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Th e maternal environment may contribute to population diff erentiation in off spring traits if growing conditions of mother 
plants are diff erent. However, the magnitude of such environmental maternal eff ects compared with genetic diff erentiation 
is often not clear. We tested the importance of environmental maternal eff ects by comparing population diff erentiation in 
parental seed directly collected in the fi eld and in F

1
 seed grown under homogeneous conditions. Th e F

1
 seeds were 

obtained by random crosses within populations. We used fi ve populations in each of four plant species to analyse seed mass 
and growth chamber germination of both generations at the same time. In two species, we additionally tested off spring 
performance in the fi eld. We found a signifi cant population diff erentiation in all species and for nearly all measured traits. 
Population-by-generation interactions indicating environmental maternal eff ects were signifi cant for germination (three spe-
cies) and for seed mass (two species) but not for growth and reproduction. Th e signifi cant interaction was partly due to a reduc-
tion of among-population diff erentiation from the parental to the F

1
 generation that can be explained by a decrease of maternal 

provisioning eff ects. However, in some species by trait combinations a change in population ranking and not a decrease of 
variation was responsible for signifi cant population-by-generation interactions indicating environmental maternal eff ects 
beyond maternal provisioning. Fitting of seed mass as covariate was not successful in reducing environmental maternal eff ects 
on population diff erentiation in germination. We discuss alternative methods to account for environmental maternal eff ects in 
studies on genetic diff erentiation among populations.

Th e maternal environment can aff ect off spring fi tness 
independent of the maternal genotype and may be a source of 
bias in studies on genetic diff erentiation among populations 
(Roach and Wulff  1987, Donohue and Schmitt 1998, 
Bischoff  et al. 2006a, Riginos et al. 2007). Environmental 
maternal eff ects are well documented for early stages of plant 
development such as seed mass and germination (Gutterman 
1992, Sultan 1996, Baskin and Baskin 1998) and often 
decline later in the life cycle (Roach and Wulff  1987, Agrawal 
2002, Hereford and Moriuchi 2005). However, there are also 
several studies that demonstrated the persistence of maternal 
eff ects over the whole life cycle (Helenurm and Schaal 1996), 
or even into subsequent generations (Wulff  et al. 1999). 

Maternal plants have a stronger eff ect on off spring fi tness 
than paternal plants because they provide nourishment of the 
seeds, two-thirds of the endosperm genetic material (most 
Angiosperms) and the extranuclear DNA in mitochondria 
and plastids of the embryo (Roach and Wulff  1987, Schmid 
and Dolt 1994, Galloway 2001). While the maternal contri-
bution to extranuclear DNA and endosperm constitute a part 
of the genetic variability in off spring traits, the maternal pro-
visioning of the embryo may strongly depend on the maternal 
environment. It is well known that an increased allocation of 
maternal resources (nutrients, water, light) improves seed 
quality and germination resulting in a fi tness advantage that 

may persist until maturity, in particular in stressful, competi-
tive environments (Sultan 1996, Donohue and Schmitt 1998, 
Riginos et al. 2007). Moreover, non-resource factors like tem-
perature, light quality and daylenght during seed develop-
ment aff ect off spring traits (Roach and Wulff  1987, Baskin 
and Baskin 1998, Munir et al. 2001, Donohue et al. 2005). 
Such environmental maternal eff ects that are not directly 
mediated by maternal provisioning contribute to transgenera-
tional plasticity that may be adaptive if the off spring environ-
ment is predictable and similar to the maternal environment 
(Galloway and Etterson 2007, Marshall and Uller 2007, 
Rhode and Juntilla 2008). Th is includes the induction of 
resistance traits against herbivores that can be transferred 
from mother plants to their progeny (Agrawal 2002, Holeski 
2007). Changes in phytohormones, nutrient content and 
structure of the seed coat, which is entirely maternal tissue, 
have been suggested as potential drivers of transgenerational 
plasticity (Roach and Wulf 1987, Baskin and Baskin 1998, 
Munir et al. 2001). More recently, several authors have dis-
cussed the involvement of epigenetic processes in environ-
mental maternal eff ects (Bossdorf et al. 2008, Rohde and 
Juntilla 2008). Mediated by DNA methylation, changes in 
chromatin structure or small, non-coding RNA molecules, 
the activity of genes can be largely reduced or increased. 
 Environmentally induced epigenetic changes in gene activity 
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standardized conditions in a common garden with those 
from their corresponding fi eld collected parental seeds. 
Although persistence of maternal eff ects in subsequent gen-
erations has been reported (Wulff  et al. 1999), environmen-
tal eff ects are usually transitory and disappear already in the 
F

1
 generation, especially if the maternal and progeny envi-

ronment are diff erent (Agrawal 2002, Gianoli 2002). Mater-
nal eff ects induced by the environment of the collection sites 
can therefore be assumed to have diminished after one gen-
eration of growth under homogeneous conditions and a sig-
nifi cant population-by-generation interaction would indicate 
such a non-genetic component of population diff erentiation. 
We further tested whether a potential generation-by-popula-
tion interaction can be explained by among-population dif-
ferences in seed mass. Specifi cally, we ask: (1) how important 
are environmental maternal eff ects in population diff erentia-
tion of progeny grown under homogeneous conditions? (2) 
Does the contribution of environmental maternal eff ects to 
diff erentiation in off spring traits depend on the develop-
mental stage? (3) Can the contribution of environmental 
maternal eff ects be explained by diff erences in seed mass?

Material and methods

Study species and populations

We selected four species that represent diff erent life cycle types: 
the annual Legousia speculum-veneris (Primulaceae), the biennial 
Echium vulgare (Boraginaceae), the short-lived biennial or 
perennial Cichorium intybus (Asteraceae) and the long-lived 
perennial Origanum vulgare (Lamiaceae). All four species are 
predominantly outcrossing but in L. speculum-veneris, E. vulgare 
and C. intybus selfi ng is possible. Th e species are frequently 
translocated for restoration purposes in Switzerland (Bischoff  et 
al. in press) and thus, an improved knowledge on the potential 
contribution of environmental maternal eff ects to population 
diff erentiation has also strong practical implications. 

In autumn 2001, we sampled four populations of each 
species across an atlantic-continental gradient (Table 1). 
Th e local western Swiss (west CH) and the eastern Swiss 
(east CH) populations are characterized by a subatlantic cli-
mate with high rainfall (1000–1250 mm year-1). Th e southern 
German population (south D) originates from a subatlan-
tic climate with average rainfall (650–850 mm year-1) and 
the central German one (central D) from a subcontinental 
climate with low rainfall (450–500 mm year-1). Seeds of E. 
vulgare and O. vulgare were additionally sampled from the 
UK representing a typical atlantic climate with mild  winters. 

may be stable for several generations and can also be transmit-
ted by the paternal crossing partner (Kalisz and Purugganan 
2004, Molinier et al. 2006). Signifi cant eff ects of the paternal 
environment on off spring traits have been reported in several 
studies but they are smaller than maternal environmental 
eff ects (Roach and Wulff  1987, Schmid and Dolt 1994, Gal-
loway 2001). In our study, we keep the term maternal envi-
ronmental eff ects although off spring performance may be 
driven by the environment of both parents. We assume that at 
the chosen spatial scales, environmental diff erences between 
populations are much larger than between mother and father 
plants as most fl owers receive pollen from close neighbours 
(Slatkin 1985, Hardy et al. 2004). 

Several methods to control for environmental eff ects in 
quantitative genetic studies have been proposed. Th e most com-
mon one is the correction of population diff erences by fi tting 
seed mass as a covariate, which is largely aff ected by the mater-
nal environment (Pico et al. 2004, Hereford and Moriuchi 
2005, Bischoff  et al. 2006a). Although accounting for diff er-
ences in seed size can partially reduce variation due to diff eren-
tial maternal provisioning, it remains unclear whether this 
method also accounts for adaptive transgenerational plasticity 
driven by non-resource environmental cues. A second approach 
is to only use juvenile plants of the same size and developmental 
stage in experiments on genetic diff erentiation or to correct for 
initial plant size (Becker et al. 2006, Macel et al. 2007). Con-
trolling for variation in early stages of plant development can 
largely reduce the bias due to environmental maternal eff ects 
but information on genetic diff erentiation in these early traits is 
lost. Growing plants for one or several generations under 
standardized conditions before starting experiments is a 
third method to account for environmental maternal eff ects 
(Galloway and Fenster 2000, Santamaria et al. 2003). Th is 
approach has predominantly been applied to annual species as 
growing a F

1
 generation is cumbersome in many perennials. 

Studies quantifying the dimension of environmental 
maternal eff ects compared with genetic diff erentiation among 
populations are required to evaluate the need for control. 
Experiments testing the same genotypes in diff erent environ-
ments have demonstrated a considerable contribution of 
non-genetic maternal eff ects on off spring phenotypes that 
was in some cases smaller (Weiner et al. 1997, Hereford and 
Moriuchi 2005, Holeski 2007) and in others greater than the 
genotype eff ect (Schmid and Dolt 1994, Sultan 1996). How-
ever, there is a lack of studies assessing the contribution of 
non-genetic eff ects of the natural maternal environment on 
population diff erentiation and local adaptation. 

In our study, we compared the performance of diff erent 
plant populations grown from F

1
 seed produced under 

Table 1. Provenance and description of study populations. 1Echium vulgare. 2Origanum vulgare.

Collection site Source Coordinates Climate, humidity

West CH Fribourg area (west Switzerland) wild 46°51’N, 07°10’E subatlantic, moist
East CH Winterthur area (east Switzerland) stock 47°30’N, 08°43’E2 subatlantic, moist
South D south Hesse, Baden (south Germany) stock 49°52’N, 08°39’E subatlantic, medium
Central D Sachsen-Anhalt (central Germany) wild 51°19’N, 11°54’E subcontinental, dry
UK Sommerset (southwest England)1

Norfolk (east England)2
stock 51°06’N, 03°02’W

52°40’N, 00°57’E
Atlantic, medium
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maternal eff ects in later stages of the life cycle. Each popula-
tion by generation combination was represented by one 2 � 
2 m plot in each of eight blocks. Th e plots comprised a cen-
tral grid of 24 cells (0.2 � 0.2 m²), and 16 seeds were sown 
to each grid cell. We recorded seedling emergence every six 
weeks and labelled the seedlings. After 12 weeks, the num-
ber of seedlings was reduced to one per grid cell, i.e. ideally 
24 per plot, to reduce intraspecifi c competition. We kept 
plants of average size and removed later emerging seedlings. 
Moderate within treatment transplanting was used to avoid 
empty cells and to keep the number of plants per plot and 
treatment constant. Transplants were only considered for 
data analysis if they survived for at least eight weeks until 
late summer. Th e plots were carefully weeded to reduce 
interspecifi c competition. We analysed survival for all test 
plants and growth of fi ve randomly selected focal plants per 
plot. We regularly recorded the number of leaves and the 
length of the longest shoot. In October 2004, the focal 
plants were harvested and biomass was measured after 48 h 
drying at 80°C. 

A similar design was chosen for Legousia but parental and 
F

1
 seed were sown in diff erent years (2002 and 2003). Th e 

experiment was planned as a control for the stability of pop-
ulation diff erentiation (Bischoff  et al. 2006a). We are aware 
that population-by-generation interaction is confounded 
with a potential population-by-environment interaction as 
climatic conditions were quite diff erent in the two years. 
Set-up and measurements were the same as for Origanum 
but we included the number of capsules as a measure of 
reproductive output.

Statistical analysis

We calculated a two-way fi xed eff ects ANOVA to evaluate 
population and generation eff ects on Petri dish means of 
seed mass and germination percentage. Germination per-
centage is the fraction of seeds germinated in each petri-dish 
after six weeks of incubation. To achieve normality and 
homogeneity of variances, germination percentage was arc-
sin square root transformed. A signifi cant generation-
by-population interaction indicates a contribution of 
environmental maternal eff ects to population diff erentia-
tion. In the case of a signifi cant interaction Tukey HSD 
posthoc tests were calculated separately for both generations 
in order to analyse which populations remain signifi cantly 
diff erent in the F

1
. We fi tted seed mass as covariate to the 

ANOVA model to test whether environmental maternal 
eff ects on germination percentage are mediated by seed 
mass. Th e full model including seed mass as a covariate was 
compared with the reduced model without the covariate. A 
reduced F-value of the population-by-generation interac-
tion in the full model indicates that such a correction for 
seed mass can reduce the contribution of environmental 
maternal eff ects to population diff erentiation. All analyses 
were calculated separately for each species as the full model 
revealed signifi cant interactions of generation and popula-
tion with species. 

A similar two-way ANOVA was applied to the fi eld data of 
Origanum and Legousia but in addition, block was included 
into the model and block means were used as response variable. 
Due to low seedling emergence, some block means of  Origanum 

Legousia speculum-veneris seeds were only available from 
west CH, east CH and south D. West CH and central D 
seeds were directly collected in the wild, seeds of the other 
populations were provided by companies specialized in wild 
seed production. Only seed suppliers were chosen who could 
give information on the original collection site and who 
regularly replace stocks by wild collections. 

Growth of F1 seed

In spring 2002 seeds of all populations were germinated in 
petri dishes fi lled with a 0.5 cm layer of agar (1% agar) and 
placed in growth chambers providing homogeneous condi-
tions. Temperature and day length were adjusted to opti-
mum conditions determined in a previous test, which was 
13 h dark, 5°C and 11 h light, 15°C for Legousia and 11 h 
dark, 10°C and 13 h light, 20°C for the other three species. 
All emerging seedlings were planted with a surrounding 
agar block into trays fi lled with garden soil and kept in the 
greenhouse. After two weeks 25 individual plants of each 
Echium, Cichorium and Origanum population were trans-
planted into pots, and placed in fi ve garden plots each com-
prising fi ve plants of the same population. For Legousia, the 
corresponding numbers were 60 plants per population and 
12 plants per plot because plants are smaller and produce 
less seeds. Plants of diff erent species but same provenance 
were grown in the same plots resulting in a total of 25 plots 
each comprising 27 plants. Th e plots were randomly 
arranged to avoid a confounding of population and poten-
tial position eff ects due to spatial heterogeneity. Before onset 
of fl owering, all plots were covered with a nylon mesh cage 
(1 mm mesh size) to avoid cross pollination between the 
populations. Th e fi ve plots comprising populations of the 
same provenance were left uncovered for fi ve days to allow 
open pollination. Every fi ve days the previously uncovered 
provenance was caged again and cages were removed from 
another provenance. Th is controlled pollination was per-
formed in summers 2002 and 2003. Seeds of the annual 
Legousia were harvested in August 2002 and those of the 
biennials and perennials in September 2003.

Comparison of parental and F1 generation

For all species and populations, we assessed diff erences in 
seed mass and germination percentage between parental and 
F

1
 generation. We selected Origanum as a perennial and 

Legousia as an annual species to also test for environmental 
maternal eff ects in later stages of the life cycle.

A subset of parental seeds was stored at room temperature 
during the growth of the F

1
 generation. In 2004, we simul-

taneously germinated parental and F
1
 seeds in growth cham-

bers. Six-hundred seeds of each generation and population 
were weighed and distributed to 12 petri dishes each 
comprising 50 seeds. Germination conditions were the same 
as for the growth of F

1
 seed. Th e petri dishes were arranged 

randomly within growth chambers and germination 
was recorded for six weeks. Germinated seeds (with visible 
radicule) were counted every three days and removed. 

In parallel, we sowed Origanum seeds at a previously 
ploughed and harrowed fi eld site close to Fribourg in 
 western Switzerland in order to test for environmental 
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Population diff erentiation in germination percentage was 
highly signifi cant for all species (Table 3). Th e generation 
main eff ect was also signifi cant with Cichorium showing a 
lower and all other species showing a higher germination per-
centage in the F

1
 than in the parental generation (Table 3, Fig. 

1). However, there is large among population variation in the 
generation eff ect, and in Echium, Cichorium and Origanum, 
the highly signifi cant population-by-generation interaction 
indicates a contribution of environmental maternal eff ects to 
germination traits. Th e results can not be simply explained by 
a reduction in population diff erentiation from parental to F

1
 

generation. A clear reduction of the CV was only apparent in 
Origanum whereas diff erences were small in Echium and 
Cichorium (Fig. 1). Instead, the signifi cant population-by-
generation interaction in germination of the 
latter two  species was due to a change in population ranking. 
In Echium, parental seeds of the UK population showed a 
signifi cantly lower germination than those of other popula-
tions (p-values between � 0.001 and 0.0012) while F

1
 seeds 

of the same population germinated signifi cantly better than 
those of the west CH population (p � 0.047) and diff erences 
to the other populations were not signifi cant any more. A 
similar trend was observed for the south D population of 
Cichorium, which germinated signifi cantly less than the cen-
tral D population (p � 0.001) in the parental germination 
but not in the F

1
. Instead the west CH population showed a 

lower germination (p � 0.001) in the F
1
 which was not sig-

nifi cantly diff erent in the parental generation. Contrary to the 
results on seed mass the population-by-generation-interaction 
was not signifi cant for Legousia although a small decrease in 
the CV was found between parental and F

1
 generation.

In Origanum, the particularly strong increase in germina-
tion of UK seeds from parental to F

1
 generation was partly 

due to a previous loss of germinability during two years of 
storage that was greater than in other populations. Th e result 
indicated that a part of the population-by-generation inter-
action can be explained by a diff erential storage response 
among populations. However, a previous test on freshly 

had to be calculated on only two instead of fi ve plants per treat-
ment (west CH, both generations and east CH: parental seed). 
Field germination was arcsin square root transformed, and leaf 
number, shoot length, biomass and capsule number (Legousia) 
were log-transformed prior to analysis. Tukey HSD was applied 
in the same way as in the germination test.

In order to obtain more information on the nature of pop-
ulation-by-generation interactions, we calculated coeffi  cients 
of variation (CV) among populations for both petri dish and 
fi eld data. If environmental maternal eff ects signifi cantly con-
tribute to population diff erentiation and if they are only tran-
sitory as generally assumed, among populations CV are 
expected to decrease from the parental to the F

1
 generation.

Results

Seed mass and germination under controlled conditions

We found a strong population main eff ect on seed mass for 
Echium, Cichorium and Origanum (Table 2). Th e eff ect of 
generation was only signifi cant for Origanum with F

1
 seed 

being smaller than parental seed. In Cichorium, and  Legousia, 
the population-by-generation interaction was signifi cant 
indicating a contribution of environmental maternal eff ects 
to population diff erentiation. Cichorium seeds of the east 
CH population had a signifi cantly higher mass than those of 
other Cichorium populations (p � 0.001, Tukey HSD). In 
the F

1
 this diff erence was not signifi cant any more and 

instead, seeds of the west CH population were the heaviest 
(p � 0.007 and p � 0.013 compared with south D and 
central D respectively). Altogether the coeffi  cient of varia-
tion (CV) among Cichorium populations decreased from the 
parental to the F

1
 generation (Table 2). A decreasing CV was 

also observed for the seed mass of Legousia showing a large 
and signifi cant diff erence between west CH and south D 
(p � 0.022) in the parental seeds that disappeared in the F

1
. 

In the other two species, the population-by-generation 
interaction was not signifi cant.

Table 2. Contribution of the maternal environment to population differentiation in seed mass. 

(a) Change in among-population variation from parental to F1 generation: means (mg) and coeffi cients of variation

Legousia s.-veneris Echium vulgare Cichorium intybus Origanum vulgare

Parental F1 Parental F1 Parental F1 Parental F1

West CH 0.224 0.200 2.899 2.810 1.030 1.250 0.076 0.064
East CH 0.203 0.209 2.818 2.828 1.318 1.202 0.076 0.075
South D 0.188 0.209 2.426 2.463 1.013 1.014 0.087 0.079
Central D - - 2.652 2.598 1.010 1.026 0.082 0.070
UK - - 2.900 2.507 - - 0.071 0.059
Coeffi cient of variation 0.088 0.026 0.070 0.100 0.137 0.107 0.080 0.120

(b) Analysis of variance

Legousia s.-veneris Echium vulgare Cichorium intybus Origanum vulgare

  DF MS F MS F MS F MS F

Generation (G)     1 0.000 0.018 0.287 2.578 0.022 0.922 0.002   18.273***
Population (P)     4a 0.001 1.679 0.656    5.898*** 0.328   13.847*** 0.001    8.997***
G × P     4a 0.003 4.823* 0.178 1.600 0.117   4.922** 0.000 1.068
Error 110b 0.001 0.111 0.024 0.000

aLegousia speculum-veneris: DF = 2. Cichorium intybus: DF = 3.
bLegousia speculum-veneris: DF = 66. Cichorium intybus: DF = 88.
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in Cichorium, the interaction was signifi cant for both traits 
(Table 2b, 3). 

Fitting seed mass as a covariate in the analysis on germi-
nation percentage did not reduce the level of signifi cance in 
population-by-generation-interactions (Table 4) indicating 
that environmental maternal eff ects on germination were 
independent of seed mass. In Legousia fi tting of seed mass 
revealed a signifi cant interaction that was not signifi cant in 
the reduced model. Th is could be explained by contrasting 
eff ects of seed mass mediated maternal provisioning and 
non resource environmental factors of the maternal environ-
ment. Th e latter would then only be visible after correction 
for maternal provisioning. Th e correlation of seed mass and 

 collected parental seeds also revealed a highly signifi cant 
population-by-generation interaction (F � 4.908, p � 
0.001). Population diff erentiation was smaller in freshly col-
lected parental seeds (CV � 0.241) than in stored parental 
seeds (Fig. 1) but still twice as high as in F

1
 seeds. 

Are maternal environmental effects mediated 
by seed mass?

Th e diff erent patterns of population-by-generation interac-
tions for seed mass and for germination already suggest that 
the contribution of environmental maternal eff ects to germi-
nation is not predominantly mediated by seed mass, as only 

Legousia speculum-veneris Echium vulgare

Cichorium intybus Origanum vulgare
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Figure 1. Comparison of population diff erentiation in growth chamber germination of parental and F
1
 seed; the coeffi  cient of variation 

(CV) indicates the among population variation; ± SE.

Table 3. ANOVA on the contribution of the maternal environment to population differentiation in growth chamber germination

Legousia s.-veneris Echium vulgare Cichorium intybus Origanum vulgare

  DF MS F MS F MS F MS F

Generation (G)     1 0.168 5.101* 0.759 29.018*** 0.243 8.643** 0.257 10.247**
Population (P)     4a 0.874 26.584*** 0.246   9.385*** 0.479 17.043*** 1.076 42.910***
G × P     4a 0.058 1.777 0.234   8.943*** 0.117 4.151** 0.852 33.976***
Error 110b 0.033 0.026 0.028 0.025

aLegousia speculum-veneris: DF = 2.   Cichorium intybus: DF = 3.
bLegousia speculum-veneris: DF = 66. Cichorium intybus: DF = 88.
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generation (CV�0.17) whereas the CV of vegetative traits 
and reproduction did not change. In the parental generation, 
fi eld germination of the west CH population was signifi -
cantly lower than that of other populations (p � 0.001), but 
no such diff erence was found in the F

1
 generation. 

Discussion

Environmental maternal effects in early stages 
of plant development 

We found highly signifi cant diff erences among populations 
in germination percentage (all four test species) and in seed 
mass (three species). Population variation in early traits of 
plant development is common among plant species (Schütz 
and Milberg 1997, Keller and Kollmann 1999, Bischoff  
et al. 2006a). It can be genetically determined because selection 
favours appropriate responses to local environmental cues that 
synchronise germination with periods of optimum seedling sur-
vival (Linhart and Grant 1996, Baskin and Baskin 1998). How-
ever, seed mass and germination are also known to be largely 
aff ected by the maternal environment (Roach and Wulff  1987, 
Gutterman 1992, Sultan 1996, Baskin and Baskin 1998). 

In our study, we detected a strong contribution of environ-
mental maternal eff ects to population diff erentiation in three 
(germination) and two species (seed mass) respectively, indi-
cated by signifi cant population-by-generation interactions 
in a comparison of original parental seeds and F

1
 seeds that 

were produced under homogeneous conditions. Th e signifi -
cant interactions could be partly explained by a reduction of 
among-population variation in the F

1
-generation. Th is fi nd-

ing is in line with the theory of maternal provisioning predict-
ing an increased quality and germination of seeds grown in 
a favourable maternal environment (Sultan 1996, Donohue 
and Schmitt 1998, Riginos et al. 2007). If  maternal provi-
sioning diff ers between original  collection sites  (populations), 

germination percentage was positive in Legousia, Cichorium 
and Origanum but surprisingly negative in Echium. 

Performance in the fi eld

Populations of Origanum diff ered signifi cantly in 
fi eld emergence, leaf number and shoot length but not in 
biomass (Table 5). Th e generation main eff ect was not sig-
nifi cant. A signifi cant population-by-generation interaction 
was only observed in fi eld germination and this was due a 
change in population ranking (Fig. 2). In the parental gen-
eration, germination of the UK population was signifi cantly 
lower than that of the other populations (p between 0.05 
and � 0.001, Tukey HSD). In the F

1
 the UK population 

showed the highest germination and the diff erence was sig-
nifi cant compared to the west CH population in which ger-
mination had decreased (p � 0.001). Th e CV for fi eld 
germination decreased from the parental to the F

1
 generation 

but the eff ect was much smaller than in growth chambers 
under controlled conditions (Figs. 1, 2). A decrease in popu-
lation diff erentiation was also visible in vegetative traits but 
the eff ect was not strong and population ranking did not 
change (Fig. 2).  Neither in the parental nor in the F

1
 

 generation, a superiority of the local population (west CH) 
was observed.

In Legousia parental and F
1
 seeds were sown in diff erent 

years, and due to great diff erences in environmental condi-
tions between years, we observed a highly signifi cant 
‘generation’ eff ect for all measured traits. Th e performance 
was much lower in the F

1
 plants that suff ered from long 

 lasting drought and heat in 2003. Nevertheless, the results 
were consistent with those of Origanum in terms of the pop-
ulation-by-generation interaction. Th is interaction was highly 
signifi cant for fi eld germination (F�18.45, p � 0.001) but 
not for vegetative growth and reproduction. Contrary to 
Origanum, among population CV for fi eld germination 
decreased strongly from the parental (CV�0.51) to the F

1
 

Table 4. Change in p-values of ANOVA on growth chamber germination by fi tting seed mass as a covariate; ↑/↓ indicate a signifi cant posi-
tive/negative relationship of covariate and response variable.

Legousia s.-veneris Echium vulgare Cichorium intybus Origanum vulgare

  DF � covar. + covar. � covar. + covar. � covar. + covar. � covar. + covar.

Seed mass     1     0.006↑   <0.001↓      0.002↑   <0.001↑
Generation (G)     1   0.027   0.023 <0.001 <0.001   0.004    0.001   0.002 <0.001
Population (P)     4a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
G × P     4a   0.177   0.023 <0.001 <0.001   0.008   0.001 <0.001 <0.001

aLegousia speculum-veneris: DF = 2.   Cichorium intybus: DF = 3.

Table 5. ANOVA on the contribution of the maternal environment to population differentiation in the performance of Origanum vulgare in 
the fi eld.

Field germination Leaves per plant Shoot length Biomass

DF MS F MS F MS F MS F

Generation (G)   1 0.003 2.176 0.000   0.009 0.004 0.065 0.000   0.003
Population (P)   3a 0.008 5.333*** 0.066   3.336* 0.199 3.279* 0.116   2.167
G × P   3a 0.016 11.567*** 0.018   0.922 0.070 1.145 0.012   0.220
Block   7 0.006 4.136*** 0.039   1.976 0.098 1.607 0.076   1.416
Error 49b 0.001 0.020 0.061 0.054

aField germination: DF = 4.
bField germination: DF = 63.
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compared genotypes of the same population representing a 
relatively low genetic variation. In a reciprocal transplant 
experiment analysing diff erent populations and diff erent 
maternal environments, Hereford and Moriuchi (2005) 
found that both signifi cantly aff ected seed mass and germi-
nation but the magnitude of the population eff ect was 
greater. A relatively large eff ect of the maternal environment 
was found in a germination study testing populations from 
diff erent alpine elevations that had previously been grown 
at several natural and non natural sites (Hermesh and 
Acharya 1992).

Environmental maternal effects in later stages 
of plant development

In agreement with most other studies, we found that the 
contribution of environmental maternal eff ects decreased 
in later stages of plant development. In both species tested 
in the fi eld, Orignaum and Legousia, the population-by-
generation interaction was only signifi cant for fi eld emer-
gence but not for vegetative growth and reproduction. In 
Origanum, a small decrease in variation of vegetative traits 
was observed while in Legousia the variation of all measured 
late traits remained constant in the F

1
. 

Several studies detected signifi cant environmental mater-
nal eff ects in later stages of the life cycle, including plant 
growth, reproduction (Schmid and Dolt 1994, Helenurm and 
Schaal 1996, Weiner et al. 1997, Riginos et al. 2007), plant 

we expect population diff erentiation to decrease in off spring 
of plants grown under the same  environmental conditions. 
However, changes in population ranking between parental 
and F

1
 generation as well as  diff erent patterns of population-

by-generation interactions in seed mass and germination 
indicate environmental maternal eff ects beyond maternal 
provisioning. Environmental cuing of germination through 
maternal eff ects that are independent of maternal provision-
ing has been demonstrated in many studies (reviewed by 
Roach and Wulf 1987, Baskin and Baskin 1998, Munir et 
al. 2001, Donohue et al. 2005). Such non-resource mater-
nal eff ects may be adaptive in the home environment but 
non-adaptive in other environments (Galloway and Etterson 
2007). Homogenisation of the maternal environment to pro-
duce F

1
 seeds changed the environmental cuing in our study 

which may have led to a population-dependent diff erential 
change in germination percentage. 

Th is study is to our knowledge the fi rst one that directly 
analyses the contribution of environmental maternal eff ects 
to population diff erentiation in plants by simultaneously 
testing parental seed directly collected from the fi eld and F

1
 

seed grown under homogeneous conditions. However, sev-
eral studies comparing genotypes previously grown in diff er-
ent maternal environments seem to support our fi nding that 
non-genetic maternal eff ects can signifi cantly contribute to 
population diff erentiation in early traits. Sultan (1996) 
found that environmental maternal eff ects on seed mass and 
germination are often larger than genotype eff ects but she 
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genetic diff erentiation (Roach and Wulff  1987, Donohue 
and Schmitt 1998, Galloway 2001, Pico et al. 2004). Seed 
mass is supposed to be a measure for maternal provisioning 
that is correlated with germination percentage and seedling 
performance (Stanton 1984, Meyer and Carlson 2001). 
Including seed mass as a covariate in analyses of genetic dif-
ferentiation should therefore correct for a large part of the 
bias caused by environmental maternal eff ects (Helenurm 
and Schaal 1996, Pico et al. 2003). In our study, population-
by-generation interactions for germination percentage 
remained highly signifi cant after fi tting seed mass as a covari-
ate. Th is result supports several other recent studies that were 
unable to reduce environmental maternal eff ects on later 
traits when correcting for seed mass. Some experiments 
already failed to detect a signifi cant eff ect of the maternal 
environment on seed mass (Gianoli 2002, Luzuriaga et al. 
2006), in others seed mass had no eff ect on off spring traits 
(Pico et al. 2004). In our study, we were not able to detect 
maternal eff ects on seed mass of Origanum and Echium. In 
the other two species, Legousia and Cichorium, we observed 
maternal eff ects on seed mass and a positive correlation of 
seed mass and germination but accounting for seed mass did 
not reduce environmental maternal eff ects on these traits. 
Similarly, Agrawal (2002) and Hereford and Moriuchi 
(2005) failed to remove maternal eff ects on off spring traits 
by using this correction method although such eff ects on 
seed mass were signifi cant. 

Th us, correcting for seed mass seems to be generally insuf-
fi cient to reduce environmental maternal eff ects from popula-
tion diff erentiation in plant traits. Moreover, the method may 
also remove a part of the genetic variation among populations. 
In three species, we observed a signifi cant population eff ect in 
the F

1
 generation indicating a strong genetic diff erentiation 

in seed mass. Similar results have been found in other studies 
(Weiner et al. 1997, Galloway 2001, Hereford and Moriuchi 
2005). Statistical models including seed mass as a covariate 
may therefore largely underestimate genetic diff erentiation 
in germination, off spring growth or reproduction. Account-
ing for diff erences in initial plant size is probably a more effi  -
cient method to remove environmental maternal eff ects from 
population diff erentiation in later traits, but the risk not to 
detect existing genetic variation increases. Th e standardization 
of initial size by selecting juveniles of the same size would be 
even more problematic because information on variation due 
to initial size diff erences would be lost. Th e most straightfor-
ward method to account for maternal eff ects is the growth of 
at least one generation in a standard environment. Th is may 
also induce maternal eff ects but at least maternal provisioning 
of following generations should be very similar among popu-
lations (Kawecki and Ebert 2004). Nevertheless, this method 
has rarely been used to correct for environmental maternal 
eff ects in plants (Galloway and Fenster 2000, Santamaria 
et al. 2003) because the production of F

1
 seeds is time con-

suming for biennials and perennials that do not fl ower in the 
fi rst year. 

Th e need to account for environmental maternal eff ects 
and the appropriate method depend on the scientifi c ques-
tions to be answered. In analyses of late developmental traits in 
long-lived species, genetic diff erences accounting for environ-
mental maternal eff ects may not be required because their 
contribution to population diff erentiation is relatively small. 

defence traits (Agrawal 2002, Holeski 2007) and phenology 
(Johnsen et al. 2005). Some environmental maternal eff ects 
were found to persist even more than one generation (Wulff  
et al. 1999, Molinier et al. 2006, Rohde and Juntilla 2008). 
Growth and reproduction may be indirectly aff ected by mater-
nal provisioning due to diff erences in seedling performance 
(Roach and Wulff  1987). Studies demonstrating a positive 
relationship between seed mass and off spring fi tness confi rm 
the possibility of such indirect environmental maternal eff ects 
on later traits (Stanton 1984, Meyer and Carlson 2001). It is 
obvious that eff ects based on maternal provisioning diminish 
in later stages of the life cycles because growth and reproduc-
tion depend on many other variables. Accordingly, all studies 
cited above found a reduction in environmental maternal 
eff ects over time and often, they became insignifi cant directly 
after germination (Hereford and Moriuchi 2005). Eff ects on 
plant defence and phenology cannot simply be explained by 
maternal provisioning. It has been suggested that maternally 
induced epigenetic and/or hormonal changes can be respon-
sible (Agrawal 2002, Gianoli 2002, Johnson et al. 2005, 
Holeski 2007). In particular, epigenetic changes are poten-
tially more stable than eff ects of maternal provisioning and 
may persist over several generations (Molinier et al. 2006, 
Rohde and Juntilla 2008). However, even such physiological 
changes may rapidly disappear if off spring and maternal envi-
ronment are diff erent (Agrawal 2002). 

Studies allowing a comparison between genetic and envi-
ronmental maternal eff ects on off spring performance beyond 
germination as well as analyses of the contribution of maternal 
eff ects to population diff erentiation are still rare. In general, 
little infl uence of the maternal environment compared with 
genotype eff ects has been found (Weiner et al. 1997, Hereford 
and Moriuchi 2005, Holeski 2007). Th is is particularly the 
case if genotypes belong to diff erent populations (Hereford 
and Moriuchi 2005, Holeski 2007) confi rming our result that 
diff erent maternal environments did not signifi cantly contrib-
ute to population diff erentiation in post-germination traits. 
Th ese fi ndings may lead to the conclusion that population 
diff erentiation in plant fi tness is fi nally not much aff ected by 
diff erences in the maternal environment. However, the evalu-
ation of eff ects on plant fi tness strongly depends on the impor-
tance of seedling recruitment in the life cycle. Short lived 
plants of disturbed habitats are often recruitment limited 
and thus germination percentage as well as timing and speed 
may be crucial for population growth rates. Under such condi-
tions, environmental maternal eff ects on germination may 
largely aff ect fi tness (Baskin and Baskin 1998, Hereford and 
Moriuchi 2005, Luzuriaga et al. 2006). Galloway and Etter-
son (2007) demonstrated that off spring of Campanula ameri-
cana have greater germination rates leading to increased fi tness 
(λ) when planted to their maternal light environment 
compared with plants mismatching their maternal light 
environment. Th e importance of seedling recruitment in 
determining fi tness diff erences among populations has 
also been shown for perennial plants (Bischoff  et al. 2006b).

Accounting for maternal effects in studies 
on population differentiation 

Th e correction for seed mass is used as a standard method to 
account for environmental maternal eff ects in studies on 
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Gianoli, E. 2002. Maternal environmental eff ects on the phenoty-
pic responses of the twining vine Ipomoea purpurea to support 
availability. – Oikos 99: 324–330. 

Gutterman, Y. 1992. Maternal eff ects on seeds during develop-
ment. – In: Fenner, M. (ed.), Seeds: the ecology of regene-
ration in plant communities. Melksham Redwood Press, 
pp. 27–59.

Hardy, O. J. et al. 2004. Fine-scale genetic structure and gene dis-
persal in Centaurea corymbosa (Asteraceae) L. I. Pattern of pol-
len dispersal. – J. Evol. Biol. 17: 795–806.
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on off spring fi tnessin Lupinus texensis (Fabaceae). – Am. J. Bot. 
83: 1596–1608.

Hereford, J. and Moriuchi, K. S. 2005. Variation among popula-
tions of Diodia teres (Rubiaceae) in environmental maternal 
eff ects. – J. Evol. Biol. 18: 124–131.

Hermesh, R. and Acharya, S.N. 1992. Infl uence of maternal plant 
environment and provenance of alpine bluegrass seed germina-
tion. – Can. J. Plant Sci. 72: 801–808.

Holeski, L. M. 2007. Within and between generation phenotypic 
plasticity in trichome density in Mimulus guttatus. – J. Evol. 
Biol. 20: 2092–2100.

Huff ord, K. M and Mazer, S. J. 2003. Plant ecotypes: genetic diff e-
rentiation in the age of ecological restoration. – Trends Ecol. 
Evol. 18: 147–155.

Johnsen, Ø. et al. 2005. Daylength and temperature during seed 
production interactively aff ect adaptive performance of Picea 
abies progenies. – New Phytol. 168: 589–596.

Kalisz, S. and Purugganan, M. D. 2004. Epialleles via DNA met-
hylation: consequences for plant evolution. – Trends Ecol. 
Evol. 19: 309–314.

Kawecki, T. and Ebert, D. 2004. Conceptual issues in local adapta-
tion. – Ecol. Lett. 7: 1225–1241.

Keller, M. and Kollmann, J. 1999. Eff ects of seed provenance on 
germination of herbs for agricultural compensation sites. – 
Agric. Ecosyst. Environ. 72: 87–99.

Linhart, Y. B. and Grant, M. C. 1996. Evolutionary signifi cance of 
local genetic diff erentiation in plants. – Annu. Rev. Ecol. Syst. 
27: 237–277.

Luzuriaga, A. L. et al. 2006. Environmental maternal eff ects on 
seed morphology and germination in Sinapis arvensis (Crucife-
rae). – Weed Res. 46: 163–174. 

Macel, M. L. et al. 2007. Aboveground versus below-ground factors 
in local adaptation of two common plant species. – Ecology 88: 
424–433.

Marshall, D. J. and Uller, T. 2007. When is a maternal eff ect adap-
tive? – Oikos 2007: 1957–1963.

Meyer, S. E. and Carlson, S. L. 2001. Achene mass variation in 
Ericameria nauseosus (Asteraceae) in relation to ndispersal abi-
ligty and seedling fi tness. – Funct. Ecol. 15: 274–281. 

Molinier, J. et al. 2006. Transgeneration memory of stress in plants. 
– Nature 442: 1046–1049.

Munir, J. et al. 2001. Th e infl uence of maternal photoperiod on 
germination requirements in Arabidopsis thaliana. – Am. J. Bot. 
88: 1240–1249.

Pico, F. X. et al. 2003. Fitness traits and dispersal ability in the herb 
Tragopogon pratensis (Asteraceae): decoupling the role of inbree-
ding depression and maternal eff ects. – Plant Biol. 5: 522–530.

Pico, F. X. et al. 2004. Infl uence of selfi ng and maternal eff ects on 
life cycle traits and dispersal ability in the herb Hypochaeris 
radicata (Asteraceae). – Bot. J. Linn. Soc. 146: 163–170.

Riginos, R. et al. 2007. Maternal eff ects of drought stress and 
inbreeding in Impatiens capensis (Balsaminaceae). – Am. J. Bot. 
94: 1984–1991. 

Roach, D. A. and Wulff , R. D. 1987. Maternal eff ects in plants. – 
Annu. Rev. Ecol. Syst. 18: 209–235.

However, studies on early traits usually need to account for 
environmental maternal eff ects even in long-lived species, 
and growth of F

1
 seeds under standard conditions should be 

the preferred method. Comparisons focussing on plant fi t-
ness would require such a correction if seedling recruitment 
is limiting population growth rates. Finally, in applied stud-
ies comparing the success of diff erent populations for resto-
ration or re-vegetation purposes (Keller and Kollmann 1999, 
Huff ord and Mazer 2003, Smith et al. 2005, Bischoff  et al. 
2006a) environmental maternal eff ects represent an impor-
tant part of the diff erentiation that greatly infl uence estab-
lishment at the target sites. Removing these eff ects from 
population comparisons may lead to unrealistic performance 
estimates. In particular, restoration measures starting from 
bare ground depend on seedling recruitment and are sensi-
tive to environmental maternal eff ects. Th us environmental 
maternal eff ects may not only be a bias in population studies, 
they are part of the natural diff erentiation and may be even 
adaptive. 
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