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1. Introduction

Approximating a function f from a sample at equidistant abscissae is a classical problem

in engineering that gives rise to interesting mathematics and recurrently leads to the pu-

blication of survey papers and books, such as [Hig1, But-Spl-Ste, But-Ste, Hig2, Par]. One

approach to Shannon’s sampling theory takes advantage of the Lagrange property

sinc(kπ) =
{

1, k = 0,
0, k ∈ ZZ\{0},

of the sinc function

sinc(x) :=
sin x

x

1Work partly supported by the Swiss National Science Foundation under grant Nr
PIOI2 –117244/2.
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at the integer multiples of π to construct the cardinal interpolant

C(f, h)(x) :=
∞∑

n=−∞

sinc
[
π

h
(x − xn)

]
fn (1.1)

from the sample values fn := f(xn) at the bi-infinite sequence of equidistant arguments

xn = nh (therefore including zero). If f decays rapidly enough at infinity, Shannon’s

sampling theorem asserts that C(f, h) = f for h sufficiently small if f is the restriction to IR

of a function of exponential type (Paley–Wiener class, [Lun-Bow, p. 22 ff.]), while one has

exponential convergence of C(f, h) when f is analytic in a horizontal strip about IR ([Lun-

Bow, p. 35] or [Ste, p. 136]). These facts make C(f, h) unarguably the most important

infinitely differentiable interpolant between equidistant points on the infinite line and on

the circle, where it is the trigonometric interpolant [Ber1].

When applying (1.1) in practice, one must restrict oneself to finite sums, which we shall

take here to be symmetric about 0 and make longer and longer to improve accuracy. We

shall consider a fixed interval [−X, X], X ∈ IR+, and at first choose as in [Ber3] some h

such that X = Nh for N ∈ INN to approximate C(f, h) of (1.1) with the finite interpolant

CN(f, h)(x) =
N∑

n=−N

′′

f(xn) sinc
[
π

h
(x − xn)

]
, xn = nh, h = X/N, (1.2)

where the double prime denotes that the first and last terms are halved. This permits to

write CN as a function of the difference of two classical quadrature formulae, see §3. We

are interested in the error CN(f, h) − f as a function of h for f ∈ Cq[−X, X] for some

q ∈ INN. After completing the error term for a formula given in [Ber3], we derive in §4 the

corresponding one for an even number of xn.

2. Preliminaries on numerical quadrature

As in [Ber3], our analysis rests on the study of errors in numerical quadrature. We shall use

the notation I [a,b] :=
∫ b
a f(y)dy for the usual definite integral and I [a,b]

x := PV
∫ b
a

f(y)
x−y

dy for

the Cauchy principal value integral. A classical formula for approximating the integral I [0,X]

from an equispaced sample fn := f(xn) of f at xn := nh, h := X
N

, is the trapezoidal rule

Th(I
[0,X]) := h

∑N
n=0

′′

fn; if f ∈ C2m+1[0, X] and f (2m+2) is absolutely integrable on [0, X],

m ∈ INN ∪ {0}, then its error is given by the Euler–Maclaurin formula
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Th(I
[0,X]) − I [0,X] =

m+1∑

k=1

a2kh
2k −

h2m+2

(2m + 2)!

∫ X

0
f (2m+2)(x)P 2m+2(

x

h
)dx,

a2k :=
B2k

(2k)!

[
f (2k−1)(X) − f (2k−1)(0)

]
, (2.1)

where P ℓ denotes the 1–periodic continuation of the Bernoulli polynomial of degree ℓ [Ell,

Ber2] and the constants Bℓ are the Bernoulli numbers [Sch, Ber2]. If f ∈ C2m+2 the two

terms in h2m+2 may be combined to yield
∑m

k=1 a2kh
2k + O(h2m+2) [Kin-Che].

If the abscissae do not include the endpoints, as with xn+ 1

2

:= (n+ 1
2
)h, n = 0, . . . , N−1,

then a possibility is the midpoint rule Mh(I
[0,X]) := h ·

∑N−1
n=0 fn+ 1

2

, whose error is

Mh(I
[0,X]) − I [0,X] = −

m+1∑

k=1

(1 − 21−2k)a2kh
2k −

h2m+2

(2m + 2)!

∫ X

0
f (2m+2)(x)P 2m+2(

1

2
−

x

h
)dx,

(2.2)

with the same a2k as in (2.1) [Dav-Rab, p. 139].

Euler–Maclaurin formulae have been given for Cauchy principal value integrals I [0,X]
x as

well. Restricting himself to analytic f ’s, Hunter [Hun] subtracted an analytically integrable

X–periodic function with the behavior of 1
x−y

at x and so that the endpoint values of each

of its derivatives coincide to obtain an asymptotic series for Th(I
[0,X]
x )− I [0,X]

x . Lyness [Lyn]

later noticed that the subtraction function could simply be taken as π
X

f(x) cot[ π
X

(x − y)]

and gave the O(hq) term for f ∈ Cq, q ∈ INN — see (4.6) below. Elliott [Ell] fixed a slight

error in Lyness’ assumptions. The formulae for Th and Mh are derived under the hypothesis

that f ∈ C2m+1 and that f (2m+2) is absolutely integrable. For Th the formula is

Th(I
[0,X]
x ) = h

N∑

n=0

′′

fn

x − xn

= I [0,X]
x + πf(x) cot

π

h
x +

m+1∑

k=1

a2k(x)h2k

−
h2m+2

(2m + 2)!

∫ X

0
F (2m+2)(y)P 2m+2(

y

h
)dy,

a2k(x) :=
B2k

(2k)!

[( f(y)

x − y

)(2k−1)
(X) −

( f(y)

x − y

)(2k−1)
(0)

]
,

F (y) :=
f(y)

x − y
−

π

X
f(x) cot

[
π

X
(x − y)

]
. (2.3)

3

ht
tp

://
do

c.
re

ro
.c

h



Hunter also gave the corresponding formula for the midpoint rule, which with the integral

term by Lyness reads

Mh(I
[0,X]
x ) = h

N−1∑

n=0

fn+ 1

2

x − xn+ 1

2

= I [0,X]
x − πf(x) tan

π

h
x −

m+1∑

k=1

(1 − 21−2k)a2k(x)h2k

−
h2m+2

(2m + 2)!

∫ X

0
F (2m+2)(y)P 2m+2

(1

2
−

y

h

)
dy (2.4)

with the a2k(x) and F (y) of (2.3). (Our signs do not match those of [Hun], [Lyn] or [Ell]

for we integrate f(y)
x−y

instead of f(y)
y−x

, which changes all signs, including that of the residue in

[Hun].)

We shall be concerned with formulae for symmetric integrals I [−X,X]
x = PV

∫ X
−X

f(y)
x−y

dy.

To obtain them, we shall modify the interval to [0, 2X] by changing the variable to t := y+X

and defining for every function s(t) its shifted ŝ(t) := s(t − X), so that I [−X,X]
x becomes

PV
∫ 2X
0

f̂(t)
x+X−t

dt. Then by (2.3)

Th(I
[−X,X]
x ) − I [−X,X]

x = πf̂(x + X) cot
[
π

h
(x + X)

]
+

m+1∑

k=1

â2k(x + X)h2k

−
h2m+2

(2m + 2)!

∫ 2X

0
F̂

(2m+2)
2 (t)P 2m+2(

t

h
)dt,

â2k(x) :=
B2k

(2k)!

[( f̂(t)

x − t

)(2k−1)
(2X) −

( f̂(t)

x − t

)(2k−1)
(0)

]
,

F̂2(t) :=
f̂(t)

x + X − t
−

π

2X
f̂(x + X) cot

[
π

2X
(x + X − t)

]
.

But 2X
h

= N , thus X
h

= N
2
, so that

Th(I
[−X,X]
x ) − I [−X,X]

x = πf(x) cot
[
π

h
x +

N

2
π

]
+

m+1∑

k=1

â2k(x + X)h2k

−
h2m+2

(2m + 2)!

∫ X

−X
F̂

(2m+2)
2 (y + X)P 2m+2(

y

h
+

N

2
)dy,

â2k(x) :=
B2k

(2k)!

[( f(t − X)

x − X − (t − X)

)(2k−1)
(2X) −

( f(t − X)

x − X − (t − X)

)(2k−1)
(0)

]
,

F̂2(y + X) :=
f(y)

x + X − y − X
−

π

2X
f̂(x + X) cot

[
π

2X
(x − y)

]
.
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If N is even, the π–periodicity of the cotangent and the 1–periodicity of P 2m+2 have formula

(2.3) still hold with −X in place of 0 and double interval length:

Th(I
[−X,X]
x ) − I [−X,X]

x = πf(x) cot
π

h
x +

m+1∑

k=1

a2k(x)h2k

−
h2m+2

(2m + 2)!

∫ X

−X
F

(2m+2)
2 (y)P 2m+2(

y

h
)dy,

a2k(x) :=
B2k

(2k)!

[( f(y)

x − y

)(2k−1)
(X) −

( f(y)

x − y

)(2k−1)
(−X)

]
,

F2(y) :=
f(y)

x − y
−

π

2X
f(x) cot

[
π

2X
(x − y)

]
. (2.5)

This remains true for the error of the midpoint rule.

When N is odd, the derivative–free term becomes πf(x) cot [π
h
x + π

2
] = −πf(x) tan π

h
x;

moreover, P 2m+2(
y
h

+ N
2
) = P 2m+2(

1
2
− y

h
), since the Bernoulli polynomials with even degree

are even with respect to 1/2. (We call a function s even with respect to a when s(a − x) =

s(a + x).) Those are the corresponding expressions in the error of the midpoint rule. The

same calculation leading to (2.5), but for the midpoint rule, results in the derivative–free

term−πf(x) tan
[

π
h
(x + X)

]
= πf(x) cot (π

h
x) and P 2m+2(

y
h
) of the trapezoidal error. These

expressions therefore exchange place in the formulae for the two rules when N is odd.

3. The error formula for an odd number of nodes

We now turn to our aim, namely that of finding a formula for CN(f, h)−f . One immediately

sees that CN(f, h) may be written as [Val, Kre, Ber1]

CN(f, h)(x) =
h

π
sin

π

h
x

N∑

n=−N

′′

(−1)n fn

x − xn

. (3.1)

The right-hand expression may be interpreted as a difference of quadrature formulae of §2

with step 2h:

CN(f, h)(x) =
1

2π
sin(

π

h
x)(−1)N (T2h(I

[−X,X]
x ) − M2h(I

[−X,X]
x )), (3.2)

(the factor (−1)N takes care of the sign at the extremal nodes in dependence on the parity

of N). But, with

h̃ := 2h
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and if N is even, so that T
h̃

and M
h̃

cover an even number of intervals,

T
h̃
(I [−X,X]

x ) = I [−X,X]
x + πf(x) cot

π

h̃
x +

m+1∑

k=1

a2k(x)h̃2k

−
h̃2m+2

(2m + 2)!

∫ X

−X
F (2m+2)(y)P 2m+2

(y

h̃

)
dy,

M
h̃
(I [−X,X]

x ) = I [−X,X]
x − πf(x) tan

π

h̃
x −

m+1∑

k=1

(1 − 21−2k)a2k(x)h̃2k

−
h̃2m+2

(2m + 2)!

∫ X

−X
F

(2m+2)
2 (y)P 2m+2

(1

2
−

y

h̃

)
dy

with F2 as in (2.5). For odd N the exchange of the derivative–free terms and of the values

of P 2m+2 between T
h̃

and M
h̃

introduces another factor −1 = (−1)N in their difference.

Subtracting M
h̃

from T
h̃
, using the trigonometric identity tan α + cot α = 2/ sin 2α, and

simplifying yield the first version of the error formula for 2N + 1 nodes,

CN(f, h)(x) − f(x) =
(−1)N

2π
sin

2π

h̃
x

m+1∑

k=1

b2k(x)h̃2k

−
h̃2m+2

(2m + 2)!

∫ X

−X
F

(2m+2)
2 (y)Q2m+2

(y

h̃

)
dy,

b2k(x) := 2(1 − 4−k)
B2k

(2k)!

[( f(y)

x − y

)(2k−1)
(X) −

( f(y)

x − y

)(2k−1)
(−X)

]
(3.4)

with Qk(z) := (−1)N
(
P k(z) − P k(

1
2
− z)

)
.

The oscillatory sine–factor in front of the sum vanishes at every xn, reflecting the in-

terpolation property. On the other hand, it complicates the practical interpretation of the

formula. For a given x, it is namely possible to pick a sequence of h for which the factor is

growing toward 1 from a value close to 0. To avoid this, one may take a factor h̃ in front of

the sine to get

CN(f, h)(x) − f(x) = (−1)Nx sinc
(2π

h̃
x
)( m+1∑

k=1

b2k(x)h̃2k−1 + O(h2m+1)
)
. (3.5)

Now, since sinc (2π

h̃
x) → 0 as h → 0, the effect just mentioned asymptotically disappears:

the polynomial part of the error decays with h at least like a constant times sinc (π
h
x)h.
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Summarizing we have the following.

Theorem 3.1

Let f ∈ C2m+1[−X, X], X ∈ IR+, with f (2m+2) absolutely integrable be interpolated on the

interval [−X, X] by the sinc interpolant CN(f, h) in (3.1) with N ∈ INN, h = X
N

, h̃ := 2h

and xn = nh. Then the difference CN(f, h)− f is given by formulae (3.4) and (3.5) with F2

from (2.5).

4. Sinc interpolation between an even number of nodes

In sinc interpolation, the case of an even number of points is certainly less common than that

of an odd number. It might however have its importance, for instance when f is periodic

[Ber1] or with one–sided sinc interpolation [Ber4]. The finite cardinal series

C
(e)
N (f, h)(x) :=

N∑

n=−N+1

′′

f(xn− 1

2

) sinc
[
π

h
(x − xn− 1

2

)
]
, xn− 1

2

= (n −
1

2
)h, (4.1)

with h = 2X/(2N − 1) then does not interpolate at 0.

The main difference with the case of an odd number of points is the fact that the weights

in the extreme terms of the sum now carry opposite signs. One may again write the sum

as the difference of quadrature formulae for equidistant points, but these formulae are then

asymmetric as one extremity is not a node.

We shall transform the interpolation problem into one with an odd number of nodes by

first changing the variable and moving the points. For that purpose, consider again to every

function s on [−X, X] its shift ŝ(x) := s(x − X), with domain [0, 2X], and to every shifted

ŝ its unshifted s(x) = ŝ(x + X). The sum in (4.1) is an expression in terms of the f̂(xn):

recalling h̃ = 2h, we have

C
(e)
N (f, h)(x) =

h

π

N∑

n=−N+1

′′

f(xn− 1

2

)
sin

[
π
h
x − (n − 1

2
)π

]

x − xn− 1

2

=
h̃

2π
cos

π

h
x

N∑

n=−N+1

′′

f(xn− 1

2

)
(−1)n

x − xn− 1

2

(4.2)
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=
h̃

2π
cos

π

h
x

2N−1∑

n=0

′′

f(xn−(N−
1

2
))

(−1)n−(N−1)

x − xn−(N−
1

2
)

and, since (N − 1
2
)h = X,

C
(e)
N (f, h)(x) = (−1)N−1 h̃

2π
cos

π

h
x

2N−1∑

n=0

′′

f̂(xn)
(−1)n

x + X − xn
.

To transform the problem into one with an odd number of points, we now extend f̂(x)

and f̂(y)
x−y

to [−2X, 0] as even functions, the latter by defining

ĝx(y) :=






f̂(y)
x−y

, 0 ≤ y ≤ 2X,

− f̂(−y)
−x−y

, −2X ≤ y ≤ 0,
(4.3)

which, by our shift convention, implies gx(y) = ĝx+X(y + X) = f(y)/(x − y) on [−X, X].

Then

C
(e)
N (f, h)(x) =

(−1)N−1

2

h̃

2π
cos

π

h
x
( 0∑

n=−(2N−1)

′′

f̂(−xn)
(−1)n

x + X + xn
+

2N−1∑

n=0

′′

f̂(xn)
(−1)n

x + X − xn

)
,

=
(−1)N−1

4π
cos

π

h
x
(
h̃

2N−1∑

n=−(2N−1)

′′

(−1)nĝx+X(xn)
)

(the double value at 0 eliminates the prime there) and with Î [−2X,2X]
x := PV

∫ 2X
−2X ĝx(y)dy

=
(−1)N−1

4π
cos

π

h
x

(
M

h̃
(Î

[−2X,2X]
x+X ) − T

h̃
(Î

[−2X,2X]
x+X )

)
, (4.4)

since the signs at the extremal nodes are now the same.

One may not continue as in (3.4), however, for now f̂ , rolled up on a circle of diameter
4X
π

[Ber2], has two jumps instead of only one at 2X ≡ −2X: its derivatives usually are

discontinuous at 0. We thus need a generalization of Hunter’s and Lyness’ theorem for

functions with several jumps, which will follow from modifying the proof in [Ber2] along the

Lyness–Elliott lines [Ell].

First we introduce some notation. Let f be piecewise Cq−1[−X, X], i.e., (q − 1)–times

continuously differentiable on [−X, X] except at interior jumps, at which the limits of f

and its q − 1 derivatives exist on both sides. Denote by c0 the point −X ≡ X and by cj,

j = 1, . . . , J , the other jumps, and let f be redefined at cj as the middle of the jump,

f(cj) :=
f(cj−) + f(cj+)

2
, j = 0, . . . , J,
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where, as usual, f(x±) := limǫ→0 f(x ± ǫ), and f(c0±) := limǫ→0 f(∓X ± ǫ).

We shall give the Euler–Maclaurin formula for equidistant Riemann sums

Rt(h) := h
N−1∑

n=0

g(−X+(n+t)h) = h
N∑

n=1

g(−X+(n−1+t)h), 0 ≤ t < 1, h :=
2X

N
, (4.5)

of a Cauchy integral on the interval [−X, X] (or, equivalently, on a circle of radius X
π
), where

the integrand may have several singularities to be integrated in the principal value sense, as

ĝx at x + X and −(x + X) in (4.4). t = 0 yields the trapezoidal rule, t = 1/2 the midpoint

rule. t0 := t obviously is the relative distance from the jump −X ≡ X to the following

integration node. Similarly, we determine for every other jump cj the interval that contains

it, i.e., the index nj , 0 ≤ nj ≤ N − 1, such that cj ∈ [−X + (nj + t)h,−X + (nj + 1 + t)h],

j = 0, . . . , J ; this determines tj := (nj+1)h−cj

h
, the relative location of cj with respect to the

following node.

Theorem 4.1 (Generalized Euler–Maclaurin formula for Cauchy integrals)

Let f be piecewise Cq−1[−X, X], q ∈ INN, q ≥ 2, let cj , j = 0, . . . , J , denote its jumps and

f(cj) and tj be defined as above. Suppose that f (q) is integrable on the intervals between

two jumps. Let [−X, X) be partitioned into L disjoint intervals Kℓ = [ci, cj), ℓ = 1, . . . , L,

such that [−X, X) =
L
∪

ℓ=1
Kℓ and g is given on Kℓ by g(y) = f(y)

x̂ℓ−y
, Kℓ ∋ x̂ℓ 6= −X + (n + t)h,

n = 0, . . . , N − 1. Let Rt(h) be any Riemann sum (4.5) of PV
∫ X
−X g(y)dy.

Then the integration error may be written as

Rt(h) − PV
∫ X

−X
g(y)dy = (−1)Nπ

L∑

ℓ=1

f(x̂ℓ) cta
[
π

( x̂ℓ

h
− t

)]
+

q∑

k=1

akh
k

−
hq

q!

∫ X

−X
F

(q)
2,L(y)

J∑

j=0

P q(tj −
y + X

h
)dy (4.6)

with

cta :=
{

cot, N even,
tan, N odd,

a1 :=
J∑

j=0

θjP1(tj) [g(cj−) − g(cj+)] , θj :=
{

0, tj = 0,
1, tj 6= 0,

ak :=
J∑

j=0

Pk(tj)

k!

[
g(k−1)(cj−) − g(k−1)(cj+)

]
, 2 ≤ k ≤ q,
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F2,L(y) := g(y) −
π

2X

L∑

ℓ=1

f(x̂ℓ) cot
[

π

2X
(x̂ℓ − y)

]

and where P k again denotes the 1–periodic continuation of the Bernoulli polynomial of

degree k.

A version of this theorem for the interval [0, 1] and with J = 0 is described in [Lyn].

When all jumps coincide with nodes (tj = 0, all j > 0), then for the trapezoidal rule (t = 0)

all the coefficients ak with odd k vanish: for k = 1, θj = 0 for all j, and Pk(0) = Bk = 0 for

odd k ≥ 3; (2.5) then is a special case of (4.6) with N even, J = 0 and L = 1. With the

midpoint rule (t = 1/2), Pk(1/2) = 0 for every odd k and (4.6) again becomes the formula

corresponding to (2.5) when J = 0 and L = 1.

When q is even and f ∈ Cq, the last two terms of (4.6) might be combined into a single

O(hq)–term.

We may now continue with (4.4). Here T
h̃

and M
h̃

cover the odd number 2N − 1 of

intervals. On the circle of diameter 4X
π

, the extended f̂ has two jumps, c0 = 2X ≡ −2X

and c1 = 0. For T
h̃
, c0 is at a node (t0 = 0, θ0 = 0) while c1 lies in the center of an interval

(t1 = 1/2, θ1 = 1). a1 = 0 in view of P1(1/2) = 0 and the ak with odd k ≥ 3 vanish too, for

Pk(0) = Pk(1/2) = 0. Thus in (4.6)

T
h̃
(Î

[−2X,2X]
x+X ) = R0(h̃)

= Î
[−2X,2X]
x+X − π

{
−f̂( − (x + X)) tan

[
−π

x + X

h̃

]
+ f̂(x + X) tan

[
π

x + X

h̃

]}

+
m∑

k=1

{
P2k(0)

(2k)!

[
ĝ

(2k−1)
x+X (2X) − ĝ

(2k−1)
x+X (−2X)

]

+
P2k(1/2)

(2k)!

[
ĝ

(2k−1)
x+X (0−) − ĝ

(2k−1)
x+X (0+)

]}
h̃2k + O(h2m+2)

(the second negative sign in front of f̂(x + X) comes from the definition (4.3) of ĝx).

For M
h̃
, c0 is between two nodes (t0 = 1/2, θ0 = 1), while c1 is at a node (t1 = 0, θ1 = 0).

Thus, again, ak = 0 for every odd k and
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M
h̃
(Î

[−2X,2X]
x+X ) = R1/2(h̃)

= Î
[−2X,2X]
x+X − π

{
−f̂( − (x + X)) tan

[
π

(
−

x + X

h̃
−

1

2

)]

+ f̂(x + X) tan
[
π

(x + X

h̃
−

1

2

)]}

+
m∑

k=1

{
P2k(1/2)

(2k)!

[
ĝ

(2k−1)
x+X (2X) − ĝ

(2k−1)
x+X (−2X)

]

+
P2k(0)

(2k)!

[
ĝ

(2k−1)
x+X (0−) − ĝ

(2k−1)
x+X (0+)

]}
h̃2k + O(h2m+2).

But with f̂ and ĝ even (thus their odd order derivatives odd),

T
h̃
(Î

[−2X,2X]
x+X ) = Î

[−2X,2X]
x+X − 2π tan

[
π

(x + X

h̃

)]
f̂(x + X)

+2
m∑

k=1

[
P2k(0)

(2k)!
ĝ

(2k−1)
x+X (2X) −

P2k(1/2)

(2k)!
ĝ

(2k−1)
x+X (0+)

]
h̃2k + O(h2m+2)

M
h̃
(Î

[−2X,2X]
x+X ) = Î

[−2X,2X]
x+X + 2π cot

[
π

(x + X

h̃

)]
f̂(x + X)

+2
m∑

k=1

[
P2k(1/2)

(2k)!
ĝ

(2k−1)
x+X (2X) −

P2k(0)

(2k)!
ĝ

(2k−1)
x+X (0+)

]
h̃2k + O(h2m+2)

and (4.4) becomes

C
(e)
N (f, h)(x) =

(−1)N−1

4π
cos

π

h
x

{
4πf̂(x + X)

/
sin

[
2π

(x + X

h̃

)]

+2
m∑

k=1

P2k(1/2) − B2k

(2k!)

[
ĝ

(2k−1)
x+X (0+) + ĝ

(2k−1)
x+X (2X)

]
h̃2k

}
+ O(h2m+2).

Now sin
[
2π

(
x+X

h̃

)]
= sin

[
π

(
x+X

h

)]
= sin

[
π
h
x + (N − 1/2)π)

]
= −(−1)N cos π

h
x, f̂(x +

X) = f(x), ĝ
(2k−1)
x+X (0+) = g(2k−1)

x (−X), ĝ
(2k−1)
x+X (2X) = g(2k−1)

x (X) and we have the following

formula.

Theorem 4.2

Let f ∈ C2m+1[−X, X], X ∈ IR+, with f (2m+2) absolutely integrable be interpolated on the

interval [−X, X] by the sinc interpolant C
(e)
N (f, h) in (4.1) with N ∈ INN, h = 2X

2N−1
and

xn− 1

2

= (n − 1
2
)h. Then the difference C

(e)
N (f, h) − f is given by the formula
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C
(e)
N (f, h)(x) − f(x) =

(−1)N

2π
cos

2π

h̃
x

m∑

k=1

B2k − P2k(1/2)

(2k)!

[
g(2k−1)

x (−X) + g(2k−1)
x (X)

]
h̃2k

+O(h2m+2), (4.7)

with gx(y) = f(y)/(x− y) and h̃ = 2h.

The factors B2k−P2k(1/2)
(2k)!

are the same as in formula (3.4) for the case of an odd number of

points. The sole changes from that formula (besides in the rest term) are the replacement

of the sine by the cosine, and of the differences of end-point derivatives by their sums.

One may again take a factor h̃ in front of the sum to annihilate a possible increase of

the cosine for particular (decreasing) sequences of h.

In [Ber4] we give first applications of formulae (3.4) and (4.7). Here we just notice that

they cannot be used directly for evaluating and/or correcting the error at x too close to the

endpoints −X and X of the interval: the derivatives of f(y)
x−y

become much larger than 1/h̃

there.

5. Appendix: an alternate proof of formula (4.7)

The proof of (4.7) given above makes a detour through a problem involving an odd number

of points and formula (3.4) and requires a change of variable. We shall now give a direct

proof that brings Riemann sums other than T and M into play.

Let us go back to formula (4.2). Roll the interval [−X, X] up on the right half circle

of diameter 4X
π

about 0 [Ber2] and consider the functions f(y) and g(y) := f(y)
x−y

on that

half-circle. Then extend f and g to the left-hand half–circle as even functions with respect

to X (and thus automatically with respect to −X). By associating the weights 1 and −1

with the points xn on the circle (see the figure) and using
∫
−X
−2X +

∫ X
−X +

∫ 2X
X =

∫ 2X
−2X , one

sees that in (4.2)

h̃
N∑

n=−N+1

′′

f(xn− 1

2

)
(−1)n

x − xn− 1

2

=
1

2

[
R1/4(h̃) − R3/4(h̃)

]
, (5.1)

where Rt(h) is the Riemann sum given similarly to formula (4.5) by

Rt(h) := h
2N−1∑

n=0

g( − 2X + (n + t)h),
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t being again the relative distance from the left extremity of the interval to the first node.

(The factor 1/2 takes care of the fact that Rt approaches the integral I [−2X,2X]
x = 2I [−X,X]

x .)

The function f now has two jumps c1 = −X and c2 = X (notice that it does not have

any at 0 nor at the extremities −2X ≡ 2X). If N is even, then −X is not a node of R1/4,

for which it lies at the midpoint of two nodes, but is one for R3/4; it is the other way around

for N odd.

X

±1
2
± 1

2
∓1

−1

0

1

−1

±1
∓1

2
∓ 1

2

±1

−1

1

−2X ≡ 2X

−1

∓1

−X

h̃/4h̃/4

h̃/2

Nodes and weights for the quadrature rules in §5.

When two signs appear, the top one is for N even, the other for N odd.

We now apply Theorem 4.1 to R1/4 and R3/4. Since g is even, all differences of even order

derivatives, thus all coefficients of odd powers of h, vanish. If N is even, then, for R1/4,

t1 = 1
2

and t2 = 0; it is the opposite for R3/4. For x > 0 the singularities to be integrated in

the principal value sense are at x and 2X−x, for x < 0 at x and −2X−x ≡ 2X−x mod 4X,

thus at the same locations. Thus

R1/4 = I [−2X,2X]
x + π

{
f(x) cot

[
π

(
x

h̃
−

1

4

)]
− f(2X − x) cot

[
π

(
2X − x

h̃
−

1

4

)]}

+
m∑

k=1

{
P2k(0)

(2k)!

[
g(2k−1)(−X−) − g(2k−1)(−X+)

]
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+
P2k(1/2)

(2k)!

[
g(2k−1)(X−) − g(2k−1)(X+)

]}
h̃2k + O(h2m+2)

(recall that −f appears in the numerator of the even g on the left half–circle). But 2X =

(2N − 1)h, thus 2X

h̃
= N − 1/2 and cot

[
π

(
2X−x

h̃
− 1

4

)]
= cot

[
−π

h̃
x − 3π

4

]
= cot

[
−π

h̃
x + π

4

]
;

moreover, in view of the parity of f and g, f(2X − x) = f(x) and g(2k−1)(±X−) =

−g(2k−1)(±X+); thus

R1/4 = I [−2X,2X]
x + 2πf(x) cot

[
π

(
x

h̃
−

1

4

)]

+
m∑

k=1

2

(2k)!

[
B2kg

(2k−1)(X) − P2k(1/2)g(2k−1)(−X)
]
h̃2k + O(h2m+2).

Similarly

R3/4 = I [−2X,2X]
x + πf(x)

{
cot

[
π

(
x

h̃
−

3

4

)]
− cot

[
π

(
N −

1

2
−

x

h̃
−

3

4

)]}

+
m∑

k=1

{
P2k(0)

(2k)!

[
g(2k−1)(−X−) − g(2k−1)(−X+)

]

+
P2k(1/2)

(2k)!

[
g(2k−1)(X−) − g(2k−1)(X+)

]}
h̃2k + O(h2m+2)

= 2πf(x) cot
[
π

(
x

h̃
+

1

4

)]

+
m∑

k=1

2

(2k)!

[
P2k(1/2)g(2k−1)(X) − B2kg

(2k−1)(−X)
]
h̃2k + O(h2m+2),

so that with (5.1) in (4.2)

C
(e)
N (f, h)(x) =

1

2π
cos

π

h
x ·

1

2

[
R1/4(h̃) − R3/4(h̃)

]

=
1

2π
cos

π

h
x

{
πf(x)

{
cot

[
π

(
x

h̃
+

1

4

)]
− cot

[
π

(
x

h̃
−

1

4

)]}

+
m∑

k=1

B2k − P2k(1/2)

(2k)!

[
g(2k−1)(−X) + g(2k−1)(X)

]
h̃2k

}
+ O(h2m+2).

But cot
[
π

(
x

h̃
+ 1

4

)]
− cot

[
π

(
x

h̃
− 1

4

)]
= 2/ cos π

h
x; moreover, when N is odd the tj ’s are

exchanged in all formulae, which permutes P2k(0) and P2k(1/2) and introduces the factor

(−1)N to yield formula (4.7).
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