors

These errors concern subclasses of words that show the same syntactic behavior. Basic syntactic categories such as Verb are split into subclasses depending on their subcategorization. Noun predicates and adjective predicates can be distributed into subclasses as well. Errors occurring with one of these words can be found with all the other items that belong to the same subclass. Prepositions following a noun, an adjective, or a verb are very often incorrect. Lists containing the correct preposition can be included in the data:

reason for; responsible for; drop in; conscious of; effect on.

However, more complex information about the syntactic structures and the positions of the predicate’s arguments is needed. Report verbs and dative verbs generate errors in syntactic structures, as in:

1a. *You will ask questions to his friends
1b. *They showed to each other...
2a. *I explained him that I was poor myself
In our system, the syntactic information contained in these tables is represented by lists and by the automata that use these lists. One of the lists dealing with report verbs has the following format:

<table>
<thead>
<tr>
<th>Verb</th>
<th>Prep Gov=to</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit</td>
<td>Prep=Y</td>
</tr>
<tr>
<td>announce</td>
<td>Prep=Y</td>
</tr>
<tr>
<td>tell</td>
<td>Prep=N</td>
</tr>
</tbody>
</table>
a lot of PRONOUN=> tagged as a single syntactic category, without the detailed analysis ART N PREP
well-worn ADJECTIVE
according to PREPOSITION
carte blanche NOUN
in order to CONJUNCTION

Our automata operate on three levels. The first level is a preprocessing one and is concerned only with extracting new data from existing structures (Data Extraction Automata, DEA). The second level is optional and contains filter automata (FA). These identify sentence patterns in order to determine when to activate the third-level which contains detection automata (DA). The following diagram clarifies the organization of our automata:

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEA</td>
<td>FA</td>
<td>DA1</td>
</tr>
<tr>
<td>DEA</td>
<td></td>
<td>DA2</td>
</tr>
</tbody>
</table>

3.2. Data extraction automata

One of the tasks of first level automata consists in building complex noun phrases on the basis of simple ones that have been identified during the preprocessing stage. For the complex NP: a house of crystal pillars, two basic NPs have already been identified:

[a house] of [crystal pillars] NP Prep NP

The automaton used to build the complex NP in such a case has the following structure:

AUTOMATON NP_OF_NP
(+NEWNP, ENV_CL::=NP_COMPL,NBR_NP::=$N)
($P=’of’) [CAT=V, +PREPOS_V, PREP_GOV=>$P]*1
<NP (NP_POS::=NP_1,NBR_NP=>$N)> @[[IF=’of’]
<NP (NP_POS::=NP_2)>

The anchoring - i.e. the starting point of the automaton - is set on the inflected form of. The system first looks to the right for an NP, then to the left of the preposition for another NP and to the left of that NP for a potential verb which could belong to one of the subclasses of prepositional verbs. If it finds one, the automaton then checks if the verb governs the preposition of. If it does, the automaton fails and nothing happens. If it does not, a complex NP is formed (+NEWNP) that inherits the NUMBER feature of the first basic NP. If the latter has other features, these are also passed on to the complex NP of a higher level. In this case, the first basic NP is taken as the head of the complex NP.

A slight inconvenience of this approach is that some complex NPs will never be detected. If the verb can either be followed by of or function as a transitive verb, it might be possible that the preposition really belongs to a complex NP and not to the verb. In that case, the system misses a complex NP. However, it is usually the case that if a verb that allows of is followed by this preposition, the preposition is attached to the verb.

The other function performed by data extraction automata consists in identifying verbal groups. These types of automata extract features such as the tense, aspect, and mode of each main verb found in the text. During this process, the automata must also determine whether verbs such as to have function as auxiliaries or as main verbs. The following examples illustrate this potential ambiguity:

a. She has a lot of money in the bank => has is the main verb

b. She has deposited a lot of money in the bank => has is the auxiliary of deposited
3.3. Filter automata

The purpose of filter automata is to check the context of a sentence. Depending on the result of a filter automaton, one or several groups of third-level detection automata may be triggered.

Filter automata function like a large net looking for specific contexts. Each filter automaton is associated with a group of detection automata that are concerned with one specific problem.

For example:

AUTOMATON COMPL_V_FILTER_1
@[CAT=V, +COMPL_V, +PPREP]
@[IF=that](CAT=PRON, +WH_PRON) (R1=>$R)

The success of this automaton means that a verb belonging to the list COMPL_V has been recognized and that either the inflected form that or a string from the WH_PRON syntactic category has been found somewhere further on in the sentence. In this case, success allows a series of error detection automata to run, all of which are related to the mistakes occurring with this type of verb.

3.4. Detection automata

There are two types of detection automata: some are triggered by specific filter automata, and the others are not. Except for this distinction, they have the same characteristics as the other automata.

As mentioned earlier, some detection automata are associated with lists containing linguistic information. These lists contain words that are already in the dictionary; this allows the system to access directly the information needed when a specific automaton concerning a lexical item included in one of these lists is running. Lists contain words that share similar semantic or syntactic features (e.g. +HUMAN) and may include specific syntactic properties for each item. For instance, the following list concerns dative verbs:

<table>
<thead>
<tr>
<th>word1</th>
<th>feature1=value1</th>
<th>feature2=value2</th>
</tr>
</thead>
<tbody>
<tr>
<td>& DAT_V</td>
<td>PREP_GOV</td>
<td>SHIFT</td>
</tr>
<tr>
<td># give</td>
<td>to</td>
<td>+</td>
</tr>
<tr>
<td># allow</td>
<td>to</td>
<td>+</td>
</tr>
<tr>
<td># show</td>
<td>to</td>
<td>+</td>
</tr>
<tr>
<td># address</td>
<td>to</td>
<td>-</td>
</tr>
<tr>
<td># attribute</td>
<td>to</td>
<td>-</td>
</tr>
</tbody>
</table>

The automata used to check the structures of these verbs consist of one filter automaton that checks if the context contains one of these verbs, and then a series of detection automata that detect potential errors. The two filter automata below check if there is a verb that belongs to the dative verb list and whether that verb allows the "shift" transformation or not:

AUTOMATON DAT_V_FILTER_1 AUTOMATON DAT_V_FILTER_2
@[CAT=V, +DAT_V, +SHIFT] @[CAT=V, +DAT_V, SHIFT]
(R1=>$R) (R2=>$R)

If the automaton DAT_V_FILTER_1 succeeds, then a series of detection automata (SUFU_PREP_DATV_1 and SUFU_PREP_DATV_2) are launched. In the example below, the automaton checks whether a verb allowing a shift is built with a shift structure and with a superfluous preposition (e.g. *he gave to the secretary something). If that is the case, an error message is produced.

AUTOMATON SUFU_PREP_DATV_1
@[CAT=V, +DAT_V, CF=>$E, PREP_GOV=>$P]
[CAT=PREP, IF=>$P]
<SN @([+HUM])>
SCHEMA 3
MESSAGE "Avec cette structure, le verbe \$E\ qui construit sans préposition; nous vous suggérons de supprimer la préposition \$P\ et \$V."
}

The automaton matches the ill-formed sentence shown below:

*He gives to his friend a wonderful present
The assignment of a value to the register SP means that the system looks for the value of the preposition for the verb in question and puts it in the register. This value is then used during the correction process.

If the automaton fails, the sentence is either correct or it contains another type of error. In that case, the next automaton, $SUFLU_PREP_DATV_2$, is activated. If it fails, then the system goes on to another series of automata.

If the first filter automaton fails but the second ($DAT_V_FILTER_2$) succeeds, the following detection automaton is activated. It checks whether a verb that doesn't allow the dative shift is shifted.

AUTOMATON STRUCT_DAT_V

@[CAT=v, +DAT_V,Prep_Gov=S_P, CF=>SE]

<NP @[+HUM] (FIRSTPOS=>SL,LASTPOS=>SR])>

<NP (FIRSTPOS=>SL,LASTPOS=>SY>

The success of the automaton means that the following mistake has been detected:

He attributes her friend wonderful qualities

Another type of automaton can be used to check for the correct preposition. In the following example, the automaton checks if the preposition that is used is correct.

AUTOMATON CHECK_PREP

@[CAT=v, +DAT_V,Prep_Gov=S_P] <NP> [CAT=PREP,IF=>SR]

<NP> (SR=>S_P>

Two registers are used here; with SP, the attribute Prep_Gov value is read from the verb list, and SR receives as a value the character string corresponding to the inflected form of the preposition. After the automaton has recognized a specific series of words, a condition is tested on one of the values. In a correct sentence, the preposition must be the same as the one that comes from the verb file. Thus, if they do not correspond (SR is different from SP), an error is detected, as in:

He attributes wonderful qualities at his friends

If the automaton fails, the sentence is considered correct and another automaton is tested. In this example, the series of detection automata triggered by the filter automata is quite small. In other cases (report verbs, for example), the series can be larger in order to look for every possible mistake.

4. Conclusion

It is clear that our approach is less efficient in detecting errors linked with complex grammatical structures. However, an important advantage is that the error detection rules contain enough relevant information within a single framework, such as basic syntactic structures and features specific to errors. In addition, the three execution levels allow us to organize the data in a way that the error detection automata can operate with a higher degree of confidence. This, in turn, greatly reduces the probability of false alarms.

5. Bibliography

